Introduction Outline Motivation for LTE LTE Market Situation LTE Background Story Major Requirem, for LTE Evolution UMTS FDD&TDD # LTE technology and LTE test; a deskside chat May 2009 #### Christina Gessner Christina: Gessner@rohde-schwarz.com Technology Manager Ronde & Schwarz, Germany #### **Andreas Roessler** Andreas.Roessler@rohde-schwarz.com Technology Manager North America Rohde & Schwarz, Germany ## Outline #### I Motivation for LTE #### I LTE technology basics - Key parameters - I OFDMA and downlink frame structure - SC-FDMA and uplink frame structure - Network and protocol architecture - I LTE UE categories #### I Radio procedures - I Cell search - I System information broadcast - Random access - I EPS bearer setup - I Downlink and uplink data transmission - Mobility - I MIMO #### I LTE test requirements - eNodeB RF testing - UE RF testing - I LTE wireless device testing from R&D up to conformance - LTE field trial testing and coverage measurements MIMO = Multiple Input Multiple Output EPS = Evolved Packet System UE = User Equipment RRM = Radio Resource Management OFDMA = Orthogonal Frequency Division Multiple Access SC-FDMA = Single Carrier Frequency Division Multiple Access ## **Motivation for LTE** yawaan) Paggial dis 그릇 시간 나가요. 나라 그 나가 하다 가능하나 하셨다. # LTE market situation based on HSPA success story - I HSPA growth is based on the uptake of mobile data services worldwide. More than 250 networks worldwide have already commercially launched HSPA. - Mobile data traffic is growing exponentially, caused by mobile internet offerings and improved user experience with new device types. - I LTE is accepted worldwide as the long term evolution perspective for today's 2G and 3G networks based on WCDMA/HSPA, GSM/EDGE, TD-SCDMA, and CDMA2000 technologies. Sources: www.gsacom.com, R&S # LTE background story the early days #### Work on LTE was initiated as a 3GPP release 7 study item "Evolved UTRA and UTRAN" in December 2004: With enhancements such as HSDPA and Enhanced Uplink, the 3GPP radio-access technology will be highly competitive for several years. However, to ensure competitiveness in an even longer time frame, i.e. for the next 10 years and beyond, a longterm evolution of the 3GPP radio-access technology needs to be considered." #### I Basic drivers for LTE have been: - Reduced latency - Higher user data rates - Improved system capacity and coverage - Cost-reduction. # Major requirements for LTE identified during study item phase in 3GPP - Higher peak data rates: 100 Mbps (downlink) and 50 Mbps (uplink) - I Improved spectrum efficiency: 2-4 times better compared to 3GPP release 6 - I Improved latency: - Radio access network latency (user plane UE RNC UE) below 10 ms - Significantly reduced control plane latency - Support of scalable bandwidth: 1.4, 3, 5, 10, 15, 20 MHz - Support of paired and unpaired spectrum (FDD and TDD mode) - Support for interworking with legacy networks - I Cost-efficiency: - Reduced CApital and OPerational EXpenditures (CAPEX, OPEX) including backhaul - Cost-effective migration from legacy networks - A detailed summary of requirements has been captured in 3GPP TR 25.913 "Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)". # Evolution of UMTS FDD and TDD driven by data rate and latency requirements #### LTE Technology Basics LTE Key Parameters LTE Frequency Bands OFDMA,Downl. Frame Str. What is OFDM? OFDM Signal Gen. Chain Difference OFDM/OFDMA LTE downlink OFDMA Time-Frequ. Mult. LTE - Spectrum Flexibility LTE Frame Struct. 1 (FDD) LTE Frame Struct. 2 (TDD) ## LTE technology basics ## LTE key parameters | Frequency
Range | UMTS FDD bands and UMTS TDD bands | | | | | | |--|--|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------| | Channel
bandwidth,
1 Resource
Block=180 kHz | 1.4 MHz | 3 MHz | 5 MHz | 10 MHz | 15 MHz | 20 MHz | | | 6
Resource
Blocks | 15
Resource
Blocks | 25
Resource
Blocks | 50
Resource
Blocks | 75
Resource
Blocks | 100
Resource
Blocks | | Modulation
Schemes | Downlink: QPSK, 16QAM, 64QAM
Uplink: QPSK, 16QAM, 64QAM (optional for handset) | | | | | | | Multiple Access | Downlink: OFDMA (Orthogonal Frequency Division Multiple Access) Uplink: SC-FDMA (Single Carrier Frequency Division Multiple Access) | | | | | | | MIMO
technology | Downlink: Wide choice of MIMO configuration options for transmit diversity, spatial multiplexing, and cyclic delay diversity (max. 4 antennas at base station and handset) Uplink: Multi user collaborative MIMO | | | | | | | Peak Data Rate | Downlink: 150 Mbps (UE category 4, 2x2 MIMO, 20 MHz) 300 Mbps (UE category 5, 4x4 MIMO, 20 MHz) Uplink: 75 Mbps (20 MHz) | | | | | | ## LTE frequency bands Work on UMTS/LTE 3500 MHz ongoing | E-UTRA
Band | Uplink (UL)
BS receive
UE transmit | Downlink (DL) BS transmit UE receive | Duplex
Mode | |---------------------|--|--------------------------------------|----------------| | | FULJON - FULJNIGH | FOLING - FOLINGS | PARTICIPATE. | | 11 | 1920 MHz - 1980 MHz | 2110 MHz - 2170 MHz | FDD | | 2 | 1850 MHz - 1910 MHz | 1930 MHz - 1990 MHz | FDD | | 30 yr | 1710 MHz - 1785 MHz | 1805 MHz - 1880 MHz | FDD | | ging Artists | 1710 MHz - 1755 MHz | 2110 MHz - 2155 MHz | FDD | | yim- 5 pszy. | 824 MHz - 849 MHz | 869 MHz - 894MHz | FDD. | | | 830 MHz - 840 MHz | 875 MHz - 885 MHz | FDD | | and There's | 2500 MHz - 2570 MHz | 2620 MHz - 2690 MHz | FDD | | 8 | 880 MHz - 915 MHz | 925 MHz - 960 MHz | FDD | | 9 | 1749.9 MHz - 1784.9 MHz | 1844.9 MHz - 1879.9 MHz | FDD | | 10 | 1710 MHz - 1770 MHz | 2110 MHz - 2170 MHz | FDD | | lang11 karp | 1427.9 MHz - 1452.9 MHz | 1475.9 MHz - 1500.9 MHz | FDD | | 12 | 698 MHz - 716 MHz | 728 MHz - 746 MHz | FDD | | 13 | 777 MHz - 787 MHz | 746 MHz - 756 MHz | FDD | | A. 14 | 788 MHz - 798 MHz | 758 MHz - 768 MHz | FDD | | 0.000 | garanteen Committee Commit | | Andrew Co. | | 17 | 704 MHz - 716 MHz | 734 MHz - 746 MHz | FDQ | | Comments of the | Contaction of the Control Con | | 10 | | 33 | 1900 MHz - 1920 MHz | 1900 MHz - 1920 MHz | TDD | | 34 | 2010 MHz - 2025 MHz | 2010 MHz - 2025 MHz | TDD | | 35 | 1850 MHz - 1910 MHz | 1850 MHz - 1910 MHz | TDD | | 36 | 1930 MHz - 1990 MHz | 1930 MHz - 1990 MHz | TDD | | 37 | 1910 MHz - 1930 MHz | 1910 MHz - 1930 MHz | TDD | | 38 | 2570 MHz - 2620 MHz | 2570 MHz - 2620 MHz | TDD | | 39 | 1880 MHz - 1920 MHz | 1880 MHz - 1920 MHz | TDD | | 40 | 2300 MHz - 2400 MHz | 2300 MHz - 2400 MHz | TDD | # Introduction to OFDMA and downlink frame structure ## What is OFDM? Single Carrier Transmission (e.g. WCDMA) Orthogonal Frequency Division Multiplexing ## OFDM signal generation chain OFDM signal generation is based on Inverse Fast Fourier Transform (IFFT) operation on transmitter side: I On receiver side, an FFT operation will be used. ## Difference between OFDM and OFDMA ## LTE downlink conventional OFDMA - I LTE provides QPSK, 16QAM, 64QAM as downlink modulation schemes - I Cyclic prefix is used as guard interval, different configurations possible: - Normal cyclic prefix with 5.2 μs (first symbol) / 4.7 μs (other symbols) - I Extended cyclic prefix with 16.7 μs - 1 15 kHz subcarrier spacing - Scalable bandwidth ## OFDMA time-frequency multiplexing ## LTE – spectrum flexibility - I LTE physical layer supports any bandwidth from 1.4 MHz to 20 MHz in steps of 180 kHz (resource block) - I Current LTE specification supports a subset of 6 different system bandwidths - I All UEs must support the maximum bandwidth of 20 MHz #### Introduction How Generate SC-FDMA? SC-FDMA Signal SC-FDMA Sign. Generat. SC-FDMA - PAPR SC-FDMA Parameterizat. # Introduction to SC-FDMA and uplink frame structure ## How to generate SC-FDMA? - DFT "pre-coding" is performed on modulated data symbols to transform them into frequency domain, - I Sub-carrier mapping allows flexible allocation of signal to available sub-carriers, - IFFT and cyclic prefix (CP) insertion as in OFDM, Each subcarrier carries a portion of superposed DFT spread data symbols, therefore SC-FDMA is also referred to as DFT-spread-OFDM (DFT-s-OFDM). ## How does a SC-FDMA signal look like? #### I Similar to OFDM signal, but... - ...in OFDMA, each sub-carrier only carries information related to one specific symbol. - -...in SC-FDMA, each sub-carrier contains information of ALL transmitted symbols. ## SC-FDMA signal generation Localized vs. distributed FDMA We have seen that DFT will distribute the time signal over the frequency domain Next question that arises is how is that distribution done: localized or distributed? ## SC-FDMA – Peak-to-average Power Ratio (PAPR) FIGURE 5 Comparison of CCDF of PAPR for IFDMA, LFDMA, and OFDMA with M = 256 system subcarriers, N = 64 subcarriers per user, and a = 0.5 rolloff factor; (a) QPSK; (b) 16-QAM. #### Source: H.G. Myung, J.Lim, D.J. Goodman "SC-FDMA for Uplink Wireless Transmission", IEEE VEHICULAR TECHNOLOGY MAGAZINE, SEPTEMBER 2006 IFDMA = "Interleaved FDMA" = Distributed SC-FDMA LFDMA = "Localized FDMA" = Localized SC-FDMA ## SC-FDMA parameterization (FDD and TDD) #### I LTE FDD I Same as in downlink, | Configuration | Number SC-FDMA
Symbols | Number of
Subcarrier | Cyclic Prefix Length
in Samples | Cyclic Prefix
Length in µs | |--|---------------------------|-------------------------|---|---| | Normal CP
Δf = 15 kHz | 1 | | 160 for 1st symbol
144 for other symbols | 5.2 for 1st symbol
4.7 for other symbols | | Extended CP
$\Delta f = 15 \text{ kHz}$ | 6 | 12 | 512 | 16.7 | #### I TD-LTE - I UL using depends on the selected UL-DL configuration (1 to 8), each configuration offers a different number of subframes (1ms) for uplink transmission, - Parameterization for those subframes, means number of SC-FDMA symbols same as for FDD and depending on CP, Netw.& Protoc, Arch. LTE/SAE Network Arch. Pr. Stack - User Plane Pr. Stack - Contr. Plane Channel Mapping ...Comp. to WCDMA/HSPA LTE UE Categories ## Network and protocol architecture ## LTE/SAE network architecture SAE = System Architecture Evolution eNB = evolved Node B MME = Mobility Management Entity E-UTRAN = Evolved UMTS Terrestrial Radio Access Network NAS = Non Access Stratum S-GW = Serving Gateway EPS = Evolved Packet System EPC = Evolved Packet Core P-GW = Packet Data Network Gateway RB = Radio Bearer # Protocol stack user plane Header compression (ROHC) In-sequence delivery of upper layer PDUs Duplicate elimination of lower layer SDUs Ciphering for user/control plane Integrity protection for control plane Timer based discard... Mapping between logical and transport channels (De)-Multiplexing Scheduling information reporting HARQ Priority handling Transport format selection... PDCP = Packet Data Convergence Protocol RLC = Radio Link Control MAC = Medium Access Control PHY = Physical Layer SDU = Service Data Unit (H)ARQ = (Hybrid) Automatic Repeat Request # Mapping between logical and transport channels simplified architecture... ## ...compared to WCDMA/HSPA ## LTE UE categories (downlink and uplink) | UE category | Maximum number of
DL-SCH transport block
bits received within TTI | | Maximum number of bits
of a DL-SCH transport
block received a TTI | | Total number of soft channel bits | Maximum number of
supported layers for
spatial multiplexing in DL | |----------------|---|-----------------------------------|---|--|---|--| | 1 | 1029 | 10296 | | 10296 | | 1 | | 2 | 51024 | | 51024 | | 1237248 | 2 | | 3 | 102048 | | 75376 | | 1237248 | 2 | | 4 | 1507 | 52 | 75376 | | 1827072 | (2) | | 5 | 3027 | 52 | | 51376 | 3667200 | 4) | | ~300 Mbps peak | | ~150 M
peak DL da
for 2x2 M | ata rate | UE category | Maximum nur
UL-SCH transp
bits received w | ort block Support 64QA! | | | | 101 232 1 | IIIVIO) | 1 | 5160 | No | | | | | | 2 | 25456 | No | | | | | | Commence of the th | E4004 | SOMETHING THE PROPERTY OF THE PROPERTY OF THE PARTY TH | | MIMO = Multiple Input Multiple Output | |---------------------------------------| | UL-SCH = Uplink Shared Channel | | DL-SCH = Downlink Shared Channel | | UE = User Equipment | | TTI = Transmission Time Interval | | UE category | Maximum number of
UL-SCH transport block
bits received within TTI | Support 64QAM
in UL | | |-------------|---|------------------------|--| | 1 | 5160 | - No | | | 2 | 25456 | No | | | 3 | 51024 | No | | | 4 | 51024 | No. | | | 5 | 75376 | Yes | | ~75 Mbps peak UL data rate # Radio Procedures LTE Initial Access Downlink Phys. Chan. Cell search in LTE Primary Sync. Signal Secondary Sync. Signal Reference Signals Downlink Ref. Signals Essential System Info I Essential System Info II System Info Broadcast Random Access Proced. How Derive Info in LTE? Indicating PDCCH format Hybrid ARQ in Downlink Default EPS Bearer Setup ## Radio procedures ## LTE Initial Access ## Downlink physical channels and signals #### LTE Downlink Physical Signals Primary and Secondary Synchronization Signal Provide acquisition of cell timing and identity during cell search Downlink Reference Signal Cell search, initial acquisition, coherent demod., channel estimation #### LTE Downlink Physical Channels Physical Broadcast Channel (PBCH) Provides essential system information e.g. system bandwidth Physical Control Format Indicator Channel (PCFICH) Indicates format of PDCCH (CFI) Physical Downlink Control Channel (PDCCH) Carries control information (DCI = Downlink Control Information) Physical Downlink Shared Channel (PDSCH) Carries data (user data, system information,...) Physical Hybrid ARQ Indicator Channel (PHICH) Carries ACK/NACK (HI = HARQ indicator) for uplink data packets Physical Multicast Channel (PMCH) Carries MBMS user data ## Cell search in LTE - I Hierarchical cell search as in 3G; providing PSS and SSS for assistance, - -PSS is carrying physical layer identity $N_{pp}^{(2)}$. - -SSS is carrying physical layer cell identity group $N_{\scriptscriptstyle I\!D}^{(0)},$ - -Cell Identity is computed as $N_{{\scriptscriptstyle I\!\!D}}^{{\scriptscriptstyle (\!c\!P\!\!)}}=3N_{{\scriptscriptstyle I\!\!D}}^{(\!1\!\!)}+N_{{\scriptscriptstyle I\!\!D}}^{(\!2\!\!)},$ where $N_{{\scriptscriptstyle I\!\!D}}^{(\!1\!\!)}=0,1,...,167$ and $N_{{\scriptscriptstyle I\!\!D}}^{(\!2\!\!)}=0,1,2$ # Primary Synchronization Signal Screenshot taken from R&S® FSQ signal analyzer # Secondary Synchronization Signal Screenshot taken from R&S® FSQ signal analyzer # Cell search in LTE, reference signals - Cell-specific reference signals are used for... - ... cell search and initial acquisition, - ... downlink channel estimation for coherent demodulation/detection at the UE, - ... downlink channel quality measurements. # Cell search in LTE, essential system information # System information broadcast in LTE ### Random Access Procedure PRACH MAC DL-SCH Medium Access Control (Layer) Downlink Shared Channel CR TC-RNTI Contention Resolution Temporary Cellular RNTI ## Hybrid ARQ in the downlink - ACK/NACK for data packets transmitted in the downlink is the same as for HSDPA, where the UE is able to request retransmission of incorrectly received data packets, - ACK/NACK is transmitted in UL, either on PUCCH¹⁾ or multiplexed within PUSCH²⁾ (see description of those UL channels for details), - ACK/NACK transmission refers to the data packet received four sub-frames (= 4 ms) before. - -8 HARQ processes can be used in parallel in downlink, From scheduler buffer # Default EPS (Evolved Packet System) bearer setup #### Introduction **UL** Scheduling UL Frequency Hopping DRS in the UL SRS in the UL PUSCH Acknow, UL Packets Phys. UL Contr. Chann. # Uplink physical channels and signals | LTE Uplink Physical Channels | | |---|---| | Physical Uplink Shared Channel (PUSCH) | Carries user data | | Physical Uplink Control Channel (PUCCH) | Carnes control information (UCI = Uplink Control Information) | | Physical Random Access Channel (PRACH) | Preamble transmission for initial access | | LTE Uplink Physical Signals | | |-------------------------------------|--| | Demodulation Reference Signal (DRS) | Enables channel estimation and data demodulation | | Sounding Reference Signal (SRS) | Enables uplink channel quality evaluation | # Scheduling of uplink data ## Demodulation Reference Signal (DRS) in the UL - I DRS are used for channel estimation in the eNodeB receiver in order to demodulate data (PUSCH) and control (PUCCH) channels, - PUSCH. Located in the 4th SC-FDMA symbol in each slot (symbol #3, #10 for normal CP), spanning the same BW as allocated for user data, - -PUCCH. Different symbols, depending on format (see one of the following slides), Demodulation Reference Signal (DRS Screenshot of R&S® SMU200A Vector Signal Generator # Sounding Reference Signal (SRS) in the UL - SRS are used to estimate uplink channel quality in other frequency areas as a basis for scheduling decisions, - Transmitted in areas, where no user data is transmitted, first or last symbol of subframe is used for transmission. - Configuration (e.g. BW, power offset, cyclic shift, duration, periodicity, hopping pattern) is signaled by higher layers, Screenshot of R&S® SMU200A Vector Signal Generator ## PUSCH power control & timing relation Power level in dBm to be used for PUSCH transmission is derived using the following formula: # Acknowledging UL data packets on PHICH # Physical Uplink Control Channel - PUCCH carries Uplink Control Information (UCI), when no PUSCH is available, - If PUSCH is available, means resources have been allocated to the UE for data transmission, UCI are multiplexed with user data, - UCI are Scheduling Requests (SR), ACK/NACK information related to DL data packets, CQI, Pre-coding Matrix Information (PMI) and Rank Indication (RI) for MIMO, - PUCCH is transmitted on reserved frequency regions, configured by higher layers, which are located at the edge of the available bandwidth - Minimizing effects of a possible frequency-selective fading affecting the radio channel, - Inter-slot hopping is used on PUCCH, A RB can be configured to support a mix of PUCCH formats (2/2a/2b and 1/1a/1b) or exclusively 2/2a/2b. | P | UCCH format | Bits per subframe | Modulation | Contents | |---|-------------|-------------------|------------|--| | | 1 | On/Off | N/A | Scheduling Request (SR) | | | 1a | 1 | BPSK | ACK/NACK, ACK/NACK+SR | | | 16 | 2 | QPSK | ACK/NACK, ACK/NACK+SR | | | 2 | 20 | QPSK | CQI/PMI or RI (any CP),
(CQI/PMI or RI)+ACK/NACK (ext. CP only) | | | 2a | 21 | QPSK+BPSK | (CQVPMI or RI)+ACK/NACK (normal CP only) | | | 2b | 22 | QPSK+BPSK | (CQVPMI or RI)+ACK/NACK (normal CP only) | COVPMENT are only signated via PUCCH when periodic reporting is requested, scheduled and aperiodic reporting is only done via PUSCH. #### LTE Mobility Handover (Intra-MME) LTE Interw. w. 2G/3G LTE Interw. w. CDMA2k MIMO LTE MIMO DL modes LTE DL transmitter chain DL Transmit Diversity DL Spatial Multipl. Codeb. LTE MIMO UL schemes # LTE mobility # LTE Interworking with 2G/3G Two RRC states: CONNECTED & IDLE # LTE Interworking with CDMA2000 1xRTT and HRPD (High Rate Packet Data) # Introduction to MIMO gains to exploit from multiple antenna usage #### I Transmit diversity (TxD) - Combat fading - Replicas of the same signal sent on several Tx antennas - I Get a higher SNR at the Rx #### Spatial multiplexing (SM) - Different data streams sent simultaneously on different antennas - Higher data rate - No diversity gain - I Limitation due to path correlation # Introduction to MIMO gains to exploit from multiple antenna usage #### I Transmit diversity (TxD) - Combat fading - Replicas of the same signal sent on several Tx antennas - I Get a higher SNR at the Rx #### Spatial multiplexing (SM) - Different data streams sent simultaneously on different antennas - Higher data rate - No diversity gain - I Limitation due to path correlation # Introduction to MIMO gains to exploit from multiple antenna usage - Combat fading - Replicas of the same signal sent on several Tx antennas - I Get a higher SNR at the Rx #### I Spatial multiplexing (SM) - Different data streams sent simultaneously on different antennas - Higher data rate - No diversity gain - I Limitation due to path correlation # LTE MIMO downlink modes #### I Transmit diversity: - Space Frequency Block Coding (SFBC) - · Increasing robustness of transmission #### I Spatial multiplexing: - Transmission of different data streams simultaneously over multiple spatial layers - Codebook based precoding - Open loop mode for high mobile speeds possible #### I Cyclic delay diversity (CDD): - · Addition of antenna specific cyclic shifts - · Results in additional multipath / increased frequency diversity ## LTE downlink transmitter chain # Downlink transmit diversity Space-Frequency Block Coding (2 Tx antenna case) # Downlink spatial multiplexing codebook based precoding I The signal is "pre-coded" (i.e. multiplied with a precoding matrix) at eNodeB side before transmission Codebook of precoding matrices for 2x2 MIMO: | Codebook | Number of layers u | | | | |----------|---|---|--|--| | 0 | $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$ | $ \begin{array}{c c} 2 \\ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{array} $ | | | | 1 | $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$ | $\frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ | | | | 2 | $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\j\end{bmatrix}$ | $\frac{1}{2}\begin{bmatrix}1 & 1\\ j & -j\end{bmatrix}$ | | | | 3 | $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-j\end{bmatrix}$ | | | | #### Regular UE feedback: PMI = Precoding Matrix Indicator RI = Rank Indication CQI = Channel Quality Indication - I Optimum precoding matrix is selected from predefined "codebook" known at eNode B and UE side - I Selection is based on UE feedback # LTE MIMO uplink schemes - I Uplink transmit antenna selection: - I 1 RF chain, 2 TX antennas at UE side - I Closed loop selection of transmit antenna - I eNodeB signals antenna selection to UE - I Optional for UE to support - I Multi-user MIMO / collaborative MIMO: - 1 Simultaneous transmission from 2 UEs on same time/frequency resource - I Each UE with single transmit antenna - I eNodeB selects UEs with close-to orthogonal radio channels # LTE Test Requirements eNodeB RF testing RF Testing eNodeB eNB Mod. Qual. Meas. ACLR in DL (FDD) eNB Perf. Requ. PRACH II UE RF Testing RF Testing Aspects UE Transmit Modulation In-band Emission IQ Component ACLR Measurement I Receiver Characteristics # LTE test requirements # eNodeB RF testing ## LTE RF Testing Aspects Base station (eNodeB) according to 3GPP - I Measurements are performed using I Rx characteristics (= Uplink) Fixed Reference Channels (FRC) and EUTRA Test Models (E-TM), - I Tx characteristic (= Downlink) - Base station output power - Output power dynamics. - RE Power Control dynamic range, total power dynamic range, - Transmit ON/OFF power. - Transmitter OFF power, transmitter transient period. - Transmitted signal quality - Frequency Error, Error Vector Magnitude (EVM), Time alignment between transmitter antennas, DL RS power, etc.... - Unwanted emissions. - Occupied Bandwidth, Adjacent Channel Leakage Power Ratio (ACLR), Operating band unwanted emissions, etc. ... - Transmitter spurious emissions and intermodulation. - Reference sensitivity level, Dynamic range, In-channel selectivity, Adjacent channel selectivity (ACS) and narrow-band blocking. Blocking, Receiver spurious emissions. Receiver intermodulation #### I Performance requirements, - ...for PUSCH. - Fading conditions, UL timing adjustment, highspeed train, HARQ-ACK multiplexed in PUSCH, - ...for PUCCH. - DTX to ACK performance, ACK missed detection PUCCH format 1a (single user), CQI missed detection for PUCCH format 2, ACK missed detection PUCCH format 1a (multiple user) #### PRACH performance, FALSE detection probability, detection requirements, Captured in TS 36.104: Base Station (BS) radio transmission and reception ## eNB modulation quality measurements - Frequency error, - If frequency error is larger than a few subcarrier, demodulation at the UE might not work properly and cause network interference, - -Quick test: OBW, Limit for frequency error after demodulation 0.05 ppm + 12 Hz (1ms), - Error Vector Magnitude (EVM), - Amount of distortion effecting the receiver to demodulate the signal properly, - -Limit changes for modulation schemes QPSK (17.5%), 16QAM (12.5%), 64QAM (8%), - Time alignment, - Only TX test defined for multiple antennas, measurement is to measure the time delay between the signals for the two transmitting antennas, delay shall not exceed 65 ns, - DL RS power - -"Comparable" to WCDMA measurement CPICH RSCP; absolute DL RS power is indicated on SIB Type 2, measured DL RS power shall be in the range of ±2.1 dB, # ACLR in DL (FDD) # No filter definition in LTE! | E-UTRA transmitted
signal channel bandwidth
BW _{Channel} [MHz] | BS adjacent channel
centre frequency offset
below the first or above
the last carrier centre
frequency transmitted | Assumed adjacent
channel carrier
(informative) | Filter on the adjacent
channel frequency and
corresponding filter
bandwidth | ACLR limit | | |---|--|--|--|------------|--| | 1.4, 3.0, 5, 10, 15, 20 | BW _{Chennel} | E-UTRA of same BW | Square (BW _{Config}) | 44.2 dB | | | | 2 x BW _{Channel} | E-UTRA of same BW | Square (BW _{Config}) | 44.2 dB | | | | BW _{Channel} /2 + 2.5 MHz | 3.84 Mcps UTRA | RRC (3.84 Mcps) | 44.2 dB | | | | BW _{Charmel} /2 + 7.5 MHz | 3.84 Mcps UTRA | RRC (3.84 Mcps) | 44.2 dB | | NOTE 1: BW_{Channel} and BW_{Config} are the channel bandwidth and transmission bandwidth configuration of the E-UTRA transmitted signal on the assigned channel frequency. NOTE 2: The RRC filter shall be equivalent to the transmit pulse shape filter defined in [15], with a chip rate as defined in this table. ## eNB performance requirements PRACH and preamble testing #### I PRACH testing is one of the performance requirements defined in 3GPP TS 36.141 E-UTRA BS conformance testing, - Total probability of FALSE detection of preamble (Pfa 0.1% or less), - Probability of detection of preamble (Pd = 99% at defined SNR), - I Two modes of testing: normal and high-speed mode, - Different SNR and fading profiles are used (table shows settings for normal mode), | Agricultural Company | Propagation
conditions (Annex B) | Frequency
offset | SNR [dB] | | | | | |--------------------------|-------------------------------------|---------------------|-------------------|----------------|-------------------|-------------------|-------------------| | Number of
RX antennas | | | Burst
format 0 | Burst format 1 | Burst
format 2 | Burst
format 3 | Burst
format 4 | | | AWGN | 0 | -14.2 | -14.2 | -16.4 | -16.5 | -7.2 | | 2 | ETU 70 | 270 Hz | -8.0 | -7.8 | -10.0 | -10.1 | -0.1 | | 4 | AWGN | 0 | -16.9 | -16.7 | -19.0 | -18.8 | -9.8 | | | ETU 70 | 270 Hz | -12.1 | -11.7 | -14.1 | -13.9 | -5.1 | Depending on the mode different preambles are used to check detection probability (table shows preamble to be used for normal mode), | Burst format | | N _{os} Logical sequence inde | | x v. | | |--------------|---|---------------------------------------|------|------|--| | | 0 | 13 | 22 | 32 | | | ONLY
Anny | 1 | 167 | 22 | 2 | | | | 2 | 167 | 22 | 0 | | | ä | 3 | 0 | 22 | 0 | | | | 4 | 10 | or - | 0 | | ## eNB performance requirements PRACH and preamble testing II - I According to 3GPP TS 36.211 the N_{cs} value is not set directly instead it is translated to a N_{cs} configuration value, - This value is set in the signal generator R&S® SMx or R&S® AMU, | N _{cs}
Configuration | N _{cs} value | | |----------------------------------|-----------------------|----------------| | | Unrestricted set | Restricted set | | 0 | 0 | 15 | | 1 | 13 | 18 | | 2 | 15 | 22 | | 3 | 18 | 26 | | 4 | 22 | 32 | | - 5 | 26 | 38 | | 6 | 32 | 46 | | 7 | 38 | 55 | | 8 | 46 | 68 | | 9 | 59 | 82 | | 10 | 76 | 100 | | 11 | 93 | 128 | | 12 | 119 | 158 | | 13 | 167 | 202 | | 14 | 279 | 237 | | 15 | 419 | | Screenshot taken from R&S® SMU200A Vector Signal Generator R&S®SMx signal generators and R&S® FSx signal analyzers R&S®TS8980 LTE RF test system ## **UE RF testing** R&S®CMW500 wideband radio communication tester R&S®SMU200A signal generator and fading simulator including MIMO ## LTE RF Testing Aspects User Equipment (UE) according to 3GPP #### I Tx characteristic - Transmit power, - Output power dynamics, - Transmit Signal Quality, - Frequency error, EVM vs. subcarrier, EVM vs. symbol, LO leakage, IQ imbalance, Inband emission, spectrum flatness, - Output RF spectrum emissions, - Occupied bandwidth, Spectrum Emission Mask (SEM), Adjacent Channel Leakage Power Ratio (ACLR), - Spurious Emission, - Transmit Intermodulation. #### I Rx characteristics - I Reference sensitivity level, - UE maximum input level, - Adjacent channel selectivity, - Blocking characteristics, - Intermodulation characteristics. - Spurious emissions, ### I Performance requirements - I Demodulation FDD PDSCH (FRC), - I Demodulation FDD PCFICH/PDCCH (FRC) Captured in TS 36.101. User Equipment (UE) radio transmission and reception ### Transmit modulation According to 3GPP specification LO leakage (or IQ origin offset) is removed from evaluated signal before calculating EVM and in-band emission. ### In-band emission - Estimate the interference to non-allocated resource blocks, as the UE shares transmission bandwidth with other UE's, - In-band emission are measured in frequency domain are measured right after FFT, before equalization filter, - Measurement is defined as average across 12 subcarriers and as a function of RB offset from the edge of the allocated bandwidth, - -Minimum requirement $\max[-25,(20 \cdot \log_{10} EVM) 3 10 \cdot (\Delta_{RB} 1)/N_{RB})]$ ## IQ component - Also known is LO leakage, IQ offset, etc., - I Measure of carrier feedthrough present in the signal, - Removed from measured waveform, before calculating EVM and in-band emission (3GPP TS 36.101 V8.3.0, Annex F), - In difference to DL the DC subcarrier in UL is used for transmission, but subcarriers are shifted half of subcarrier spacing (= 7.5 kHz) to be symmetric around DC carrier, ## IQ component - Also known is LO leakage, IQ offset, etc., - I Measure of carrier feedthrough present in the signal, - Removed from measured waveform, before calculating EVM and in-band emission (3GPP TS 36.101 V8.3.0, Annex F), - In difference to DL the DC subcarrier in UL is used for transmission, but subcarriers are shifted half of subcarrier spacing (= 7.5 kHz) to be symmetric around DC carrier. - I Due to this frequency shift energy of the LO falls into the two central subcarrier, ### Uplink (SC-FDMA) | | Parameters | Relative Limit (dBc) | |---------|-------------------------------------|----------------------| | | Output power > 0 dBm | -25 | | LO | -30 dBm ≤ output power ≤ 0 dBm | -20 | | leakage | -40 dBm ≤ output power < -30
dBm | -10 | ### Receiver characteristics - I Throughput shall be >95% for... - I Reference Sensitivity Level, - Adjacent Channel Selectivity, - Blocking Characteristics, - ...using the well-defined DL reference channels according to 3GPP specification, #### LTE Device Testing Terminal Testing Interoperability Testing Example Test Scenarios Terminal IOT Conformance Testing Terminal Certification Field Trial Testing Field Trials Requirements Scope of Test Tools Scanner Measurements More Information? R&S®SMx signal generators and R&S®FSx signal analyzers R&S®TS8980 LTE RF test system ## LTE wireless device testing from R&D up to conformance R&S®CMW500 wideband radio communication tester R&S®AMU200A signal generator and fading simulator incl. MIMO ## Stages of LTE terminal testing ### Complementary test approaches for verifying: | Functionality | |-----------------| | and | | performance | | (RF, layer 1, | | protocol stack, | | application) | Interoperability between features and implementations Standard compliance (basis for terminal certification) Final functional test and alignment Basic functions and parameter test ## LTE terminal interoperability testing motivation - Interoperability testing is used to verify - Connectivity of the UE with the real network (by means of base station simulators) - I Service quality, end-to-end performance - Different LTE features and parametrizations - Interworking between LTE and legacy technologies - I The complete UE protocol stack is tested. - IOT test scenarios are based on requirements from real network operation and typical use cases. R&S®CMW500 wideband radio communication tester (base station simulator) # LTE terminal interoperability testing example test scenarios - I Registration - I UE initiated detach - I Network initiated detach - I Mobile originated EPS bearer establishment - I Mobile terminated EPS bearer establishment - I Cell (re-)selection - I GUTI reallocation - I Tracking are update - I ... - I Plus: end-to-end scenarios (video streaming, VoIP, ...) - I Plus: intra-LTE mobility, inter-RAT mobility # Test scenarios for LTE terminal IOT different sources for maximum test coverage ## LTE conformance testing motivation - Verifying compliance of terminals to 3GPP LTE standard - 1 by validated test cases implemented on registered test platforms - I in order to ensure worldwide interoperability of the terminal within every mobile network - I 3GPP RAN5 defines conformance test specifications for - I RF - I Radio Resource Management (RRM) - I Signalling - Certification organizations (e.g. GCF) define certification criteria based on RAN5 test specifications. R&S®CMW500 wideband radio communication tester R&S®TS8980 LTE RF test system # LTE terminal certification success factors - Terminal certification as quality gateway - Ensuring global interoperability of terminals - Increasing reliability and performance - Partnership between network operators, device manufacturers and test industry - Close liaison between standardization for aand certification groups - Harmonized processes for LTE FDD and TDD, e.g. work item structure - LTE alignment team founded within CCF R&S®FSH4/8 handheld spectrum analyzer R&S®ROMES drive test software # LTE field trial testing and coverage measurements R&S®TSMW Universal Radio Network Analyzer D ### LTE field trials ## requirements from different deployment scenarios - I Bandwidths from 1.4 MHz to 20 MHz - I Different LTE FDD and TDD frequency bands - I Combination with legacy technologies (GSM/EDGE, WCDMA/HSPA, CDMA2000 1xEV-DO) - I Spectrum clearance and refarming scenarios - I Femto cell / Home eNB scenarios # LTE field trials scope of test tools ### Field trials provide input for: - Calibration and verification of planning tools for different deployment scenarios - Network optimization (capacity and quality) - Quality of service verification - Definition of Key Performance Indicators (KPIs) and verification, also from subscriber's point of view - I Parallel use of scanners / measurement receivers for comparison with UE and base station behaviour - I Support of IOT activities R&S®TSMW Network Scanner and ROMES Drive Test Software # Example result from the field scanner measurements for LTE TopN list of all pilots with Power and SINR Channel Impulse Response for Multi Path Reflections and check of Cyclic Prefix ## Would you like to know more? LTE application notes from Rohde & Schwarz