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Preface

Why yet another book on transforms? The answer to this question is simple: be-
cause transforms are the fundamental issue in digital signal, image, and video pro-
cessing. Whatever we do in digital signal processing, from the very beginning to the
very end, we do it in a domain of a certain signal transform. Researchers working
in the field need to be constantly updated to its state of the art and progress.

Integral transforms, specifically convolution and Fourier and Laplace integral
transforms, have been used in what we call now electronic and communication
engineering since its very beginning (in 1920–1940). It is, apparently, impossible
to give credit to numerous researchers who contributed to this process, but at least
the following three names should be mentioned: Oliver Heaviside, Harry Nyquist,
and Norbert Wiener. In the theory of optical imaging, E. Abbe revolutionized the
theory of optical imaging even earlier when he suggested, in 1880, to treat lenses
as Fourier transformers.

In 1940–1950, signal processing emerged from demands of audio communi-
cation, radar, and television. Being purely analog at the time, it was based on the
same natural transforms, convolution and Fourier ones, implemented through
analog lowpass, highpass, and bandpass filters and spectrum analyzers. Initially,
integral transforms served only as instruments of the signal theory. With the ad-
vent of computers, signal processing became digital, which opened a completely
new option of making transforms powerful instruments of applied signal process-
ing.

It is not an exaggeration to assert that digital signal and image processing came
to being with the introduction, in 1965 by Cooley and Tukey, of the fast Fourier
transform [1]. This publication immediately resulted in impetuous growth of all
branches of digital signal and image processing and their applications including
such completely new ones as digital holography [2].

The second boom in this growth process was associated with the introduction
into communication theory and signal processing, in 1970, of the Walsh transform
[3] and the development of a large family of fast transforms with FFT-type algo-
rithms [4]. Some of these transforms, such as Walsh-Hadamard and Haar trans-
forms, already existed in mathematics, others were being invented “from scratch”
to achieve better “energy compaction” while preserving the principle of fast algo-
rithmic implementation. This development was mainly driven by the needs of data
compression, though the usefulness of transform domain processing for signal and
image restoration, enhancement, and feature extraction was also very quickly rec-
ognized. This period ended up with the acceptance of the discrete cosine transform
(DCT) as the best choice between other available-at-the-time transforms and re-
sulted in JPEG and MPEG standards for image, audio, and video compression.
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x Preface

Nowadays, audio, image, and video compression has become multibillion indus-
tries.

The next milestone in transform signal processing was the introduction, in
the 1980, of a large family of new transforms that are known, due to J. P. Morlet,
as wavelets [5]. There was a very rapid burst of works that followed the first pub-
lications. This development continued the line of inventing new transforms better
suited for the purposes of signal processing. Specifically, the main motivation was
to achieve a better local representation of signals in contrast to the “global” repre-
sentation that is characteristic to Fourier, DCT, and Walsh-Hadamard transforms.

A common method in designing new transform is generating basis functions
of the transform from a primary, or “mother” function by means of its certain
modifications. The simplest method of such a modification is the coordinate shift.
It leads to the convolution type of transforms, such as the sampling one. Yet an-
other possible simple method is coordinate scaling. The above-mentioned fast
transforms, with one exception, implement exactly this coordinate scaling method.
The exception is Haar transform. Haar transform is built upon combining these
two methods, coordinate shifting and scaling ones. This combination is exactly the
method that gave rise to wavelets and imparted them their most attractive feature,
that of multiresolution.

Since their introduction, wavelets have gained a great popularity. In late 90’s,
there were even claims that wavelets have made the Fourier transform obsolete. Of
course, this was an over exaggeration. Undoubtedly, however, nowadays wavelets
constitute a well-established and very valuable part of signal processing transform
tools that has found a wide range of applications in data compression, feature
extraction, and signal denoising.

What are the main directions of growth in the field of transforms for signal
and image processing? We believe they are the following.

(i) Further development of “manmade” transforms, in particular, wavelets,
for more efficient data representation and compression.

(ii) Perfecting numerical representation of “natural” transforms for new ap-
plications, such as, for instance, tomography and digital holography.

(iii) Research aimed at enabling local adaptivity of transform domain signal
and image processing.

(iv) Exploration of the use of digital transforms in new applications and de-
velopment of new practical transform domain processing methods to
meet growing demands.

This volume collects some most recent developments in all the above direc-
tions in the theory and practice of the design and usage of transforms in digital sig-
nal and image processing. Of course, it does not pretend to cover all progress in this
field. No other book can. The volume emerged mainly from the series of reports
published by Tampere International Center for Signal Processing, Tampere Uni-
versity of Technology, beginning in 1998, proceedings of five international work-
shops on transforms and filter banks organized by the center, papers presented
in special sessions of SPIE Annual Symposia on Electronic Imaging. We also in-
vited to contribute to this volume a group of researchers from Tel Aviv University
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Preface xi

that have recently made major advances in the theory of wavelets and sampling
of multidimensional integral transforms in polar coordinates. For the volume, all
contributions are appropriately updated to represent the state of the art in the field
and to cover the most recent developments in different aspects of the theory and
applications of transforms.

The book consists of two parts. The first part contains four chapters devoted
to topical issues in the theory of signal transforms. The first two chapters of this
part consider recent advances in wavelet transforms for image compression and
for switching and logic design.

Chapter 1 reviews state-of-the-art trends in wavelets, introduces new families
of the modern lifting-based dyadic and triadic biorthogonal wavelets and wavelet-
type frames originated from continuous and discrete splines, and demonstrates
their high efficiency in image compression and robustness to data losses.

Chapter 2 addresses recent developments in application of Haar transform
to representation and optimization of switching functions and related decision
diagrams, which can be used in fast prototyping by LUT-FPGAs and in hardware-
software codesign. In addition, definitions of Haar spectral transform diagrams
are extended to multi valued functions which lead to a large class of multi valued
Haar functions and related transforms.

Two other chapters treat problems of discrete representation of integral trans-
forms for digital holography and for image reconstruction in tomography.

Chapter 3 provides a comprehensive review of discrete transforms and their
fast algorithms for numerical reconstruction of optical holograms and derives
point spread functions of different hologram reconstruction algorithms to show
how the reconstruction results and their metrological properties depend on the
holographic optical set-up physical parameters, and on the reconstruction algo-
rithm.

Chapter 4 introduces 2D pseudopolar Fourier transform that is then used to
construct a 2D discrete Radon transform and the corresponding fast algorithms
and to derive a 3D discrete X-ray transform that operates on 3D discrete im-
ages. The 2D discrete Radon transform together with the 3D discrete Radon trans-
form and the 3D discrete X-ray transform provide a straightforward and complete
framework for defining multidimensional Radon and X-ray transforms for sam-
pled objects.

In the second part, advanced practical transform-based signal and image pro-
cessing algorithms are considered. The first two chapters of this part describe two
interrelated families of signal and image adaptive denoising and restoration meth-
ods that optimize data recovery locally in sliding window.

Chapter 5 describes, in detail and with support of extensive experimental data,
1D, 2D, and 3D sliding window recursive spectral analysis-based image restoration
and enhancement methods and corresponding efficient computational algorithms
that implement the principles of scalar empirical Wiener filtering in transform
domain. The emphasis is done on sliding window DCT domain processing. Supe-
riority of the methods’ noise suppressing capability compared to that of wavelet
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denoising methods is demonstrated and a unified treatment of both families of
transform domain processing methods is suggested.

In Chapter 6, an efficient statistical method for selecting adaptive window
size and shape for image local polynomial approximation in sliding window is
introduced and its applications to image denoising and anisotropic differentiation
are illustrated.

The last two chapters treat yet another topical issue in modern signal, im-
age, and video processing, that of signal and image resampling and geometrical
transformations. Two complementing families of signal and image resampling al-
gorithms are presented here.

Chapter 7 is devoted to spline interpolation algorithms built upon a class of
piecewise basis functions of minimal support constructed of uniform B-splines of
different degree that are very susceptible for optimization and are very efficient in
computational implementation.

Chapter 8 offers a comprehensive review of fast Fourier and DCT transform-
based discrete sinc-interpolation algorithms, which can be regarded as a gold stan-
dard for resampling of sampled data, and illustrates their superb resampling accu-
racy and their various applications. As a practical solution of image resampling in
irregular sampling grids, sliding window DCT domain discrete sinc-interpolation
methods are introduced that, in addition to image resampling, take advantage of
image restoration and enhancement capability of the filters described in Chapter 5.

Researchers with very diverse background, from pure mathematics to pure
engineering, are working in the field of digital signal processing, so is the potential
readership of the volume. Contributions in this volume reflect this diversity. Each
chapter is self-contained and can be read separately. At the same time, the chapters
are interrelated and readers may find it very instructive to compare approaches in
Chapters 1 and 7, 3 and 4, 5 and 6, 7 and 8.

We address this book to graduate students and researchers in all fields of elec-
trical and communications engineering, especially to young researchers who are
just entering the field, are curious and keen on modern information technology,
and are planning their own advancement. We also believe that practicing engineers
and researchers in signal and image processing will as well find in the book a quite
few new ideas and algorithms useful in their applications.

Jaakko Astola
Leonid Yaroslavsky
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1
Wavelet and frame transforms
originated from continuous and
discrete splines

Amir Z. Averbuch and Valery A. Zheludev

New classes of diadic and triadic biorthogonal wavelets and wavelet-type frames
in signal space are presented. The construction employs interpolatory filters with
rational transfer functions that originate from continuous and discrete splines.
These filters have linear phase. They are amenable either to fast cascading or par-
allel recursive implementation. The wavelets are applied to compression of still
images, where they demonstrate a superb efficiency. Robust error recovery algo-
rithms presented utilize the redundancy inherent in frame expansions. Experi-
mental results recover images when (as much as) 60% of the expansion coeffi-
cients are either lost or corrupted. The proposed approach inflates the size of the
image through framelet expansion and multilevel decomposition, thus providing
redundant representation of the image.

1.1. Introduction

We present in this paper a few dyadic and triadic wavelet transforms and a family
of wavelet frame transforms, which are generated by critically sampled (wavelets)
or oversampled (frames) perfect reconstruction filter banks. The design of these
generating filter banks is based on the following simple insertion rule: we con-
struct a spline that interpolates a signal on a sparse grid and predict (approximate)
missing samples by the values of the spline at corresponding points.

The goal of this paper is to demonstrate that this obvious idea has a diversity
of implications and produces a set of tools that perfectly matches the needs of
signal processing.

Most (but not all) of the results in the paper were presented in more details
in our recent publications [1–10]. The outline of the results on triadic wavelet
transforms is presented here for the first time. A detailed presentation is on the
way.

Currently, there is no need to describe the importance of the wavelet trans-
forms for signal processing. A wide variety of orthogonal and biorthogonal wave-
lets was designed since the famous Daubechies construction was presented in [18].
However, only few of them possess a combination of properties that are valuable
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2 Wavelets and frames originated from splines

for signal and image processing: symmetry, interpolation, fair time-domain local-
ization and smoothness of the synthesis waveforms, flat spectra, and any number
of vanishing moments. The biorthogonal wavelets that we describe in the paper
meet these requirements. Dyadic wavelets based on the discrete splines are closely
related to the popular Butterworth filters. Dyadic synthesis wavelets based on the
continuous splines of even order are the splines themselves. However, synthesis
wavelets based on the splines of odd order form a new class of functions that are
smoother than the generating splines.

These biorthogonal wavelets were tested for compression of still images. After
the multiscale transform, the coefficients are coded using the SPIHT algorithm by
Said and Pearlman [41] followed by arithmetic coding. The results on benchmark
images demonstrated that the designed wavelet transforms are competitive with
the popular B9/7 biorthogonal transform [15, 31], which is the core of the JPEG
2000 image compression standard. Note that the compression results in the pa-
per differ from the compression results reported in our previous paper [7], where
arithmetic coding was not used.

The theory of wavelet frames or framelets is an extension of wavelet analysis.
Currently, it is a subject of extensive investigation by researchers working in sig-
nal processing and applied mathematics. A wavelet frame is generated by several
mother wavelets and provides a redundant expansion of a function or a signal.
Due to this redundancy, there is more freedom in the design and implementation
of the frame transforms. The frame expansions of signals demonstrate resilience to
quantization noise and to coefficients losses [23, 24, 29]. Thus, frames may serve as
a tool for error correction in signals transmitted through lossy channels. Actually,
the frame transforms of multimedia signals can be interpreted as joint source-
channel encoding for lossy channels, which are resilient to quantization noise and
erasures. This approach was developed in [21, 25, 32, 33]. Due to additional adap-
tation capabilities, the overcomplete representation of signals has a potential to
succeed in feature extraction and identification of signals. Promising results on
image reconstruction are recently reported in [1, 12, 13].

A common approach to construction of a framelet system in the function
space L2 starts from the introduction of a pair of refinable functions (or one func-
tion), which generate(s) multiresolution analysis in L2. Then, the wavelets are de-
rived by one or another method as linear combinations of refinable functions.
Many construction schemes are based on unitary extension principle [40] for tight
frames and mixed extension principle [39] for biframes. These principles reduce
the construction of a framelet system to the design of a perfect reconstruction fil-
ter bank. The masks of the given refinable functions serve as lowpass filters in the
filter bank.

On the other hand, the oversampled perfect reconstruction filter banks by
themselves generate wavelet-type frames in signal space [16, 26]. We use filter
banks as an engine to construct a new family of frames in the signal space. Un-
der some relaxed conditions, infinite iterations of the frame filter banks result in
limit functions, the so-called framelets, which generate the wavelet frames in L2.
The framelets are symmetric, interpolatory, and have flat spectra combined with
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A. Z. Averbuch and V. A. Zheludev 3

fine time-domain localization and efficient implementation of the transforms. The
framelets are smooth and may have any number of vanishing moments. The re-
dundancy rate is two.

Recently, a new oblique extension principle (OEP) was proposed [20], which
essentially extends the tools for design of wavelet frames in L2. New wavelet frames
with advanced properties were constructed using OEP. However, the OEP scheme
operates with filter banks that lack perfect reconstruction property. Therefore,
these filter banks do not generate frames in signal space that is our prime goal.

We propose to use the wavelet frames (framelets) presented in this paper as
a tool for error correction for signals transmitted through lossy channels. These
frames provide minimal redundancy. The simplicity and low complexity involved
in the decomposition and reconstruction of the designed frame transforms give
rise to efficient joint source-channel coding and decoding. Their properties prom-
ise good error recovery capabilities. Results of our experiments with erasure recov-
ery for multimedia images confirm this claim. It is shown by means of simulations
that these framelets can effectively recover from random losses that are close to the
theoretical limit.

We present also a new family of the so-called triadic biorthogonal wavelets,
which, unlike the commonly used diadic wavelets, have dilation factor of 3. They
originate from the insertion rule, where two missed samples are predicted by in-
terpolatory spline. Unlike dyadic wavelet transforms, one step of the triadic trans-
form splits the frequency domain into three subbands. Three waveforms partici-
pate in the expansion of a signal. This promises better adaptivity of the expansion
to the properties of the signal. A useful property of the transforms derived from
the continuous splines is that the corresponding waveforms are splines.

A similar approach can be applied to the construction of multiwavelets and
multiwavelet frames, where Hermite interpolatory splines are used as a source for
the design of filters. The results are presented in [6, 8].

Unlike most schemes for the construction of wavelets and wavelet frames, we
use infinite impulse response (IIR) filters with rational transfer functions. Conse-
quently, the corresponding waveforms do not have compact support. But this fact
should hardly be counted as a drawback because of the exponential decay of the
waveforms as the argument grows. As for the implementation, it can be carried out
in a fast recursive mode. On the other hand, usage of IIR filters enables to achieve
a combination of properties, which are impossible to get with finite impulse re-
sponse (FIR) filters. For example, currently, only (anti)symmetric framelets with
3 vanishing moments are designed [28, 42]. But, using IIR filters, we succeeded in
design of symmetric framelets with any number of vanishing moments.

Note that wavelet constructions that are based on filter banks with rational
transfer functions were originally introduced in [27]. In particular, nonsymmetric
wavelets, which are based on causal Butterworth filters, were presented in [27].
Petukhov [36] designed a family of symmetric wavelets with rational symbols and
applied them to video compression [17].

The paper is organized as follows. In Section 1.2, we describe some known
facts about filter banks and splines. In Section 1.3, we present prediction filters
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4 Wavelets and frames originated from splines

that originate from continuous and discrete splines. Section 1.4 describes the lift-
ing scheme for the design and implementation of diadic wavelet transforms and
presents the corresponding filter banks. In Section 1.5, we present results of the ex-
periments in image compression using the designed diadic wavelets. In Section 1.6,
we explain the construction of interpolatory wavelet frames using spline-based fil-
ter banks, whereas in Section 1.7 these frames are applied to the erasure correction
in transmitted signals. Section 1.8 is devoted to the design of triadic biorthogonal
wavelet transforms. In the appendix, we outline the recursive implementation of
IIR filters.

1.2. Preliminaries

In this section we describe some known facts about filter banks and splines that
are used in the sequel.

1.2.1. Filter banks

We call the sequences x � {x(n)}, n ∈ Z, which belong to the space l1, (and,
consequently, to l2) discrete-time signals. The z-transform of a signal x is defined
as X(z) � ∑

n∈Z z
−nx(n). Throughout the paper, we assume that z = e jω.

The input x(n) and the output y(n) of a linear discrete time shift-invariant
system are linked by the discrete convolution y(n) = ∑

l∈Z h(n− l)x(l). This pro-
cessing of the signal x is called digital filtering and the sequence {h(n)} is called the
impulse response of the filter h. Its z-transform H(z) � ∑

n∈Z z
−nh(n) is called the

transfer function of the filter. Usually, a filter is designated by its transfer function
H(z). The function Ĥ(ω) = H(e jωn) is called the frequency response of the digital
filter.

If filtering a signal is accompanied by downsampling of upsampling, then it
is called multirate filtering. For example, application to the signal x of the time-

reversed filter h̃ followed by downsampling of factor N is ỹ(l) = ∑
n∈Z h̃(n −

Nl)x(n). Application to the signal y that is upsampled by factor N of the filter
h is

x̂ =
∑
n∈Z

hk(l −Nn)y(n)⇐⇒ X(z) = H(z)Y
(
zN

)
. (1.1)

The set of filters {H̃k(z) = ∑
n∈Z z

−nh̃k(n)}K−1
k=0 , which, being time-reversed

and applied to the input signal x, produces the set of decimated output signals
{ỹk}K−1

k=0 ,

ỹk(l) =
∑
n∈Z

h̃k(n−Nl)x(n), k = 0, . . . ,K − 1, (1.2)

is called the K-channel analysis filter bank. Here N ∈ N is the downsampling
factor. The set of filters {Hk(z) =∑

n∈Z z
−nhk(n)}K−1

k=0 , which, being applied to the
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set of input signals {yk}K−1
k=0 that are upsampled by factor N , produces the output

signal x̂,

x̂(l) =
K−1∑
k=0

∑
n∈Z

hk(l −Nn)yk(n), l ∈ Z, (1.3)

is called the K-channel synthesis filter bank. If the upsampled signals ỹk, k =
0, . . . ,K − 1, are used as an input to the synthesis filter bank and the output signal
x̂ = x, then the pair of analysis-synthesis filter banks forms a perfect reconstruc-
tion (PR) filter bank. If the number of channels K equals the downsampling factor
N , then the filter bank is said to be critically sampled. If K > N , then the fil-
ter bank is oversampled. Note that critically sampled PR filter banks are used in
wavelet analysis, while oversampled PR filter banks serve as a source for the design
of frames.

Polyphase representation provides tools to handle multirate filtering. Let x =
{x(k)}k∈Z be a signal. The sequences x(n)N � {xkN+n}k∈Z, n = 0, . . . ,N − 1, are
called the polyphase components of the signal x. Their z-transforms are denoted
either by Xn,N (z) or, when it does not lead to confusion, simply by X(n)(z). Simi-
larly, we denote the polyphase components of a filter H(z) either by Hn,N (z) or by
H(n)(z). The z-transforms are represented through the polyphase components:

X(z) =
N−1∑
n=0

z−nXn,N
(
zN

)
. (1.4)

Then, the filtering can be expressed in polyphase form. We apply the time-reversed

filter h̃ to the signal x. In the z-domain, we have

Ỹ(z) =
N−1∑
m,n=0

zm−nHm,N
(
z−N

)
Xn,N

(
zN

)

=
N−1∑
r=0

z−r
N−1∑
m=0

Hm,N
(
z−N

)
Xm+r,N

(
zN

)

=
N−1∑
r=0

z−r Ỹr,N
(
zN

)
.

(1.5)

Thus, the polyphase components of the output are

Ỹr,N (z) =
N−1∑
m=0

Hm

(
1
z

)
Xm+r,N (z), r = 0, . . . ,N − 1. (1.6)
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6 Wavelets and frames originated from splines

If filtering is followed by downsampling, then we retain only zero-polyphase com-
ponent:

ỹ(l) =
∑
n∈Z

h̃(n−Nl)x(n)⇐⇒ Ỹ(z) =
N−1∑
m=0

Hm

(
1
z

)
Xm(z). (1.7)

If filtering is applied to the upsampled signal y as in (1.1), then the polyphase
components of the output are

X̂n,N (z) = Hn,N (z)Y
(
zN

)
. (1.8)

Equations (1.2)–(1.8) imply the following representation for the application
of the analysis and synthesis filter banks:

⎛⎜⎜⎜⎜⎜⎝
Ỹ 0(z)
Ỹ 1(z)

...
ỸK−1(z)

⎞⎟⎟⎟⎟⎟⎠ = P̃
(

1
z

)
·

⎛⎜⎜⎜⎜⎝
X0(z)
X1(z)

...
XN−1(z)

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
X̂0(z)
X̂1(z)

...
X̂N−1(z)

⎞⎟⎟⎟⎟⎟⎠ = P(z) ·

⎛⎜⎜⎜⎜⎝
Y 0(z)
Y 1(z)

...
YK−1(z)

⎞⎟⎟⎟⎟⎠ ,

(1.9)

where the K ×N analysis polyphase matrix is

P̃(z) �

⎛⎜⎜⎜⎜⎜⎜⎝
H̃0

0 (z) H̃0
1 (z) · · · H̃0

N−1(z)

H̃1
0 (z) H̃1

1 (z) · · · H̃1
N−1(z)

...
...

...
...

H̃K−1
0 (z) H̃K−1

1 (z) · · · H̃K−1
N−1(z)

⎞⎟⎟⎟⎟⎟⎟⎠ (1.10)

and the N × K synthesis polyphase matrix is

P(z) �

⎛⎜⎜⎜⎜⎜⎝
H0

0 (z) H1
0 (z) · · · HK−1

0 (z)

H0
1 (z) H1

1 (z) · · · HK−1
1 (z)

...
...

...
...

H0
N−1(z) H1

N−1(z) · · · HK−1
N−1(z)

⎞⎟⎟⎟⎟⎟⎠ . (1.11)

The condition for the analysis-synthesis pair of filter banks to form a PR filter bank
is

P(z) · P̃(z) = IN , (1.12)

where IN is the N ×N identity matrix.
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1.2.2. Bases and frames generated by filter banks

Oversampled PR filter banks form frames in the signal space, whereas critically
sampled PR filter banks form biorthogonal bases.

Definition 1.1. A system Φ̃ � {φ̃ j} j∈Z of signals forms a frame of the signal space
if there exist positive constants A and B such that for any signal x = {x(l)}l∈Z,

A‖x‖2 ≤
∑
j∈Z

∣∣〈x, φ̃ j
〉∣∣2 ≤ B‖x‖2. (1.13)

If the frame bounds A and B are equal to each other, then the frame is said to be
tight.

If the system Φ̃ is a frame, then there exists another frame Φ � {φi}i∈Z

of the signals space such that any signal x can be expanded into the sum x =∑
i∈Z〈x, φ̃i〉φi. The analysis Φ̃ and synthesis Φ frames can be interchanged. To-

gether they form the so-called biframe. If the frame is tight, then Φ can be chosen
as Φ = cΦ̃.

If the elements {φ̃ j} of the analysis frame Φ̃ are linearly independent, then the
synthesis frame Φ is unique, its elements {φj} are linearly independent, and the

frames Φ̃ and Φ form a biorthogonal basis of the signal space.
Let the analysis {H̃k(z)}K−1

k=0 and the synthesis {Hk(z)}K−1
k=0 filter banks form a

PR filter bank. Then,

x(l) =
K−1∑
k=0

∑
n∈Z

hk(l −Nn) ỹk,1(n), l ∈ Z,

ỹk,1(l) =
∑
n∈Z

h̃k(n−Nl)x(n), k = 0, . . . ,K − 1.

(1.14)

We denote for k = 0, . . . ,K − 1 that ϕ̃k,1 � {ϕ̃k,1(l) = h̃k(l)}l∈Z and ϕk,1 �
{ϕk,1(l) = hk(l)}l∈Z, where {h̃k(l)} and {hk(l)} are the impulse responses of the
filters H̃k(z) and Hk(z), respectively. Then, (1.14) can be rewritten as

x =
K−1∑
k=0

xk,1, xk,1 �
∑
n∈Z

ỹk,1(n)ϕk,1(· −Nn),

ỹk,1(n) = 〈
x, ϕ̃k,1(· −Nn)

〉
, k = 0, . . . ,K − 1.

(1.15)

Thus, the system Φ̃ � {ϕ̃k,1(·−Nn)}n∈Z, k = 0, . . . ,K−1, ofN-sample translations
of the signals ϕ̃k,1 forms an analysis frame of the signal space. The system Φ �
{ϕk,1(· − Nn)}n∈Z, k = 0, . . . ,K − 1, of N-sample translations of the signals ϕk,1

forms a synthesis frame of the signal space. Together Φ̃ and Φ form a biframe. In
a special case when the filter banks are critically sampled, that is K = N , the pair
Φ̃ and Φ forms a biorthogonal basis.
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8 Wavelets and frames originated from splines

1.2.3. Multiscale transforms and discrete-time wavelets

As it is common in wavelet and framelet transforms, one of the filters in each
filter bank is lowpass. We denote these filters by H̃0(z) and H0(z). To expand
the transform to a coarse scale, the analysis filter bank is applied to the output
ỹ 0,1(l) =∑

n∈Z ϕ̃
0(n−Nl)x(n) from the lowpass filter H̃0(z). Then, we have

ỹk,2(l) =
∑
n∈Z

h̃k(n−Nl) ỹ 0,1(n) =
∑
n∈Z

h̃k(n−Nl)
∑
m∈Z

ϕ̃0,1(m−Nn)x(m)

=
∑
m∈Z

x(m)
∑
n∈Z

h̃k(n−Nl)ϕ̃0,1(m−Nn) =
∑
m∈Z

x(m)ϕ̃k,2(m−N2l
)

= 〈
x, ϕ̃k,2( · −N2l

)〉
, k = 0, . . . ,K − 1,

ϕ̃k,2(m) �
∑
n∈Z

h̃k(n)ϕ̃0,1(n−Nm).

(1.16)

On the other hand, the array { ỹ 0,1(l)} is restored as follows:

ỹ 0,1(l) =
K−1∑
k=0

∑
n∈Z

hk(l −Nn) ỹk,2(n), l ∈ Z, (1.17)

and subsequently, the low-frequency component of the signal x is

x0,1(m) =
∑
l∈Z

ỹ 0,1(l)ϕ0,1(m−Nl) =
∑
l∈Z

K−1∑
k=0

∑
n∈Z

hk(l −Nn) ỹk,2(n)ϕ0,1(m−Nl)

=
K−1∑
k=0

∑
n∈Z

ỹk,2(n)ϕk,2(m−N2n
)
,

ϕk,2(l) �
∑
n∈Z

hk(n)ϕ0,1(n−Nl).

(1.18)

As a result, we have the following expansion of the signal x:

x =
K−1∑
k=0

∑
n∈Z

ỹk,2(n)ϕk,2( · −N2n
)

+
K−1∑
k=1

∑
n∈Z

ỹk,1(n)ϕk,1(· −Nn). (1.19)
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Next step consists of the application of the filter bank to the array { ỹ 0,2(l)} and so
on. After J iterations, the signal x appears expanded as follows:

x =
∑
n∈Z

〈
x, ϕ̃0,J( · −NJn

)〉
ϕ0,J( · −NJn

)

+
J∑
j=1

K−1∑
k=1

∑
n∈Z

〈
x, ϕ̃k, j( · −N jn

)〉
ϕk, j( · −N jn

)
,

(1.20)

where

ϕ̃k, j(m) �
∑
n∈Z

h̃k(n)ϕ̃0, j−1(n−Nm), ϕk, j(m) �
∑
n∈Z

hk(n)ϕ0, j−1(n−Nm).

(1.21)

We call the signals ϕ̃k, j and ϕk, j the analysis and synthesis discrete-time wavelets
of jth scale, respectively. Equation (1.20) implies that shifts of the discrete-time
wavelets form a biframe (biorthogonal basis) of the space of signals.

Scaling functions and continuous wavelets. It is well known (see [19]) that un-
der certain conditions, the lowpass filter H(z), such that H(1) = 1, generates
a continuous scaling function ϕ(t). To be specific, if the infinite product
limS→∞

∏S
ν=1 H(eω2−νω) converges to a function Φ(ω) ∈ L2(R), then the inverse

Fourier transform of Φ(ω) is the scaling function ϕ(t) ∈ L2(R), which is the so-
lution to the refinement equation ϕ(t) = 2

∑
n∈Z h(n)ϕ(2t − n). Similarly, if the

infinite product limS→∞
∏N

ν=1 H(eωN
−νω) converges to a function Φ(ω) ∈ L2(R),

then the inverse Fourier transform of Φ(ω) is the scaling function ϕ(t) ∈ L2(R),
which is a solution to the refinement equation ϕ(t) = 2

∑
k∈Z hkϕ(Nt − k). Thus,

the refinement equation results in dilation with factor N for the scaling function
ϕ(t).

Assume that the lowpass analysis filter H̃0(z) generates the analysis scaling
function ϕ̃(t). If the impulse responses of the filters H̃k(z), k = 1, . . . ,K − 1, are

finite or decay exponentially, then the continuous functions ψ̃k(t) � ∑
n∈Z h̃

k(n)ϕ̃
(Nt − n) are called the continuous analysis wavelets with dilation factor N .

A wavelet ψ̃k(t) has p vanishing moments if
∫∞
−∞ tsψ̃k(t)dt = 0, s = 0, . . . , p−1.

The number of vanishing moments of the wavelet ψ̃k(t) is equal to the multiplicity
of zero of the filter H̃k(z) at z = 1 (see [43]). The same facts hold for the synthesis
filter bank Hk(z), k = 0, . . . ,K − 1.

We consider in this paper the cases N = 2 (diadic wavelets) and N = 3 (triadic
wavelets).

1.3. Prediction filters originated from splines

It was mentioned in the introduction (Section 1.1) that once we constructed a
spline that interpolates a signal on a sparse grid, we have to predict missing samples
of the signal by the values of the spline at the intermediate points. Calculation of
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10 Wavelets and frames originated from splines

these values reduces to filtering the array of interpolated samples. We derive these
filters for different types of splines.

1.3.1. Filters originated from continuous splines

In this section, we use continuous splines as a source for the filter design.

1.3.1.1. B-splines

The centered B-spline of first order is the characteristic function of the inter-
val [−1/2, 1/2]. The centered B-spline of order p is the convolution Mp(x) =
Mp−1(x) ∗M1(x), p ≥ 2. Note that the B-spline of order p is supported on the
interval (−p/2, p/2). It is positive within its support and symmetric around zero.
The B-spline Mp consists of pieces of polynomials of degree p − 1 that are linked
to each other at the nodes such that Mp ∈ Cp−2. Nodes of B-splines of even order
are located at points {k} and of odd order at points {k + 1/2}, k ∈ Z.

The Fourier transform of the B-spline of order p is

M̂p(ω) �
∫∞
−∞

e−iωxMp(x)dx =
(

sinω/2
ω/2

)p

. (1.22)

The time-domain representation of the B-spline is

Mp(t) = 1
(p − 1)!

p−1∑
k=0

(−1)k
(
p

k

)(
t +

p

2
− k

)p−1

+
, (1.23)

where t+ � (t + |t|)/2.
We introduce the following sequences:

v
p
0 �

{
Mp(k)

}
, v

p
r,N �

{
Mp

(
k +

r

N

)}
, r ∈ Z. (1.24)

Their z-transforms are, respectively, v
p
0 (z) and v

p
r,N (z).

Due to the compact support of B-splines, these sequences are finite and the
z-transforms are the Laurent polynomials.

Example 1.2. The Laurent polynomials for splines of second to fourth degrees are
as follows.

Linear spline, p = 2:

v2
0(z) = 1, v2

1,2(z) = z + 1
2

, v2
1,3(z) = v2

−1,3

(
z−1) = z + 2

3
. (1.25)
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Quadratic spline, p = 3:

v3
0(z)= z + 6 + z−1

8
, v3

1,2(z)= z + 1
2

, v3
1,3(z)=v3

−1,3

(
z−1)= 25z + 46 + z−1

72
.

(1.26)

Cubic spline, p = 4:

v4
0(z) = z + 4 + z−1

6
, v4

1,2(z) = z2 + 23z + 23 + z−1

48
,

v4
1,3(z) = v4

−1,3

(
z−1) = z2 + 60z + 93 + 8z−1

162
.

(1.27)

Spline of fourth degree, p = 5:

v5
0(z) = z2 + 76z + 230 + 76z−1 + z−2

384
, v5

1,2(z) = z2 + 11z + 11 + z−1

24
,

v5
1,3(z) = v5

−1,3

(
z−1) = 625z2 + 11516z + 16566 + 2396z−1 + z−2

31104
.

(1.28)

Proposition 1.3. The Laurent polynomials v
p
0 (z) and z−rvpr,2r(z

2r) are symmetric.
The roots of v

p
0 (z) are all simple and negative. In addition, for all z, |z| = 1, v

p
0 (z) > 0.

All the Laurent polynomials become 1 at z = 1.

1.3.1.2. Interpolatory continuous splines

Shifts of B-splines form a basis in the space of splines of order p on the grid
{Nl}l∈Z. Namely, any spline Sp has the following representation:

Sp(x) =
∑
l

qlM
p
(
x

N
− l

)
. (1.29)

Denote q � {ql}, s
p
0,N = {sp0,N (l) � Sp(Nl)}, s

p
r,N = {spr,N (l) � Sp(Nl + r)},

r ∈ Z, and let Q(z), s
p
0,N (z) and s

p
r,N (z) be the z-transforms of these the sequences,

respectively. We have

s
p
0,N (l) =

∑
n

qlM
p(l − n)⇐⇒ s

p
0,N (z) = Q(z)v

p
0 (z). (1.30)

Thus, s
p
0,N (z) = Q(z)v

p
0 (z), where v

p
0 (z) is the z-transform of the sequence up de-

fined in (1.24). From these formulas, we can derive expressions for the coefficients
of the spline S

p
i which interpolates the given sequence x0 � {x0(l)} ∈ l1 at grid
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12 Wavelets and frames originated from splines

points {Nl}l∈Z:

S
p
i (Nl) = x0(l), l ∈ Z,

⇐⇒ Q(z)v
p
0 (z) = X0(z)

⇐⇒ Q(z) = X0(z)

v
p
0 (z)

⇐⇒ ql =
∞∑

n=−∞
λ
p
l−nx0(n),

(1.31)

where λp � {λpk} is the sequence which is defined via its z-transform:

λp(z) =
∞∑

k=−∞
z−kλpk =

1

v
p
0 (z)

. (1.32)

The coefficients {λpk} decay exponentially as |k| → ∞. Substitution of (1.31) into
(1.29) results in an alternative representation of the interpolatory spline:

S
p
i (x) =

∞∑
l=−∞

x0(l)Lp
(
x

N
− l

)
, Lp(x) �

∑
l

λ
p
l M

p(x − l). (1.33)

The spline Lp(x), defined in (1.33), is called the fundamental spline. It interpolates
the Kronecker delta sequence δk, that is, it vanishes at all the integer points except
t = 0, where Lp(0) = 1. Due to decay of the coefficients {λpk}, the spline Lp(t)
decays exponentially as |t| → ∞.

The values of the fundamental spline at the intermediate points are

Lp
(
k +

r

N

)
=
∑
l

λ
p
l M

p
(
k − l +

r

N

)
, r ∈ Z. (1.34)

Denote by V
p
r,N (z) the z-transform of the sequence {Lp(k + r/N)}, k ∈ Z. Then,

we obtain from (1.34) that

V
p
r,N (z) = v

p
r,N (z)

v
p
0 (z)

, v
p
r,N (z) �

∑
n∈Z

z−nMp
(
n +

r

N

)
. (1.35)

Hence, the values of the interpolatory spline at the intermediate points are

s
p
r,N (l) =

∑
n

Lp
(
l +

r

N
− n

)
x0(n)⇐⇒ s

p
r,N (z) = V

p
r,N (z)X0(z). (1.36)

Switching into the signal processing terminology, we say that in order to derive
the values of the interpolatory spline at the points {Nl+r} around the points {Nl}
of interpolation, we have to filter the data {x0(l)} by the filters V

p
r,N whose impulse
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response {Lp(l + r/N)}, k ∈ Z, is finite or decays exponentially as |l| → ∞ (IIR
filter).

Let x = {x(l)}l∈Z and x0(l) � x(Nl). Denote xr(l) � x(Nl + r). As we men-
tioned above, if a spline interpolates samples of a signal at {Nl}, that is, S

p
i (Nl) =

x0(l), then the values of the spline at the points {Nl + r} are used as a prediction
for the corresponding samples of the signal x: xr(l) ≈ S

p
i (Nl + r).

Definition 1.4. A lowpass filter Fr,N (z), whose impulse response { fr,N (l)}l∈Z is fi-
nite or decays exponentially, restores polynomials of degree p on the grid {Nl +
r} if for any polynomial P(t) of degree p, the following identity

∑
n∈Z fr,N (l −

n)P(Nn) = P(Nl + r) for all l ∈ Z is true.

Example 1.5. The prediction filters derived from the interpolatory splines of sec-
ond to fourth degrees are as follows.

Linear spline, p = 2:

V 2
1,2(z) = z + 1

2
, V 2

1,3(z) = V 2
−1,3

(
z−1) = z + 2

3
. (1.37)

Quadratic spline, p = 3:

V 3
1,2(z) = 4

z + 1
z + 6 + z−1

, V 3
1,3(z) = V 3

−1,3

(
z−1) = 25z + 46 + z−1

9
(
z + 6 + z−1

) . (1.38)

Cubic spline, p = 4:

V 4
1,2(z) = z2 + 23z + 23 + z−1

8
(
z + 4 + z−1

) , V 4
1,3(z) = V 4

−1,3

(
z−1) = z2 + 60z + 93 + 8z−1

27
(
z + 4 + z−1

) .

(1.39)

Spline of fourth degree, p = 5:

V 5
1,2(z) = 16

z2 + 11z + 11 + z−1

z2 + 76z + 230 + 76z−1 + z−2
,

V 5
1,3(z) = V 5

−1,3(z−1) = 625z2 + 11516z + 16566 + 2396z−1 + z−2

81
(
z2 + 76z + 230 + 76z−1 + z−2

) .

(1.40)

Proposition 1.6 (properties of designed prediction filters). (1) All filters V
p
r,N (z)

are lowpass, V
p
r,N (1) = 1.

(2) The filters V
p
r,N (z) restore polynomials of degree p − 1 on the grid {Nl + r}.

(3) The filters V
2q+1
r,2r (z), which are derived from splines of odd order (even

degree), restore polynomials of degree p on the grid {2rl+ r} (superconvergence prop-
erty).
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14 Wavelets and frames originated from splines

1.3.2. Filters originated from discrete splines

In this section, we use a special type of the so-called discrete splines as a source
for filter design. The discrete splines are defined on the grid {k} and they are the
counterparts of the continuous polynomial splines.

The signal

b1
N =

{
b1
N (l)

}
�

⎧⎨⎩1 as l = 0, . . . ,N − 1

0 otherwise
⇐⇒ B1

N (z) = 1 + z−1 + · · · + z−(N−1)

(1.41)
is called the discrete B-spline of first order with length N .

We define by recurrence the higher-order B-splines via discrete convolutions:

b
p
N = b1

N ∗ b
p−1
N ⇐⇒ B

p
N (z) = (

1 + z−1 + · · · + z−(N−1))p. (1.42)

If N = 2M + 1 is odd, then we can introduce the so-called centered B-splines
as

q
p
N =

{
q
p
N (l)

}
, q

p
N (l) � b

p
N

(
l + Mp

)⇐⇒ Q
p
N (z) = (

zM + · · · + z−M
)p
.

(1.43)

In the case when N = 2M is even, centering is possible if the order p = 2m is even.
Then,

q2m
N = {

q2m
N (l)

}
,

q2m
N (l) � b

p
N

(
l + (2M − 1)m

)⇐⇒ Q
p
N (z) =

(
z2M−1 + · · · + z−(2M−1)

)m
.

(1.44)

In both cases, the centered B-splines are symmetric about the point l = 0
where they attain their maximal value. We assume that either N = 2M + 1 or
N = 2M and p = 2m.

Similar to continuous splines, the discrete spline d
p
N = {dp

N (l)}l∈Z of order p
on the grid {Nn} is defined as a linear combination with real-valued coefficients
of shifts of the centered B-spline:

d
p
N (l) �

∞∑
n=−∞

clq
p
N (l −Nn)⇐⇒ D

p
N (z) = C

(
zN

)
Q

p
N (z). (1.45)

Let

q
p
r,N (l) � q

p
N (r + Nl), r =

⎧⎨⎩−M, . . . ,M if N = 2M + 1,

−M + 1, . . . ,M if N = 2M, p = 2m,
(1.46)
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be the polyphase components of the discrete B-spline. Then, the polyphase com-
ponents of the discrete spline are

d
p
r,N (l) �

∞∑
n=−∞

clq
p
r,N (l −N)⇐⇒ D

p
r,N (z) = C(z)Q

p
r,N (z). (1.47)

Proposition 1.7. The component Q
p
0,N (z) is symmetric about inversion z → 1/z and

positive on the unit circle |z| = 1. All the components Q
p
r,N (z) have the same value at

z = 1:

Q
p
r,N (1) = Q

p
0 (1) ∀r. (1.48)

Our scheme to design prediction filters, which uses discrete splines, is the
same as the scheme that is based on continuous splines. We construct the dis-
crete spline d

p
N , which interpolates even samples of the signal x on the sparse grid

{Nl} and predict missing samples by the corresponding values, of the constructed
spline. Using (1.47), we find the z-transform of the coefficients of interpolatory
spline

d
p
N (lN) = x(lN)⇐⇒ D

p
0,N (z)

= C(z)Q
p
0 (z) = X0,N (z) �⇒ C(z) = X0,N (z)

Q
p
0,N (z)

.
(1.49)

Hence, the polyphase components d
p
r,N , which are used for the prediction defined

via the z-transforms, are

D
p
r,N (z) = C(z)Q

p
r,N (z) = U

p
r,N (z)X0,N (z), U

p
r,N (z) � Q

p
r,N (z)

Q
p
0,N (z)

. (1.50)

Thus, in order to predict the missed samples of the signal x, we filter its
polyphase component x0,N with the filters U

p
r,N (z). Equation (1.48) implies that

U
p
r,N (1) = 1. Therefore, these filters are lowpass. We focus on filters with the down-

sampling factors N = 2 and N = 3.

1.3.2.1. Filters with the downsampling factor N = 2: relation to
Butterworth filters

In the case when the downsampling factor N = 2, the filters U2m
1,2 (z) can be pre-

sented explicitly for any even order 2m.
We get from (1.44) that

Q2m
2 (z) = ρm(z), ρ(z) � z + 2 +

1
z
. (1.51)
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16 Wavelets and frames originated from splines

Hence, the polyphase components of the B-spline and the prediction filters are

Q2m
0,2

(
z2) = 1

2

(
ρm(z) + ρm(−z)

)
, Q2m

1,2

(
z2
) = z

2

(
ρm(z)− ρm(−z)

)
,

U2m
1,2

(
z2) = z

ρm(z)− ρm(−z)
ρm(z) + ρm(−z)

.
(1.52)

The filters U2m
1,2 (z2) are closely related to Butterworth filters [34], which are widely

used in signal processing. To be specific, the functions

λm(z) � 1 + z−1U2m
1,2

(
z2) = 2ρm(z)

ρm(z) + ρm(−z)
,

χm(z) � 1− z−1U2m
1,2

(
z2) = λm(−z)

(1.53)

are squared magnitudes of the transfer functions of half-band lowpass and high-
pass Butterworth filters of order m, respectively.

1.3.2.2. Filters with downsampling factor N = 3

Denote τ(z) � z + 1 + 1/z, θ � e2π j/3. Then,

Q
p
0,3

(
z3) = τ p(z) + τ p(zθ) + τ p(z/θ)

3
,

Q
p
1,3

(
z3) = z

τ p(z) + τ p(zθ)θ + τ p(z/θ)/θ
3

�⇒ U
p
1,3

(
z3) = z

τ p(z) + τ p(zθ)θ + τ p(z/θ)/θ
τ p(z) + τ p(zθ) + τ p(z/θ)

,

Q
p
−1,3

(
z3) = z

τ p(z) + τ p(zθ)/θ + τ p(z/θ)θ
3

�⇒ U
p
1,3

(
z3) = z

τ p(z) + τ p(zθ)/θ + τ p(z/θ)θ
τp(z) + τ p(zθ) + τ p(z/θ)

.

(1.54)

1.3.2.3. Examples of prediction filters

Linear discrete splines, p = 2:

U2
1,2(z) = 1 + z

2
, U2

1,3(z) = 2 + z

3
, U2

−1,3(z) = 2 + 1/z
3

. (1.55)

Quadratic discrete splines, p = 3:

U3
1,3(z) = 3(2 + z)

z + 7 + 1/z
, U3

−1,3(z) = 3(2 + 1/z)
z + 7 + 1/z

. (1.56)
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Cubic discrete splines, p = 4:

U4
1,2(z) = 4(1 + z)

z + 6 + 1/z
, U4

1,3(z) = 1/z + 16 + 10z
4z + 19 + 4/z

= U4
−1,3

(
1
z

)
. (1.57)

Discrete spline of sixth order, p = 6:

U6
1,2(z) =

(
z + 14 + z−1

)
(1 + z)

6z−1 + 20 + 6z
. (1.58)

Discrete spline of eighth order, r = 4:

U8
1,2(z) = 8(1 + z)

(
z−1 + 6 + z

)
z−2 + 28z−1 + 70 + 28z + z2

. (1.59)

1.4. Biorthogonal wavelet transforms generated by filter banks with
downsampling factor N = 2 (diadic transforms)

In this section, we describe how to generate families of biorthogonal wavelet trans-
forms and wavelet frames using spline-based prediction filters with downsampling
factor N = 2 designed in Section 1.3. A useful tool for the design and implemen-
tation of the biorthogonal wavelet transforms when downsampling factor N = 2
is provided by the so-called lifting scheme introduced by Sweldens [44].

1.4.1. Lifting scheme: decomposition

Generally, the lifting mode of the wavelet transform consists of four steps: (1) split,
(2) predict, (3) update or lifting, and (4) normalization.

(1) Split. The signal x = {x(l)}l∈Z is split into its polyphase components:
xr={xr(l)� x(2l + r)}l∈Z, r = 0, 1.

(2) Predict. The even polyphase component is filtered by some lowpass pre-
diction filter F̃(1/z), in order for the filtered version of x0 to predict the
odd component x1. Then, the existing array x1 is replaced by the array
a1, which is the difference between x1 and the predicted array.

In the z-domain, the operations are described as Ã1(z) = X1(z) −
F̃(1/z)X0(z).

(3) Update (lifting). Generally, downsampling the original signal x into x0

depletes the smoothness of the signal. To obtain a sparse signal similar
to the original x, the new odd array is filtered by a lowpass update filter,
which we prefer to denote as F(z)/2. The filtered array is used to increase
the smoothness of the even array x0:

Ã0(z) = X0(z) +
1
2
F(z)Ã1(z). (1.60)
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18 Wavelets and frames originated from splines

Provided that the filter F is properly chosen, the even array x0 is trans-
formed into a smoothed and downsampled replica of x.

(4) Normalization. Finally, the smoothed array ỹ0 and the array of details ỹ1

are obtained by the operations ỹ0 = √2ã0, ỹ1 = ã1/
√

2.

1.4.2. Lifting scheme: reconstruction

One of the most attractive features of lifting schemes is that the reconstruction of
the signal x from the arrays ỹ0 and ỹ1 is implemented by reverse decomposition.

Undo normalization: ã0 = ỹ0/
√

2 ã1 = √2ỹ1.

Undo lifting: the even polyphase component X0(z) = Ã0(z) − (1/2)F(z)Ã1(z) is
restored.

Undo predict: the odd polyphase component

X1(z) = Ã1(z) + F̃
(

1
z

)
X0(z) (1.61)

is restored.

Undo split: the last step is the standard restoration of the signal from its even and
odd components. In the z-domain, it appears as X(z) = X1(z2) + z−1X0(z2).

1.4.3. Filter banks

Rewriting the lifting steps in a matrix form, we obtain the polyphase matrices of
the wavelet transforms to be

⎛⎝Ỹ 0(z)

Ỹ 1(z)

⎞⎠ =
⎛⎜⎝
√

2 0

0
1√
2

⎞⎟⎠ ·
⎛⎜⎜⎝1

F(z)
2

0 1

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

1 0

−F̃
(

1
z

)
1

⎞⎟⎟⎠ ·
⎛⎝X0(z)

X1(z)

⎞⎠ . (1.62)

Hence, the analysis polyphase matrix is

P̃
(

1
z

)
=

⎛⎜⎜⎜⎜⎝
√

2
(

1− F̃(1/z)F(z)
2

)
F(z)√

2

− F̃(1/z)√
2

1√
2

⎞⎟⎟⎟⎟⎠ . (1.63)

The reconstruction operations are represented by

⎛⎝X0(z)

X1(z)

⎞⎠ =
⎛⎜⎝ 1 0

F̃
(

1
z

)
1

⎞⎟⎠ ·
⎛⎜⎝1

−F(z)
2

0 1

⎞⎟⎠ ·
⎛⎜⎝ 1√

2
0

0
√

2

⎞⎟⎠ ·
⎛⎝Ỹ 0(z)

Ỹ 1(z)

⎞⎠ . (1.64)
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Hence, the synthesis polyphase matrix is

P(z) =

⎛⎜⎜⎜⎝
1√
2

−F(z)√
2

F̃(1/z)√
2

√
2
(

1− F̃(1/z)F(z)
2

)
⎞⎟⎟⎟⎠ . (1.65)

Obviously, P(z) = P̃(1/z)−1. Therefore, the perfect reconstruction condition is
satisfied. We recall that

P̃(z) �
⎛⎝H̃0

0 (z) H̃0
1 (z)

H̃1
0 (z) H̃1

1 (z)

⎞⎠ , P(z) �
⎛⎝H0

0 (z) H1
0 (z)

H0
1 (z) H1

1 (z)

⎞⎠ . (1.66)

Thus, the analysis filters are

H̃0
(

1
z

)
= √2

(
1− F̃

(
z−2

)
F
(
z2
)− zF

(
z2
)

2

)
=
√

2
2

(
1 + zF

(
z2) + W

(
z2)),

H̃1
(

1
z

)
= z

√
2

2

(
1− z−1F̃

(
z−2)),

(1.67)

where

W(z) � 1− F̃
(
z−1)F(z). (1.68)

Thus, the synthesis filters are

H0(z) =
√

2
2

(
1 + z−1F̃

(
z−2)) = z−1H̃1

(−1
z

)
,

H1(z) = z

√
2

2

(
1− z−1F

(
z−2) + W

(
z2)). (1.69)

If one polyphase component of the filter H(z) is a constant number, then the filter
is called interpolatory. We see from (1.69) that the lowpass synthesis filter H0(z)
is interpolatory. Consequently, the synthesis scaling function ϕ(t), which is gen-
erated by H0(z), interpolates the Kroneker delta (up to a constant c). It means
that

ϕ(l) =
⎧⎨⎩c if l = 0,

0 otherwise,
l ∈ Z. (1.70)

1.4.4. Wavelets derived from spline-based filter banks

The perfect reconstruction condition for the presented filter banks is satisfied with
any choice of lowpass filters F̃(z) and F(z). However, once the filters V

p
1,2(z) and
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20 Wavelets and frames originated from splines

U2m
1,2 (z), derived from continuous and discrete splines, respectively, are utilized, a

diverse family of biorthogonal wavelets appears. Properties of these wavelets such
as symmetry, interpolation, smoothness, flat spectra, good time-domain localiza-
tions, and vanishing moments fit well signal processing needs. Implementation of
these transforms is highly efficient.

Note that number of vanishing moments in the analysis wavelets is important
for the applications of signal processing while typical requirements to the synthesis
wavelets are smoothness and good time-domain localization.

Proposition 1.8. If any of the filters V
p
1,2(z) and U2m

1,2 (z) derived from splines is used

as the prediction filter F̃(1/z) and any of them is used as the update filter F(z), then
(1) the filters H̃0 and H0 are lowpass while the filters H̃1 and H1 are highpass;

(2) the filters H̃0 and H0 generate continuous scaling functions ϕ̃(t) and ϕ(t),
whereas the filters H̃1 and H1 generate continuous wavelets ψ̃(t) and ψ(t) with van-
ishing moments;

(3) the filters in the analysis and synthesis filter banks are symmetric (up to a
shift) about inversion z → 1/z and corresponding waveforms are symmetric in time
domain and decay exponentially as t →∞.

Update filters: in principle, any lowpass filter can serve as the update filter F(z).
However, in what follows, we choose the update filter F(z) to be equal to the pre-
dict filter F̃(z).

1.4.5. Continuous splines

Proposition 1.9. If the prediction filter in the lifting scheme F(1/z) = V 2m
1,2 (z) is

derived from the continuous spline of even order 2m, then
(1) the transfer function of the analysis highpass filter H̃1(z) has zero of multi-

plicity 2m at z = 1, consequently, the analysis wavelet ψ̃(t) has 2m vanishing mo-
ments;

(2) the synthesis scaling function ϕ(t) is equal to the fundamental spline L2m(x)
of order 2m defined in (1.33), consequently, it is continuous together with its deriva-
tives up to order 2m− 2 (belongs to C2m−2);

(3) the synthesis wavelet ψ(t) is a spline of order 2m, and therefore, belongs to
C2m−2.

Proposition 1.10. If the prediction filter in the lifting scheme F(1/z) = V 2m−1
1,2 (z) is

derived from the continuous spline of odd order 2m− 1, then
(1) the transfer function of the analysis highpass filter H̃1(z) has zero of multi-

plicity 2m at z = 1, consequently, the analysis wavelet ψ̃(t) has 2m vanishing mo-
ments;

(2) the synthesis scaling function ϕ(t) and the wavelet ψ(t) are smoother than
the generating spline (which belongs to C2m−3).
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Example 1.11

Linear spline, p = 2:

H̃1(z) = z
(
1− z−1V 2

1,2

(
z2
))

√
2

= − (1− z)2

2
√

2
,

H0(z) = z−1H̃1(−z) = z−1 + 2 + z

2
√

2
.

(1.71)

The corresponding analysis wavelet ψ̃(t) has two vanishing moments. The synthe-
sis waveforms belong to C0.

Quadratic spline, p = 3:

H̃1(z) = z−1 (1− z)4
√

2
(
z2 + 6 + z−2

) , H0(z) =
(
z−1 + 2 + z

)2

√
2
(
z2 + 6 + z−2

) . (1.72)

The corresponding analysis wavelet ψ̃(t) has four vanishing moments. The syn-
thesis waveforms belong to C2.

Cubic spline, p = 4:

H̃1(z) = z−1 (1− z)4
(
z + 4 + z−1

)
8
√

2
(
z−2 + 4 + z2

) , H0(z) =
(
z−1 + 2 + z

)2(
z + 4 + z−1

)
8
√

2
(
z−2 + 4 + z2

) .

(1.73)

The corresponding analysis wavelet ψ̃(t) has four vanishing moments. The syn-
thesis waveforms belong to C2.

Interpolatory spline of fourth degree, p = 5:

H̃1(z) = −z−2 (1− z)6
(
z + z−1 − 10

)
√

2
(
z4 + 76z2 + 230 + 76z−2 + z−4

) ,

H0(z) =
(
z + 2 + z−1

)3(
z + z−1 + 10

)
√

2
(
z4 + 76z2 + 230 + 76z−2 + z−4

) . (1.74)

The corresponding analysis wavelet ψ̃(t) has six vanishing moments. The synthesis
waveforms belong to C4.

We display in Figures 1.1–1.4 the frequency responses of the analysis and syn-
thesis filter banks, which are derived from continuous splines, and the correspond-
ing scaling functions and wavelets. All the figures are organized identically. Each
figure consists of four columns. The first column from left displays the analysis
scaling function ϕ̃(t) (bottom) and the analysis wavelet ψ̃(t) (top). The second
column from left displays the frequency responses of the analysis lowpass filter
H̃0(z) (bottom) and the analysis highpass filter H̃1(z) (top). Next column displays
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22 Wavelets and frames originated from splines

Figure 1.1. Filters and wavelets derived from the linear continuous spline.

Figure 1.2. Filters and wavelets derived from the quadratic continuous spline.

Figure 1.3. Filters and wavelets derived from the cubic continuous spline.

Figure 1.4. Filters and wavelets derived from the continuous spline of fourth degree.

the synthesis scaling function ϕ(t) (bottom) and the synthesis wavelet ψ(t) (top).
Last column displays the frequency responses of the synthesis lowpass filter H0(z)
(bottom) and the synthesis highpass filter H1(z) (top).

1.4.6. Discrete splines

Proposition 1.12. If the prediction filter in the lifting scheme F(1/z) = U2m
1,2 (z) is

derived from the discrete spline of even order 2m, then
(1) the transfer function of the analysis highpass filter H̃1(z) has zero of multi-

plicity 2m at z = 1, consequently, the analysis wavelet ψ̃(t) has 2m vanishing mo-
ments;

(2) the transfer function of the synthesis lowpass filter H0(z) and the analysis
highpass filter z−1H̃1(z) are the squared magnitudes of the transfer functions of half-
band lowpass and highpass Butterworth filters of order m, respectively.
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Figure 1.5. Filters and wavelets derived from the discrete spline of fifth degree.

Example 1.13

Linear spline, m = 1: the filter bank coincides with the filter bank derived from
the continuous linear spline.

Cubic spline, m = 2: the filter bank coincides with the filter bank derived from the
continuous quadratic spline.

Discrete spline of fifth degree, m = 3:

H̃1(z) = z−2 (1− z)6
√

2
(
6z2 + 20 + 6z−2

) , H0(z) = −
(
z−1 − 2 + z

)3

√
2
(
6z2 + 20 + 6z−2

) .
(1.75)

The corresponding analysis wavelet ψ̃(t) has six vanishing moments. The synthesis
waveforms belong to C4.

Discrete spline of seventh degree, m = 4:

H̃1(z) = z−3 (1− z)8
√

2
(
z−4 + 28z−2 + 70 + 28z2 + z4

) ,

H0(z) =
(
z−1 − 2 + z

)4

√
2
(
z−4 + 28z−2 + 70 + 28z2 + z4

) .
(1.76)

The corresponding analysis wavelet ψ̃(t) has eight vanishing moments. The syn-
thesis waveforms belong to C5.

We display in Figures 1.5 and 1.6 the frequency responses of the analysis and
synthesis filter banks, which are derived from discrete splines, and the correspond-
ing scaling functions and wavelets. The figures are organized similarly to Figures
1.1–1.4.

Remarks 1.14. (1) From the above figures, we see that the designed waveforms are
smooth (except for the analysis waveforms derived from the linear spline), well
localized in time domain, and symmetric.

(2) The frequency responses of filters are maximally flat (has no ripples) in the
passband, and rolls towards zero in the stopband. As the order of the generating
spline is high, the decline is steeper in the stopband.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


24 Wavelets and frames originated from splines

Figure 1.6. Filters and wavelets derived from the discrete spline of seventh degree.

(3) The frequency responses of the filters H0(z) and H̃1(z) are monotonous,
whereas the responses of H̃0(z) and H1(z) have a bump near the cutoff. This bump
stems from the presence of the term W(z) in the transfer functions of these filters
(see (1.67)–(1.69)). Also, from this reason, the analysis waveforms are less regular
than the synthesis counterparts.

(4) The transfer functions of all the designed filters are rational functions.
Therefore, the filters (except the filters derived from the linear spline) have infi-
nite impulse response (IIR). But they can be efficiently implemented via causal-
anticausal recursive filtering (see the appendix). The computational cost is even
lower than the cost of implementing finite impulse response (FIR) filters with sim-
ilar properties.

Properties of the designed wavelets and filters make them useful for signal
processing applications. We describe one application in Section 1.5.

1.5. Application of spline-based wavelet transforms to
image compression

The above transforms were applied to multimedia still images to achieve high-
quality compression. In most experiments, they outperform the popular B9/7 bior-
thogonal transform [15, 31], which is the core of JPEG 2000 still image compres-
sion standard. In this section, we present the results after compression and decom-
pression of four images in Figures 1.7 and 1.8. These are 512× 512 8-bit per pixel
(8 bpp) images.

The following experiments were done.
(1) The image was decomposed up to 6 scales by the wavelet transform using

the B9/7 transforms and the transforms designed in Section 1.4.
(2) The transform coefficients were coded using the SPIHT algorithm (see

[41]) followed by arithmetic coding. This algorithm enables to achieve exact
predetermined compression rate. We coded the coefficients with different com-
pression ratios (CR) 1 : 10 (0.8 bpp), 1 : 20 (0.4 bpp), 1 : 30 (4/15 bpp), 1 : 40
(0.2 bpp), and 1 : 50 (4/25 bpp).

(3) The reconstructed image was compared with the original image and the
achieved peak signal-to-noise ratio (PSNR) in decibels was computed:

PSNR = 10 log10

(
N2552∑N

k=1

(
x(k)− x̃(k)

)2

)
dB. (1.77)
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(a) (b)

Figure 1.7. (a) Lena, (b) Barbara.

(a) (b)

Figure 1.8. (a) Canaletto, (b) fabrics.

We denote the transforms as follows.
(i) B9/7 denotes the B9/7 biorthogonal transform.

(ii) CS3 denotes the transform generated by quadratic continuous spline
(1.72).

(iii) CS4 denotes the transform generated by cubic continuous spline (1.73).
(iv) CS5 denotes the transform generated by continuous spline of fourth de-

gree (1.74).
(v) DS3 denotes the transform generated by discrete spline of sixth degree

(1.75).
(vi) DS4 denotes the transform generated by discrete spline of eighth degree

(1.76).
The results are summarized in Tables 1.1–1.4.

Lena: the PSNR values of “Lena” are presented in Table 1.1.
All the spline wavelet transforms outperform the B9/7 filter in any compres-

sion rate (with one exception for CS3 at CR = 10). In Figure 1.9, we display the
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26 Wavelets and frames originated from splines

Table 1.1. PSNR of “Lena” after the application of SPIHT where the decomposition of the wavelet
transform was 6 scales.

CR B9/7 CS3 CS4 CS5 DS3 DS4
10 39.12 39.09 39.14 39.15 39.15 39.14
20 36.08 36.14 36.17 36.17 36.18 36.12
30 34.12 34.23 34.27 34.29 34.30 34.23
40 32.99 33.05 33.08 33.07 33.09 33.08
50 31.90 31.91 31.98 31.96 31.98 31.92

Table 1.2. PSNR of “Barbara” after the application of SPIHT where the decomposition of the wavelet
transform was 6 scales.

CR B9/7 CS3 CS4 CS5 DS3 DS4
10 35.36 35.64 35.99 36.27 36.21 36.39
20 30.63 30.87 31.05 31.19 31.17 31.27
30 28.27 28.09 28.27 28.46 28.42 28.59
40 26.91 26.78 26.93 27.13 27.08 27.22
50 26.17 25.72 25.89 26.04 26.02 26.18

Table 1.3. PSNR of “Canaletto” after the application of SPIHT where the decomposition of the wavelet
transform was 6 scales.

CR B9/7 CS3 CS4 CS5 DS3 DS4
10 35.10 35.16 35.20 35.21 35.21 35.21
20 31.48 31.59 31.66 31.68 31.68 31.67
30 29.54 29.66 29.71 29.74 29.74 29.72
40 28.38 28.50 28.54 28.54 28.55 28.52
50 27.55 27.63 27.63 27.63 27.63 27.62

Table 1.4. PSNR of “fabrics” after the application of SPIHT where the decomposition of the wavelet
transform was 6 scales.

CR B9/7 CS3 CS4 CS5 DS3 DS4
10 36.30 36.21 36.24 36.24 36.24 36.20
20 32.58 32.42 32.45 32.45 32.45 32.43
30 31.14 31.02 31.07 31.04 31.06 30.99
40 30.08 30.04 30.03 30.03 30.03 29.97
50 29.38 29.36 29.37 29.36 29.37 29.31

closed-up fragments of “Lena” reconstructed from 1 : 50 compression files of
wavelet coefficients of the B9/7 and DS3 transforms.

Barbara: the PSNR values of “Barbara” are presented in Table 1.2.
All the spline-wavelet transforms outperform the B9/7 filter in any compres-

sion rate, especially at high bit rate. Most efficient is the DS4, where the wavelets
have eight vanishing moments and the synthesis waveforms belong toC4. In Figure
1.10, we display closed-up fragments of “Barbara” reconstructed from 1 : 40 com-
pression files of wavelet coefficients of B9/7 and DS4 transforms.

Canaletto: the PSNR values of “Canaletto” are presented in Table 1.3.
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(a) (b)

Figure 1.9. Reconstruction of “Lena” from 1 : 50 compression files of wavelet coefficients of B9/7 (a)
and DS3 (b) transforms.

(a) (b)

Figure 1.10. Reconstruction of “Barbara” from 1 : 50 compression files of wavelet coefficients of B9/7
(a) and DS4 (b) transforms.

All the splinetransforms slightly outperform the B9/7 filter in any compres-
sion rate. Most efficient are the DS3 and DS4, where the wavelets have six and eight
vanishing moments, respectively. In Figure 1.11, we display closed-up fragments of
“Canaletto” reconstructed from 1 : 40 compression files of wavelet coefficients of
B9/7 and DS3 transforms.

Fabrics: the PSNR values of “fabrics” are presented in Table 1.4.
The B9/7 filter demonstrates a small advantage of the PSNR over all spline-

transforms on this image. In Figure 1.12, we display closed-up fragments of “fab-
rics” reconstructed from 1 : 50 compression files of wavelet coefficients of B9/7
and DS3 transforms.

The examples presented above demonstrate that the performance of the de-
signed spline-based wavelet transforms for image compression is competitive to
the performance of the popular B9/7 transform, which is used in JPEG 2000. Once
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28 Wavelets and frames originated from splines

(a) (b)

Figure 1.11. Reconstruction of “Canaletto” from 1 : 50 compression files of wavelet coefficients of
B9/7 (a) and DS3 (b) transforms.

(a) (b)

Figure 1.12. Reconstruction of “fabrics” from 1 : 50 compression files of wavelet coefficients of B9/7
(a) and DS3 (b) transforms.

the recursive implementation of the spline filters is conducted, its computational
cost is comparable with the cost of the implementation of B9/7 transform. For ex-
ample, the number of additions (A) and multiplications (M) per pixel for the B9/7
transform is 8A + 4M, whereas for the transform CS3, it is 8A + 6M operations.
The efficient DS3 transform requires 12A + 8M operations.

1.6. Wavelet frames (framelets) generated by 3-channel filter banks with
downsampling factor N = 2

As we mentioned in the end of Section 1.4, the analysis wavelets are less regular
than the synthesis ones. The reason is that the structure of the lowpass analysis
filters is more complicated than the structure of their synthesis counterparts. The
latter is very simple and has the interpolation property. If the prediction filter orig-
inates from the discrete spline, then the lowpass synthesis filter coincides with the
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squared magnitude of the transfer function of half-band lowpass Butterworth fil-
ter. Also we mentioned the bumps that disturbed the flatness of the frequency
responses of the lowpass analysis filters and the highpass synthesis ones. We can
essentially improve the properties of the filters and waveforms by introducing ad-
ditional channel into the filter bank retaining the perfect reconstruction property.
Thus, the representation of a signal becomes redundant and produces a frame ex-
pansions of signals. The redundancy should hardly be regarded as a drawback.
The redundant representations have more adaptation abilities compared to basis
expansions of signals. Therefore, they are feasible for signal denoising and features
extraction. This redundancy enables to exploit frame expansion as a tool for recov-
ery of erasures, which may occur while a multimedia signal is transmitted through
a lossy channel.

1.6.1. Interpolatory frames

In this section, we describe how to construct frames in signal space starting from
either any pair of lowpass interpolatory filters or from a single filter. The problem
reduces to the design of a perfect reconstruction filter bank with desired proper-
ties. The key point in this design is the factorization scheme of a polyphase matrix.

We introduce an analysis-synthesis pair of lowpass interpolatory filters

G̃0(z) �
√

2
2

(
1 + z−1F̃

(
z2)), G0(z) �

√
2

2

(
1 + z−1F

(
z2)), (1.78)

that are similar to the lowpass interpolatory synthesis filter H0(z) derived from the
lifting scheme (see (1.69)). As before, denote W(z) � 1− F(z)F̃(z−1).

The polyphase matrices for the filter banks G̃0, G̃1, G̃2 and G0, G1, G2 com-
prising the interpolatory lowpass filters G0(z) and G̃0(z) are

P̃(z) �

⎛⎜⎜⎜⎜⎜⎝
1√
2

F̃(z)√
2

G̃1
0(z) G̃1

1(z)

G̃2
0(z) G̃2

1(z)

⎞⎟⎟⎟⎟⎟⎠ , P(z) �

⎛⎜⎜⎜⎝
1√
2

G1
0(z) G2

0(z)

F(z)√
2

G1
1(z) G2

1(z)

⎞⎟⎟⎟⎠ . (1.79)

Then, the perfect reconstruction condition (1.12) leads to

Pg(z) · P̃g

(
1
z

)
= 1

2
Q(z), (1.80)
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30 Wavelets and frames originated from splines

where

P̃g(z) �

⎛⎜⎝G̃1
0(z) G̃1

1(z)

G̃2
0(z) G̃2

1(z)

⎞⎟⎠ , Pg(z) �
⎛⎝G1

0(z) G2
0(z)

G1
1(z) G2

1(z)

⎞⎠ ,

Q(z) �
⎛⎝ 1 −F̃(z−1

)
−F(z) 2− F(z)F̃

(
z−1

)
⎞⎠ .

(1.81)

Therefore, the construction of a frame with the interpolatory lowpass filters G̃0(z)
and G0(z) reduces to factorization of the matrix Q(z) as in (1.80). There are many
options for this factorization of Q(z). We describe implications of the simplest
triangular factorization:

P̃g(z)= 1√
2

(
0 w̃(z)
1 −F̃(z)

)
, Pg(z)= 1√

2

(
0 1

w(z) −F(z)

)
, w(z)w̃

(
z−1)=W(z).

(1.82)

Thus, to complete the construction, we have to factorize the function W(z).
As soon as it is done, we obtain the perfect reconstruction filter bank,

G̃0(z) �
√

2
2

(
1 + z−1F̃

(
z2)), G0(z) �

√
2

2

(
1 + z−1F

(
z2)),

G̃1(z) = z−1w̃
(
z2
)

√
2

, G1(z) = z−1w
(
z2
)

√
2

,

G̃2(z) = 1− z−1F̃
(
z2
)

√
2

= H̃(−z), G2(z) = 1− z−1F
(
z2
)

√
2

= H(−z).

(1.83)

Note that in this case, the filters G2(z) and G̃2(z) are interpolatory. If F(1) =
F̃(1), then these filters are highpass. The filters G̃1(z) and G1(z) have no even
polyphase component.

This filter bank generates a biframe in signal space.
We use, as the prediction filters F̃(z) and F(z), the spline-based filters V

p
1,2(z)

and U2m
1,2 (z), which are designed in Section 1.3. All these filters possess the symme-

try property: z−1F(z2) = zF(z−2). Thus, the filters G̃0(z), G̃2(z), G0(z), and G2(z)
are symmetric about inversion z → 1/z. The rational function W(z2) can be writ-
ten as W(z2) = (1− z−1F(z2) · zF̃(z−2))/2 =W(z−2). Thus, a rational symmetric
or antisymmetric factorization is possible. The trivial rational symmetric factor-
izations are v(z) = 1, ṽ(z) = W(z) or ṽ(z) = 1, v(z) = W(z). Since W(z2) = 0 if
z = ±1, at least one of the filters G2(z) and G̃2(z) is bandpass and the correspond-
ing framelet has vanishing moments.
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1.6.2. Tight and semitight frames

If F(z) = F̃(z), then we get G0(z) = G̃0(z), G2(z) = G̃2(z), and

W(z) = 1− ∣∣F(z)
∣∣2

2
, W

(
z2) = 2G0(z)G0(−z). (1.84)

If the inequality ∣∣F(z)
∣∣ ≤ 1, as |z| = 1, (1.85)

holds, then the function W(z) can be factorized as W(z) = w(z)w(1/z). This
factorization is not unique. Due to Riesz’s lemma [19], a rational factorization
is possible. Then, we have G1(z) = G̃1(z). Thus, the synthesis filter bank coin-
cides with the analysis filter bank and generates a tight frame. Due to (1.84), the
(anti)symmetric rational factorization is possible if and only if all roots and poles
of the function G0(z) have even multiplicity. If G0(z) has a root of multiplicity 2m
at z = 1, then the filter G1(z) has roots of multiplicity m at z = 1 and z = −1. The
corresponding framelet ψ1(t) has m vanishing moments. A similar construction
for the tight frame based on a family of interpolatory symmetric FIR filters was
presented in [14]. However, the filter G1(z) in [14] lacks symmetry.

If the condition (1.85) is not satisfied, we are still able to generate frames,
which are very close to a tight frame. Namely,

G0(z)(z) = G̃0(z)(z) = 1 + z−1F
(
z2
)

√
2

,

G2(z) = G̃2(z) = 1− z−1F
(
z2
)

√
2

,

G1(z) = z−1w
(
z2
)

√
2

, G̃1(z) = z−1w̃
(
z2
)

√
2

,

w(z)w̃
(

1
z

)
=W(z) =

(
1− ∣∣F(z)

∣∣2
)
.

(1.86)

It is natural to refer to such a frame as a semitight frame. Due to the symmetry of
W(z), an (anti)symmetric factorization of type (1.86) is always possible. There-
fore, even when (1.85) holds, sometimes it is preferable to construct a semitight
rather than a tight frame. For example, it was proved in [38] that a compactly
supported interpolatory symmetric tight frame with two framelets is possible only
with the lowpass filter G0(z) = (1 + (z + 1/z)/2)/

√
2. In this case, the scaling func-

tion and the framelets are piecewise linear. The framelets ψ2(t) and ψ1(t) have
two and one vanishing moments, respectively. However, it is possible to construct
a variety of compactly supported interpolatory symmetric semitight frames with
smooth framelets. The construction of compactly supported interpolatory sym-
metric tight frame with three framelets is always possible [14]. On the other hand,
in the semitight frames, we can swap vanishing moments between the analysis and
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32 Wavelets and frames originated from splines

synthesis framelets. Typically, it is advisable to have more vanishing moments in
the analysis framelets.

Note that smoothness of all waveforms in a tight or semitight frame is the
same.

1.6.3. Tight and semitight frames generated by spline-based filter banks

1.6.3.1. Butterworth frames

If we use as the prediction filters F(z), the filters U2m
1,2 (z), which are based on the

discrete splines, then we can explicitly design tight and semitight frames, where the
waveforms are (anti)symmetric and have arbitrary smoothness. The framelets may
have any number of vanishing moments. Since there is a relation between the fil-
ters and the Butterworth filters, we call the corresponding frames the Butterworth
frames. Let us denote ρ(z) � z + 2 + z−1.

Let F(z) = U2m
1,2 (z). Then,

G0(z) = G̃0(z) = 1 + z−1U2m
1,2

(
z2
)

√
2

=
√

2ρr(z)
ρr(z) + ρr(−z)

,

G2(z) = G̃2(z) = 1− z−1U2m
1,2

(
z2
)

√
2

=
√

2ρr(−z)
ρr(z) + ρr(−z)

.

(1.87)

We get a tight frame when we factorize W(z) to be

W(z) = 1− ∣∣U2m
1,2 (z)

∣∣2 = w(z)w
(

1
z

)
. (1.88)

From (1.84), we have

W
(
z2) = 2G0(z)G0(−z) = 4(−1)mz−2m

(
1− z2

)2m(
ρm(z) + ρm(−z)

)2 = w
(
z2)w(z−2),

w
(
z2) � 2

(
1− z2

)m
ρm(z) + ρm(−z)

.

(1.89)

If m = 2n, then we can define w(z2) differently:

w
(
z2) � 2

(
z − z−1

)2n

ρ2n(z) + ρ2n(−z)
. (1.90)

Hence, the three filters G0(z), defined in (1.87), G2(z) = H(−z), and G1(z) �
z−1w(z2)/

√
2, where w(z2) is defined in (1.89), generate a tight frame in the signal

space. The scaling function ϕ(t) and the framelet ψ2(t) are symmetric, whereas
the framelet ψ1(t) is symmetric when m is even and antisymmetric when m is
odd. The framelet ψ2(t) has 2m vanishing moments and the framelet ψ1(t) has m
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vanishing moments. The frequency response of the filter G0(z) is maximally flat.
The frequency response of the filter G2(z) is a mirrored version of G0(z). The fre-
quency response of the filter G1(z) is symmetric about ω = π/2 and it vanishes at
the points ω = 0(z = 1) and ω = π(z = −1).

We have more freedom in the design of the filters G̃1(z) and G1(z) if we drop
the requirement w(z) = w̃(z) in the factorization of W(z). Doing so, we arrive at
the semitight case. For example, a symmetric factorization of W(z) is possible for
either of even and odd values of m:

w
(
z2) � 2

(
2− z−2 − z2

)p(
ρm(z) + ρm(−z)

)s , w̃
(
z2) �

√
2
(
2− z−2 − z2

)m−p(
ρm(z) + ρm(−z)

)2−s , s ∈ Z.

(1.91)

We can get an antisymmetric factorization by choosing an odd p:

w
(
z2) � −2

(− z2
)−m(

1− z2
)p(

ρm(z) + ρm(−z)
)s , w̃

(
z2) � 2

(− z2
)p−2m(

1− z2
)2m−p(

ρm(z) + ρm(−z)
)2−s , s ∈ Z.

(1.92)

With this factorization, we can change the number of vanishing moments in the
framelets ψ1(t) and ψ̃1(t). One option is that one of the filters G1(z) = z−1w(z2) or
G̃1(z) = z−1w̃(z2) has a finite impulse response. This is achieved if s ≤ 0 or s ≥ 2.

1.6.3.2. Frames based on continuous splines

When we use as the prediction filters F(z) the filters V
p
1,2(z), which are based on

the continuous splines, then the design of tight frames with (anti)symmetric filters
G1(z) is possible only for the cases p = 2, 3 (linear and quadratic splines). For
the higher orders, the semitight construction is recommended in order to retain
symmetry.

We provide examples of filter banks that generate tight and semitight frames.

Example 1.15

Linear spline, p = 2:

G0(z) = z−1 + 2 + z

2
√

2
, G2(z) = −z

−1 + 2− z

2
√

2
, G1(z) =

(
z−1 − z

)
2

.

(1.93)

The filters are FIR, and therefore, the scaling function ϕ(t) and the framelets ψ1(t)
and ψ2(t) are compactly supported. The framelet ψ2(t) has two vanishing mo-
ments. The framelet ψ1(t) is antisymmetric and has one vanishing moment. The
scaling function ϕ(t) is the fundamental linear spline.
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34 Wavelets and frames originated from splines

Figure 1.13. Filters and framelets for tight frames resulting from the linear spline (two leftmost
columns) and continuous quadratic spline (two rightmost columns).

Quadratic continuous spline, p = 3 (cubic discrete spline, m = 2):

G0(z) =
(
z + 2 + z−1

)2

√
2
(
z−2 + 6 + z2

) , G1(z) =
(
z − 2 + z−1

)2

√
2
(
z−2 + 6 + z2

) ,

G2(z) = 2z−1
(
z − z−1

)2

z−2 + 6 + z2
.

(1.94)

The framelet ψ2(t) has four vanishing moments. The framelet ψ1(t) is symmetric
and has two vanishing moments. All waveforms belong to C2.

We display in Figure 1.13 filters and framelets for tight frames resulting from
linear spline and the continuous quadratic spline. The four rows on the bottom
depict the scaling functions ϕ(t) and the frequency response of the lowpass filters
G0(z), the central four rows display the highpass filters G2(z) and the framelets
ψ2(t), and the upper four rows depict the bandpass filters G1(z) and the corre-
sponding framelets ψ1(t).

Discrete spline of sixth order, m = 3:

G0(z)=
(
z−1 + 2 + z

)3

√
2
(
6z2 + 20 + 6z−2

) , G2(z)=G0(−z), G1(z)= 2z−1
(
1− z2

)3

6z2 + 20 + 6z−2
.

(1.95)

The framelet ψ2(t) has six vanishing moments. The framelet ψ1(t) is antisymmet-
ric and has three vanishing moments. All waveforms belong to C3.

Discrete spline of eighth order, m = 4:

G0(z)

(
z−1 + 2 + z

)4

√
2
(
z−4 + 28z−2 + 70 + 28z2 + z4

) , G2(z) = G0(−z),

G1(z) = 2z−1
(
z − z−1

)4

z−4 + 28z−2 + 70 + 28z2 + z4
.

(1.96)
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Figure 1.14. Filters and framelets for tight frames resulting from the discrete spline of sixth order (two
leftmost columns) and the discrete spline of eighth order (two rightmost columns).

The framelet ψ2(t) has eight vanishing moments. The framelet ψ1(t) is symmetric
and has four vanishing moments. All waveforms belong to C3.

We display in Figure 1.14 filters and framelets for tight frames resulting from
discrete splines of sixth and eighth orders. The figure is organized similarly to
Figure 1.13.

Continuous cubic spline, p = 4:

G0(z) =
(
z−1 + 2 + z

)2(
z + 4 + z−1

)
8
√

2
(
z−2 + 4 + z2

) , G2(z) = G0(−z). (1.97)

To obtain the filter G0(z), the function

W
(
z2) = 2G0(z)G0(−z) =

(
z−1 − z

)4(
z2 − 14 + z−2

)
8
(
z−2 + 4 + z2

)2 (1.98)

has to be factorized. The factorization W(z) = w(z)w(1/z), which leads to tight
frame, results in the filter

G1(z) = z−1

(
z−1 − z

)2(
1− qz2

)
8q
√

2
(
z−2 + 4 + z2

) , (1.99)

where q = 7− 4
√

3 ≈ 0.0718. The filter is not symmetric about inversion z → 1/z,
and consequently, the framelet ψ1(t) is slightly asymmetric. It has two vanishing
moments, whereas the framelet ψ2(t) has four vanishing moments.

We display in Figure 1.15 filters and framelets for tight frame resulting from
the continuous cubic spline. The first from the left frame displays the waveforms,
the second frame displays the frequency response of the filter bank, and the last
frame provides the closed-up view to framelet ψ1(t) in order to highlight its asym-
metry.

The factorization W(z) = w(z)w̃(1/z) with unequal factors w(z) and w̃(z)
leads to a semitight frame. We present the filters G̃1(z) and G1(z) that result from
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36 Wavelets and frames originated from splines

Figure 1.15. Filters and framelets for tight frames resulting from the continuous cubic spline (two
leftmost columns) and the closed-up view of the framelet ψ1(t) (rightmost column).

Figure 1.16. Filters and framelets for semitight frames resulting from the continuous cubic spline,
that correspond to (1.100) (bottom row), (1.101) (central row) and (1.102) (top row).

three different factorization modes:
(1) symmetric factorization with equal number (two) of vanishing moments

in the analysis ψ̃1(t) and synthesis ψ1(t) framelets:

G̃1(z) = z−1

(
z−1 − z

)2

8
√

2
(
z−2 + 4 + z2

) , G1(z) = z−1

(
z−1 − z

)2(− z2 + 14− z−2
)

8
√

2
(
z−2 + 4 + z2

) ;

(1.100)

(2) symmetric factorization with equal number (two) of vanishing moments in
the analysis ψ̃1(t) and synthesis ψ1(t) framelets. The analysis filter G̃1(z) is FIR,
and consequently, the framelet ψ̃1(t) is compactly supported:

G̃1(z) = z−1

(
z−1 − z

)2

8
√

2
, G1(z) = z−1

(
z−1 − z

)2(− z2 + 14− z−2
)

8
√

2
(
z−2 + 4 + z2

)2 ;

(1.101)

(3) antisymmetric factorization with three vanishing moments in the analysis
ψ̃1(t) and one vanishing moment in synthesis ψ1(t) framelets:

G̃1(z) =
(
z−1 − z

)3

8
√

2
(
z−2 + 4 + z2

) , G1(z) =
(
z−1 − z

)(− z2 + 14− z−2
)

8
√

2
(
z−2 + 4 + z2

) .

(1.102)

We recall that the scaling function ϕ(t) is the fundamental cubic spline and all the
waveforms in the tight and semitight frames are cubic splines.

We display in Figure 1.16 the filters G̃1(z) and G1(z) and framelets ψ̃1(t) and
ψ1(t) that result from the above modes of factorization. The four plots on the
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bottom depict the analysis framelets ψ̃1(t), the frequency response of the analysis
filter G̃1(z), the synthesis framelets ψ1(t), the frequency response of the synthesis
filter G1(z), respectively, where the filters are given in (1.100). The central four
plots do the same for the case (1.101) and the upper four correspond to (1.102).

Remarks 1.16. (1) From the above figures, we see that the designed waveforms are
smooth, well localized in time domain, and symmetric. They are as smooth as the
synthesis waveforms in the biorthogonal wavelet transforms originating from the
same prediction filter and are smoother than the analysis waveforms.

(2) The frequency responses of the filters are maximally flat (has no ripples) in
the passband, and roll towards zero in the stopband. As the order of the generating
spline is high, the decline is steeper in the stopband.

(3) The frequency responses of the lowpass filter G0(z) and the highpass filter
G2(z) are monotonous and are the mirrored versions of each other. The bumps,
which are present in the filters H̃0(z) and H1(z) of the wavelet filter bank, are
compensated by the bandpass filter G1(z).

(4) The transfer functions of all designed filters are rational functions. There-
fore, the filters (except for the filters derived from the linear spline) have infi-
nite impulse response (IIR). But they can be efficiently implemented via causal-
anticausal recursive filtering (see the appendix).

1.7. Erasure recovery properties of the designed wavelet frames

In this section, we outline a scheme that applies the designed wavelet frames to
recovery of erasures, which occur when a multimedia signal is transmitted through
a lossy channel. This is described in [1].

Conventional methods for protecting data are well developed both in theory
and practice. Block and convolutional codes are considered to be very efficient
classes as channel codes. They are widely used in wireless and wireline channels
such as the Internet. However, these codes, and other conventional methods, do
not generally take into account the inner structure of the transmitted (multimedia)
signal. Rather, it is assumed that every bit is equally significant, and hence it has to
be equally protected. Multimedia information usually undergoes some transform
(e.g., DCT, FFT, or wavelet) followed by quantization and lossless compression
(entropy coding). The last two operations constitute source coding. The resulting
binary sequence (which assumed to be white noise) typically contains bits with
unequal significance, which must be protected accordingly. Due to this inhomo-
geneity, direct application of channel coding methods to audio-visual information
is not optimal; it may significantly increase the transmission length if the (equal)
error correction code is chosen according to the most vulnerable data. Hence, it
is desired to design error correction codes that dynamically allocate more bits to
more important information. Such codes are known as unequal error protection
(UEP) codes. Due to the growing importance in rich multimedia data transmis-
sion, unequal error protection methods have attracted research efforts, see, for
example, [30] and the references therein. The designed framelet transform can be
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An input signal of size N

LP BP HP

Level 1

Lowpass array of size N/2
Most of the signal energy

is concentrated here

Bandpass array

of size N/2

Highpass array

of size N/2
Uniform redundancy

of 50% is added
to the input signal

Level 2

Lowpass array of size N/4
Most of the signal energy

is concentrated here

Bandpass array

of size N/4

Highpass array

of size N/4
Redundancy of the
lowpass coefficients
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Level J

Lowpass array of
last level of decomposition
Most of the signal energy

is concentrated here

Bandpass array

of last level
of decomposition

Highpass array

of last level
of decomposition

Figure 1.17. Diagram of multiscale frame transform with 3-channel filter bank and downsampling
factor of 2.

effectively employed as a true combined source-channel coding scheme—there is
no separate source coding followed by channel coding. In fact, no explicit channel
coding is used. The proposed approach makes use of naturally occurring redun-
dancy within multiscale decomposition of framelet transforms to provide unequal
error protection (UEP).

1.7.1. Remarks on unequal error protection

The multiscale frame transform, which is described in Section 1.2.3, is demon-
strated schematically in Figure 1.17.

Assume that there are four scales of decomposition. Figure 1.18 displays the
spectra of the discrete-time framelets ψr,1 ψr,2, r = 1, 2, 3, 4, and ϕ4 that orig-
inate from the filter bank (1.94). The shifts of these framelets provide a four-
scale tight frame expansion of the signal. First scale of decomposition produces
three blocks of coefficients: lowpass, bandpass and highpass. As it was explained in
Section 1.2.3, these are the coefficients of the orthogonal projections of the signal
onto the subspaces spanned by two-sample shifts of the discrete-time framelets
ϕ1(k), ψ1,2(k), and ψ1,1(k), respectively. The spectra of the framelets ψ1,2(k) and
ψ1,1(k) are displayed in the top row of Figure 1.18. The second step of the de-
composition transforms the lowpass block into three blocks of coefficients, which
are the coefficients of the orthogonal projections of the signal onto the subspaces
spanned by four-sample shifts of the framelets ϕ2(k), ψ2,2(k), and ψ2,1(k). The
spectra of the framelets ψ2,2(k) and ψ2,1(k) are displayed in the second from the
top row of the figure. The last fourth step of the decomposition transforms the
lowpass block of the third scale into three blocks of coefficients, which are the co-
efficients of the orthogonal projections of the signal onto the subspaces spanned
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1st scale

2nd scale

3rd scale

4th scale

HP

BP
HP

BP

HP
BP

HP
BP

LP

Figure 1.18. Spectra of the discrete-time framelets ψr,1, ψr,2, r = 1, 2, 3, 4, and ϕ4 that originate from
the filter bank (1.94). The abbreviation LP means lowpass, it is related to ϕ4, HP means highpass, it is
related to ψr,1, BP means bandpass, it is related to ψr,2.

by sixteen-sample shifts of the framelets ϕ4(k), ψ4,2(k), and ψ4,1(k). The spectra of
these framelets are displayed in the bottom row of the figure. The reconstruction
consists of the synthesis of the original signal from the above set of projections.

We see that the spectra displayed in Figure 1.18 form at least twofold cover
of the frequency domain of the signal except for the frequency bands occupied
by the spectra of the low-frequency framelet ϕ4 and the high-frequency framelet
ψ1,1. They are highlighted by boldface lines in Figure 1.18. It means that once a
projection (except for the projections on ϕ4 and ψ1,1) is lost, it can be restored
from the remaining projections. Also two or more projections, whose spectra do
not overlap, can be restored. In other words, erasure of a number of coefficients
from a block or even the whole block (except for the blocks related to ϕ4 and ψ1,1)
can be compensated by the coefficients from the remaining blocks.

Two exclusive blocks of coefficients related to ϕ4 and ψ1,1 must also be pro-
tected. The lowpass block is the most significant. Erasure of even one coefficient
can essentially distort the signal. But for the four-scale transform, it comprises only
N/16 coefficients, where N is the length of the signal. If we expand the transform
to scale J , then the last lowpass block comprises only N/2J coefficients. This rel-
atively small number of coefficients can also be protected at a low computational
cost.

The highpass block related to ψ1,1 is most populated (N/2 coefficients). Due
to the vanishing moments of the framelets ψ1,1, this block contains relatively small
number of significant coefficients, which correspond to sharp transients in the sig-
nal (edges in the image). Only these significant coefficients deserve an additional
protection.

1.7.2. Outline of the recovery algorithm

Assume that the original 2D image is arranged into a 1D array X ∈ RN and the
coefficients of its 2D framelet transform are arranged into a 1D array Y ∈ H ⊂ RK

of length K > N . Let S � {Ck}nm1 be the set of coordinates of this array, and let E ⊂
S be the set of coordinates of the erased coefficients. The subspace H ⊂ RK is called
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40 Wavelets and frames originated from splines

Initialize y(0) = Ỹ ;
for k = 0 to K − 1

x̂(k) = Fy(k); fit out-of-interval values into [L0,L255];
ŷ(k) = F̃∗x̂(k);
y(k+1) = ŷ(k) on the coordinates of E;
y(k+1) = Ỹ on the coordinates of E;

end.

Algorithm 1.1

the space of codewords. Define E � S \ E and Ỹ is obtained from Y by erasing all
coefficients that correspond to E. Let F̃ be the analysis operator F̃ : RN �→ H ⊂ RK ,
K > N associated with the framelet transform: Y = F̃X . Obviously, rank(F̃) = N .

Let F be the inverse operator (i.e., the synthesis operator) of F̃. We denote by ̂̃F
the matrix F̃ with erased rows determined by the coordinates of E. Assume that Ỹ

contains zeros instead of all the erased coefficients in Ỹ . If rank(̂̃F) = N , then Ỹ
contains sufficient information to recover the original data X .

Each coefficient of the transformed image is presented by few bits. If one or
more bits associated with the same coefficient are lost in transit, the whole coef-
ficient may be treated as an erasure, or alternatively, as being in error. It is well
known that, in general, recovering from erasures is easier than recovering from
errors. Hence the motivation for the algorithm stems. This algorithm is a slightly
modified version of the well-known Gerchberg [22] and Papoulis [35] algorithm.
The Gerchberg-Papoulis algorithm was applied, in particular, to interpolation of
data given on an irregular grid. The application of the mentioned algorithm to
erasure recovery was reported in [37].

It utilizes the redundancy inherent in frame transforms to recover from era-
sures of whole coefficients that occur during transmission. As before, Ỹ denotes
the received set of coefficients with the convention that erased coefficients are sub-
stituted by zeros. Let yk denote the set of (received+recovered) framelet coeffi-
cients at iteration k of the recovery algorithm. Assume the image intensities belong
to the interval [L0,L255], where L0 < L255.

This framelet-based algorithm Algorithm 1.1 iteratively recovers an image
from its transformed version Ỹ that contains erasures. The recovered image at
each iteration is given by x̂(k).

1.7.3. Experimental results

We conducted a series of experiments on image recovery from erasures of the
transform coefficients. This can be regarded as a simulation of channels with era-
sures. To be specific, we applied the framelet decomposition up to the fourth level.
The redundancy factor of this decomposition is 2.66. Then α · 100% of the trans-
form coefficients, whose locations were randomly chosen, were put to zero. We
restored the images using the iterative algorithm described in Section 1.7.2. We
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Table 1.5. Averaged PSNR values of the four reconstructed images using symmetric tight frame (1.94),
antisymmetric tight frame (1.95), and semitight frame (1.97) and (1.102).

Erasure 10% 20% 30% 40% 50% 60% 70%
PSNR/S-TF 51.8418 50.7470 49.0475 46.3734 40.7849 32.3740 19.2204
PSNR/symm. TF 52.0012 51.3969 50.0345 47.9709 43.6514 32.9655 19.7563
PSNR/antisymm. TF 52.2622 51.3204 50.2554 48.2412 43.1816 32.8288 19.5409
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Figure 1.19. Averaged PSNR of the reconstructed images versus coefficient erasure probability.

tested two benchmark images Barbara and boats and two medical images taken
by MRI scanner while using α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Three different types
of framelets were tested: the symmetric tight framelets originating from quadratic
spline (1.94), tight frame originating from discrete spline of sixth order, where
ψ1(t) is antisymmetric, (1.95), and the semitight frame originating from cubic
spline (1.97) and (1.102), where ψ̃1(t) and ψ1(t) are antisymmetric. The distance
between the original and the restored images was evaluated via PSNR (see (1.77)).

The experimental results are summarized in Table 1.5 and are illustrated by
Figure 1.19. The results for all the tested images are similar to each other, there-
fore, for brevity, we present PSNR values that are averaged over the four images.
The results demonstrate a graceful degradation in performance when the erasure
probability of the coefficients increases to 0.7. The performance of the symmet-
ric and antisymmetric tight frames is almost identical, while the biframe produces
images with a slightly lower PSNR.

In addition, we display the four restored images in Figures 1.20–1.23. All the
figures are similarly organized. Each of them comprises three columns. The left
column displays the original image, the middle column is the corrupted image, the
right column displays the reconstructed image from the corrupted transform coef-
ficients. We observe from the images that the restoration scheme, that is based on
the wavelet frames, produces satisfactory output even for 60 percent of randomly
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42 Wavelets and frames originated from splines

(a) (b) (c)

Figure 1.20. Results from the application of the antisymmetric tight framelet transform. (a) Original
image, (b) the corrupted image with 60% erased coefficients, (c) the recovered image. PSNR = 32.24.

(a) (b) (c)

Figure 1.21. Results from the application of the symmetric tight framelet transform. (a) The source
image, (b) the corrupted image with 60% erased coefficients, (c) the recovered image. PSNR = 31.98.

(a) (b) (c)

Figure 1.22. Results from the application of symmetric semitight framelet transform. (a) The source
image, (b) the corrupted image with 50% erased coefficients, (c) the recovered image. PSNR = 43.354.

erased coefficients. For 50 and, especially, for 40 percents of erased coefficients, the
restored images hardly can be distinguished from the original source images.

1.8. Biorthogonal wavelet transforms generated by filter banks with
downsampling factor N = 3 (triadic transforms)

In this section, we expand the method that constructs biorthogonal wavelet trans-
forms, which was described in Section 1.4, to the case when the downsampling
factor of the filter banks is N = 3. As in Section 1.4, the construction is carried out
via the lifting scheme.
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(a) (b) (c)

Figure 1.23. Results from the application of the semitight framelet transform. (a) The source image,
(b) the corrupted image with 40% erased coefficients, (c) the recovered image. PSNR = 52.461.

1.8.1. Decomposition

1.8.1.1. Lifting steps

Split: we split the signal x into three subarrays:

x−1 �
{
x3l−1

}
l∈Z

, x0 �
{
x3l

}
l∈Z

, x1 �
{
x3l+1

}
l∈Z

. (1.103)

Let X−1(z), X0(z), and X1(z) denote the z-transforms of these subarrays.

Predict: we predict

Ď−1(z) = X−1(z)− F̃−1
(
z−1)X0(z), Ď1(z) = X1(z)− F̃1

(
z−1)X0(z).

(1.104)

Here, F̃−1 and F̃1 are some filters that are applied to the subarray x0 in order to pre-
dict the subarrays x−1 and x1, respectively. Then, these latter subarrays are replaced
by the differences ď−1 and ď1 between initial and predicted values.

Update: the array x0 is smoothed using the arrays ď−1 and ď1, which are processed
by the update filters F−1 and F1, respectively,

D0(z) = X0(z) +
1
3
F−1(z)Ď−1(z) +

1
3
F1(z)Ď1(z). (1.105)

Symmetrization: the filters V
p
∓1,3 and U

p
∓1,3, derived from the splines in Section

1.3, are used as prediction and update filters. These filters are not symmetric, un-
like their sums and differences. Therefore, we apply two additional lifting steps:

D1(z) = Ď1(z)− Ď−1(z)
2

, D−1(z) = Ď−1(z) + D1(z) = Ď1(z) + Ď−1(z)
2

.

(1.106)
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1.8.1.2. Polyphase matrix

The above lifting steps can be represented via the matrix-vector multiplication

⎛⎜⎜⎜⎝
D1(z)

D0(z)

D−1(z)

⎞⎟⎟⎟⎠ = P̃
(
z−1) ·

⎛⎜⎜⎜⎝
X1(z)

X0(z)

X−1(z)

⎞⎟⎟⎟⎠ , (1.107)

where

P̃
(
z−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
2

0
−1
2

0 1 0

1
2

0
1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0

F1(z)
3

1
F−1(z)

3

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝

1 −F̃1
(
z−1

)
0

0 1 0

0 −F̃−1
(
z−1

)
1

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

−F̃1
(
z−1

)
2

+
F̃−1

(
z−1

)
2

−1
2

F1(z)
3

1− F1(z)F̃1
(
z−1

)
3

− F−1(z)F̃−1
(
z−1

)
3

F−1(z)
3

1
2

−F̃1
(
z−1

)
2

− F̃−1
(
z−1

)
2

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(1.108)

1.8.1.3. Analysis filter bank

The above operations are equivalent to the application to the signal x of the time-
reversed filter bank

H̃1(z) � z−1

2
+
F̃−1

(
z3
)− F̃1

(
z3
)

2
− z

2
,

H̃0(z) = z−1

3
F1
(
z−3) + 1− F1

(
z−3

)
F̃1
(
z3
)

+ F−1
(
z−3

)
F̃−1

(
z3
)

3
+
z

3
F−1

(
z−3),

H̃−1(z) = z−1

2
− F̃−1

(
z3
)

+ F̃1
(
z3
)

2
+
z

2
(1.109)

followed by downsampling factor 3.
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1.8.2. Reconstruction

1.8.2.1. Lifting steps

Undo symmetrization:

Ď−1(z) = D−1(z)−D1(z),

Ď1(z) = 2D1(z) + Ď1(z) = D−1(z) + D1(z).
(1.110)

Undo update:

X0(z) = D0(z)− 1
3
F−1(z)Ď−1(z)− 1

3
F1(z)Ď1(z). (1.111)

Undo predict:

X−1(z) = Ď−1(z) + F̃−1
(
z−1)X0(z), X1(z) = Ď1(z) + F̃1

(
z−1)X0(z).

(1.112)

Undo split:

X(z) = zX−1
(
z3) + X0

(
z3) + z−1X1

(
z3). (1.113)

1.8.2.2. Polyphase matrix

The above lifting steps can be represented via the matrix-vector multiplication,⎛⎜⎜⎜⎝
X1(z)

X0(z)

X−1(z)

⎞⎟⎟⎟⎠ = P(z) ·

⎛⎜⎜⎜⎝
D1(z)

D0(z)

D−1(z)

⎞⎟⎟⎟⎠ , (1.114)

where

P(z) =

⎛⎜⎜⎜⎜⎝
1 F̃1

(
z−1

)
0

0 1 0

0 F̃−1
(
z−1

)
1

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎝

1 0 0

−F1(z)
3

1
−F−1(z)

3

0 0 1

⎞⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎝

1 0 1

0 1 0

−1 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+F̃1
(
z−1

)F−1(z)−F1(z)
3

F̃1
(
z−1

)
1−F̃1

(
z−1

)F−1(z)+F1(z)
3

F−1(z)−F1(z)
3

1
−(F−1(z)+F1(z)

)
3

−1+F̃−1
(
z−1

)F−1(z)−F1(z)
3

F̃−1
(
z−1

)
1−F̃−1

(
z−1

)F−1(z)+F1(z)
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(1.115)
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1.8.2.3. Synthesis filter bank

The above operations are equivalent to the application to the upsampled sets of
the transform coefficients Ď−1, Ď0, and Ď1 of the filter bank

H1(z) � z−1 − z +

(
F−1

(
z3
)− F1

(
z3
))(

z−1F̃1
(
z−3

)
+ 1 + zF̃−1

(
z−3

))
3

,

H0
(
z−1) � z−1F̃1

(
z−3) + 1 + zF̃−1

(
z−3),

H−1
(
z−1) = H1(z) � z−1 + z −

(
F−1

(
z3
)

+ F1
(
z3
))(

z−1F̃1
(
z−3

)
+ 1 + zF̃−1

(
z−3

))
3

.

(1.116)

Remark 1.17. All the designed filters are linear phase. The scaling functions ϕ(t)
and ϕ̃(t) and wavelets ψ−1(t) and ψ̃−1(t) are symmetric, whereas the wavelets ψ1(t)
and ψ̃1(t) are antisymmetric.

1.8.3. Filters and wavelets originating from splines

In this section, we exploit the filters V
p
∓1,3 and U

p
∓1,3 derived from the splines in

Section 1.3 as the prediction and update filters.

Proposition 1.18. If the prediction and update filters in the lifting scheme are either
derived from a continuous spline of F±1(1/z) = V

p
±1,3(z) = F±1(z) or from a dis-

crete spline of F±1(1/z) = U
p
±1,3(z) = F±1(z), then the analysis filters H̃1(z) and the

synthesis filters H1(z) are bandpass, filters H̃1(z) and the synthesis filters H1(z) are
bandpass, whereas the filters H̃−1(z) and H−1(z) are highpass and the filters H̃0(z)
and H0(z) are lowpass.

1.8.3.1. Continuous splines

Proposition 1.19. If the prediction and update filters in the lifting scheme F±1(1/z) =
V

p
±1,3(z) = F±1(z) are derived from the continuous spline of order p, then

(1) the analysis filters H̃±1(z) and synthesis filters H±1(z) have zero of multi-
plicity not less than p at z = 1;

(2) the analysis wavelets ψ̃±1(t) and synthesis wavelets ψ±1(t) have not less
than p vanishing moments;

(3) the filter H̃0(z) = 1 + χ̃(z) and the filter H0(z) = 3 + χ(z), where the
functions χ̃(z) and χ(z) have zero of multiplicity not less than p at z = 1;

(4) if p = 2m+1, then H̃−1(z),H−1(z), χ̃(z), and χ(z) have zero of multiplicity
p + 1 at z = 1;

(5) if p = 2m + 1, then ψ̃−1(t) and ψ−1(t) have p + 1 vanishing moments;
(6) if p = 2m, then H̃1(z) and H1(z) have zero of multiplicity p + 1 at z = 1;
(7) if p = 2m, then the wavelets ψ̃1(t) and ψ1(t) have p + 1 vanishing mo-

ments;
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(8) the synthesis scaling function ϕ(t) is the fundamental spline of order p de-
fined in (1.33). All the synthesis waveforms are splines of order p.

Example 1.20

Linear spline: from (1.37), the analysis filter bank is

H̃1(z) =
(
z−1 − z

)3

6
,

H̃0(z) = 1−
(
z − 2 + z−1

)(
4z2 + 5z + 5z−1 + 4z−2

)
27

,

H̃−1(z) = −
(− z−1 + 2− z

)(
z2 + 2z + 2z−1 + z−2

)
6

.

(1.117)

The synthesis filter bank is

H1(z) =
(
z − z−1

)(
z − 2 + z−1

)(
22 + 11

(
z + z−1

)
+ 4

(
z2 + z−2

)
+ z3 + z−3

)
27

,

H0(z) =
(
z + 1 + z−1

)2

3
= 3 +

(
z + 4 + 1/z

)
(z − 1/z)2

3
,

H−1(z)=
(− z−1 + 2− z

)(
16 + 22(z + z−1

)
+ 10

(
z2 + z−2

)
+ 4

(
z3 + z−3

)
+ z4 + z−4

)
27

.

(1.118)

The transfer functions H̃1(z) andH1(z) have zero of multiplicity 3 as z = 1. Conse-
quently, the wavelets ψ̃1(t) and ψ1(t) have three vanishing moments. The wavelets
ψ̃−1(t) and ψ−1(t) have two vanishing moments. The synthesis scaling function
ϕ(t) is the linear fundamental spline. The analysis waveforms have a fractal shape.

We display in Figure 1.24 the frequency responses of the analysis and synthesis
filter banks, which originate from the linear spline and corresponding waveforms.
Figures 1.24–1.28 are organized identically. Each figure consists of four columns.
The first column from the left displays the analysis scaling function ϕ̃(t) and the
analysis wavelets ψ̃1(t) (top) and ψ̃−1(t) (bottom). The second column from the
left displays the frequency responses of the analysis lowpass filter H̃0(z) (center)
and of the analysis highpass filters H̃1(z) (top) and H̃−1(z) (bottom). Next col-
umn displays the synthesis scaling function ϕ(t) (center) and the synthesis wavelets
ψ1(t) (top) and ψ−1(t) (bottom). Last column (rightmost) displays the frequency
responses of the synthesis lowpass filter H0(z) (bottom) and the synthesis highpass
filters H1(z) (top) and H−1(z) (center).
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Figure 1.24. Filters and wavelets derived from the linear continuous spline.

Figure 1.25. Filters and wavelets derived from the quadratic continuous spline.

Figure 1.26. Filters and wavelets derived from the cubic continuous spline.

Figure 1.27. Filters and wavelets derived from the quadratic discrete spline.

Quadratic spline: from (1.38), we derive the analysis filter bank

H̃1(z) = −
(
z−1 − 2 + z

)(
z − z−1

)(
3z2 − 2z − 7− 2z−1 + 3z−2

)
6
(
z3 + 7 + z−3

) ,

H̃0(z) = 1 +

(
z−1 − 2 + z

)2(
z3 + 7 + z−3

)2

5∑
l=0

c̃ 0
l

(
zl + z−l

)
,

H̃−1(z) =
(
z−1 − 2 + z

)2(
9z2 + 10z − 5 + 10z−1 + 9z−2

)
18
(
z3 + 7 + z−3

) .

(1.119)
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Figure 1.28. Filters and wavelets derived from the cubic discrete spline.

The synthesis filter bank is

H1(z) = −
(
z−1 − 2 + z

)(
z − z−1

)(
z3 + 6 + z−3

)2

5∑
l=0

c1
l

(
zl + z−l

)
,

H0(z)=
(
z+6+z−1

)(
z+1+z−1

)3

9
(
z3 +6+z−3

) = 3+

(
z−z−1

)4(
z2−14z−37−14z−1 +z−2

)
9
(
z3 +6+z−3

) ,

H−1(z) = 2
(
z−1 − 2 + z

)2(
z3 + 6 + z−3

)2

5∑
l=0

c−1
l

(
zl + z−l

)
.

(1.120)

The transfer functions H̃1(z) and H1(z) have zero of multiplicity 3 as z = 1. Con-
sequently, the wavelets ψ̃1(t) and ψ1(t) have three vanishing moments. The trans-
fer functions H̃1(z) and H1(z) have zero of multiplicity 4 at z = 1. The wavelets
ψ̃−1(t) and ψ−1(t) have four vanishing moments. The synthesis scaling function
ϕ(t) is the quadratic fundamental spline and the synthesis wavelets are quadratic
splines. The analysis waveforms are continuous (C 0) but do not have continuous
derivative.

We display in Figure 1.25 the frequency responses of the analysis and synthe-
sis filter banks, which originate from the quadratic continuous spline and corre-
sponding waveforms. This figure is organized similarly to Figure 1.24.

Cubic spline: from (1.39), we derive the analysis filter bank

H̃1(z) =
(
z−1 − 2 + z

)2(
z − z−1

)(
z3 + 4z2 − 16z − 32− 16z−1 + 4z−2 + z−3

)
54
(
z3 + 4 + z−3

) ,

H̃0(z) = 1−
(
z−1 − 2 + z

)2

2187
(
z3 + 4 + z−3

)2

7∑
l=0

c̃ 0
l

(
zl + z−l

)
,

H̃−1(z)=−
(
z−1−2+z

)2(
z4 +4z3−17z2−20z+10−20z−1−17z−2 +4z−3 +z−4

)
54
(
z3 + 4 + z−3

) .

(1.121)
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The synthesis filter bank is

H1(z) =
(
z−1 − 2 + z

)2(
z − z−1

)
2187

(
z3 + 4 + z−3

)2

8∑
l=0

c1
l

(
zl + z−l

)
,

H0(z) =
(
z + 4 + z−1

)(
z + 1 + z−1

)4

27
(
z3 + 4 + z−3

)
= 3 +

(
z − z−1

)4(
z3 + 12z2 − 12z − 56− 12z−1 + 12z−2 + z−3

)
27
(
z3 + 4 + z−3

) ,

H−1(z) = −
(
z−1 − 2 + z

)2

2187
(
z3 + 4 + z−3

)2

9∑
l=0

c−1
l

(
zl + z−l

)
.

(1.122)

The transfer functions H̃1(z) and H1(z) have zero of multiplicity 5 at z = 1. Con-
sequently, the wavelets ψ̃1(t) and ψ1(t) have five vanishing moments. The transfer
functions H̃1(z) andH1(z) have zero of multiplicity 4 at z = 1. The wavelets ψ̃−1(t)
andψ−1(t) have four vanishing moments. The synthesis scaling function ϕ(t) is the
cubic fundamental spline and the synthesis wavelets are cubic splines. The analysis
waveforms are continuous (C0) but do not have continuous derivative.

We display in Figure 1.26 frequency responses of the analysis and synthesis fil-
ter banks, which originate from the cubic continuous spline and the corresponding
waveforms. This figure is organized similarly to Figure 1.24.

1.8.3.2. Discrete splines

Proposition 1.21. If the prediction and update filters in the lifting scheme F±1(1/z) =
U

p
±1,3(z) = F±1(z) are derived from the continuous spline of order p, then

(1) the analysis filters H̃±1(z) and synthesis filters H±1(z) have zero of multi-
plicity not less than p at z = 1;

(2) the analysis wavelets ψ̃±1(t) and synthesis wavelets ψ±1(t) have not less
than p vanishing moments;

(3) the filter H̃0(z) = 1 + χ̃(z) and the filter H0(z) = 3 + χ(z), where the
functions χ̃(z) and χ(z) have zero of multiplicity not less than p at z = 1;

(4) if p = 2m+1, then H̃−1(z),H−1(z), χ̃(z), and χ(z) have zero of multiplicity
p + 1 at z = 1;

(5) if p = 2m + 1, then ψ̃−1(t) and ψ−1(t) have p + 1 vanishing moments;
(6) if p = 2m, then H̃1(z) and H1(z) have zero of multiplicity p + 1 at z = 1;
(7) if p = 2m, then the wavelets ψ̃1(t) and ψ1(t) have p + 1 vanishing mo-

ments.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


A. Z. Averbuch and V. A. Zheludev 51

Quadratic discrete spline: from (1.56), we derive the analysis filter bank

H̃1(z) =
(
z−1 − 2 + z

)(
z − z−1

)(
z2 − z − 3− z−1 + z−2

)
6
(
z3 + 7 + z−3

) ,

H̃0(z)=1+
3
(
z−1 − 2+z

)2(
z3 + 6z2 + 6z + 1 + 6z−2 + 6z−2 + z−3

)(
z3 + 7 + z−3

)2

5∑
l=0

c̃ 0
l

(
zl + z−l

)
,

H̃−1(z) =
(
z−1 − 2 + z

)2(
z2 + z − 1 + z−1 + z−2

)(
z3 + 7 + z−3

) .

(1.123)

The synthesis filter bank is

H1(z) = −
(
z−1 − 2 + z

)(
z − z−1

)(
z3 + 7 + z−3

)2

5∑
l=0

c1
l

(
zl + z−l

)
,

H0(z) =
(
z + 1 + z−1

)3

z3 + 7 + z−3
= 3 +

(
z−1 − 2 + z

)2(
2z + 5z + z−1 + z−2

)(
z3 + 7 + z−3

) ,

H−1(z) =
(
z−1 − 2 + z

)2(
z3 + 7 + z−3

)2

5∑
l=0

c−1
l

(
zl + z−l

)
.

(1.124)

The transfer functions H̃1(z) andH1(z) have zero of multiplicity 3 at z = 1. Conse-
quently, the wavelets ψ̃1(t) and ψ1(t) have three vanishing moments. The transfer
functions H̃1(z) andH1(z) have zero of multiplicity 4 at z = 1. The wavelets ψ̃−1(t)
and ψ−1(t) have four vanishing moments. The synthesis waveforms are continu-
ous and have continuous derivative (C1). The analysis waveforms are continuous
(C0) but do not have continuous derivative.

We display in Figure 1.27 frequency responses of the analysis and synthesis fil-
ter banks, which originate from the quadratic discrete spline and the correspond-
ing waveforms. This figure is organized similarly to Figure 1.24.

Cubic discrete spline: from (1.57), we derive the analysis filter bank

H̃1(z) =
(
z−1 − 2 + z

)2(
z − z−1

)(
4z3 + 7 + 4z−3

)
4z3 + 19 + 4z−3

,

H̃0(z)=1−
(
z−1−2+z

)2(
4
(
z5 +z−5

)−4
(
z4 +z−4

)
+123

(
z3 +z−3

)
+120

(
z+z−1

))
3
(
4z3 + 19 + 4z−3

)2 ,

H̃−1(z) =
(
z−1 − 2 + z

)2(
4z2 + 5z + 5z−1 + 4z−2

)
4z3 + 19 + 4z−3

.

(1.125)
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The synthesis filter bank is

H1(z) = −3

(
z−1 − 2 + z

)2(
z − z−1

)(
4z3 + 19 + 4z−3

)2

4∑
l=0

c1
l

(
zl + z−l

)
,

H0(z) =
(
z + 1 + z−1

)4

4z3 + 19 + 4z−3
= 3 +

(
z − z−1

)4(
z2 − 4z − 12− 4z−1 + z−2

)
4z3 + 19 + 4z−3

,

H−1(z) =
(
z−1 − 2 + z

)2(
4z3 + 19 + 4z−3

)2

5∑
l=0

c−1
l

(
zl + z−l

)
.

(1.126)

The transfer functions H̃1(z) and H1(z) have zero of multiplicity 5 at z = 1. Con-
sequently, the wavelets ψ̃1(t) and ψ1(t) have five vanishing moments. The transfer
functions H̃1(z) and H1(z) have zero of multiplicity 4 at z = 1.The wavelets ψ̃−1(t)
andψ−1(t) have four vanishing moments. The synthesis waveforms are continuous
and have two continuous derivatives (C2). The analysis waveforms are continuous
(C0) but do not have continuous derivative.

We display in Figure 1.28 frequency responses of the analysis and synthesis
filter banks, which originate from the cubic discrete spline and the corresponding
waveforms. This figure is organized similarly to Figure 1.24.

Remarks 1.22. (1) The waveforms and the shape of the frequency responses of
filters resulting from the discrete splines are very similar to their counterparts that
stem from the continuous splines, although the structure of the filters resulting
from the discrete splines is simpler.

(2) Unlike dyadic wavelet transforms, one step of the presented transform
splits the frequency domain into three subbands. Three waveforms participate in
the expansion of a signal. This promises better adaptivity of the expansion to the
properties of the signal.

(3) A useful property of the transforms derived from the continuous splines
is that the signal waveforms are splines.

(4) Currently, we investigate possible application of the presented transforms
to compression and denoising.

Appendix

Implementation of recursive filters

Let x = {x(k)}, k = 1, . . . ,N . To implement correctly recursive filtering of this
finite-length signal, we have to extend x beyond the given interval. Since our fil-
ter banks are symmetric, we use the HH extension as in the terminology of [11].
It means that the signal is extended symmetrically with repetition of boundary
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samples through both ends of the interval. Namely, x(0) � x(1), x(−1) � x(2), . . . ,
x(−k) � x(k + 1) and x(N + 1) � x(N), x(N + 2) � x(N − 1), . . . , x(N + k) �
x(N − k + 1). This results in periodization of the signal with period 2N . This ex-
tended signal is denoted by x̃.

Many recursive filters presented in the paper comprise a block of type

F(z) = 1 + z

(1 + αz)
(
1 + αz−1

) . (A.1)

We describe the application of the filter F, whose transfer function is given by F(z),
to a finite-length signal x:

y(z) = F(z)x(z). (A.2)

Equation (A.1) is equivalent to

F(z) = 1
1 + α

(
1

1 + αz−1
+

z

1 + αz

)
. (A.3)

Denote

y1(z) = 1
1 + αz−1

x(z) =
∞∑
n=0

(−α)nz−nx̃(z),

y2(z) = z

1 + αz
x(z) =

∞∑
n=0

(−α)nzn+1x̃(z).

(A.4)

Then

y1(k) = x(k)− αy1(k − 1), y2(k) = x(k + 1)− αy2(k + 1), (A.5)

⇐⇒ y1(k)= x̃(k)+
∞∑
n=1

(−α)nx̃(k − n), y2(k)= x̃(k+1)+
∞∑
n=1

(−α)nx̃(k + n + 1).

(A.6)

We can use (A.5) for the computation of y1(k) and y2(k) provided that we
know y1(1) and y2(N), respectively. To evaluate these samples, we employed (A.6)
keeping in mind the extension of the input signal x. We have

y1(1) = x(1) +
∞∑
n=1

(−α)nx̃(−n + 1) ≈ x(1) +
d∑

n=1

(−α)nx(n), (A.7)

y2(N) = x̃(N + 1) +
∞∑
n=1

(−α)nx̃(N + n + 1) ≈ x(N) +
d∑

n=1

(−α)nx(N − n),

(A.8)

where d is the prescribed initialization depth.
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54 Wavelets and frames originated from splines

Filtering (A.2) can be implemented by the following parallel algorithm:
(1) evaluate y1(1) from (A.7) and y2(N) from (A.8);
(2) calculate y1(k) = x(k)−αy1(k−1), k = 2, . . . ,N , and y2(k) = x(k+1)−

αy2(k + 1), k = N − 1, . . . , 1;
(3) y(k) = (y1(k) + y2(k))/(1 + α), k = 1, . . . ,N .

Equations (A.6) and (A.8) imply that y2(N) = y1(N). Hence, it follows that

y(N) = y1(N) + y2(N)
1 + α

= 2y1(N)
1 + α

. (A.9)

The cascade algorithm has the following form:
(1) evaluate y1(1) from (A.7);
(2) calculate y1(k) = x(k)− αy1(k − 1), k = 2, . . . ,N ;
(3) evaluate y(N) from (A.9);
(4) calculate y(k) = y1(k) + y1(k + 1)− αy(k + 1), k = N − 1, . . . , 1.
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2
Recent developments in Haar wavelet
transform for application to switching
and multivalued logic functions
representations

Radomir S. Stanković, Karen Egiazarian,
and Jaakko Astola

In many instances, classical approaches in switching theory and logic design re-
quire brute force search procedures. Application of spectral transforms often pro-
vides a promising solution of the problem. In particular, the discrete Haar trans-
form appears very interesting for such applications for its wavelet-like properties
and fast calculation algorithms. The chapter briefly reviews recent development in
this area and is intended to provide compact representations of discrete functions
including switching and multivalued logic functions as examples. To this end, de-
cision diagrams are treated in terms of the Haar transform and an algorithm for
reduction of the number of paths and the size of such diagrams is described with
potential applications to the problems of circuit verification and testing. These
representations of multi-output switching functions can be a basis for efficient re-
alizations and various other applications. For instance, word-level representations,
including Haar series representations of switching functions and related decision
diagrams, are useful in fast prototyping by LUT-FPGAs and in hardware-software
codesign. Then, an extension of definitions of Haar spectral transform diagrams
to multivalued functions is provided. It is shown that these decision diagrams de-
termine a large class of multivalued Haar functions and related transforms.

2.1. Introduction: logic design and spectral transforms

Switching theory is a branch of applied mathematics that provides mathematical
foundations for logic design, which can be viewed as an essential part of digital
system design concerning realizations of systems whose input and output signals
are described by logic functions. Thus, switching theory may be considered as a
part of a more general system theory and it is closely related to signal processing.

In this context, switching theory being based on binary-valued logic deals
with two-valued (switching) functions that are a basis for the realization of sys-
tems consisting of components with two stable states, which are nowadays highly
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58 Recent developments in Haar wavelet transform

prevalent in practice. Multivalued (MV) logic functions may be considered as a
generalization of two-valued switching functions enabling more efficient encod-
ing of larger amounts of information than it is possible in the binary case. Thus,
multivalued logic is often regarded as a promising alternative enabling competing
with ever increasing amounts of information that should be stored, transmitted,
and processed in every day practice.

The vast complexity of modern digital systems implies that they can only be
handled by computer-aided design tools that are built on sophisticated mathemat-
ical models. Such models usually assume embedding sets representing domains
and ranges for functions describing signals that should be processed into some
algebraic structures. These structures should be selected such that they reflect at
least some of the true properties of signals. Selecting groups for the domains, and
fields for the ranges, leads to linear vector spaces, which are algebraic structures
often used for mathematical modeling of signals. Spectral transforms over these
structures have been proven to be very efficient tools in signal processing, sys-
tem theory, and related areas. In particular, spectral transforms on finite dyadic
groups, as the discrete Walsh and Haar transforms, are able to capture proper-
ties of binary-valued logic functions. That feature, together with their other useful
properties, as fast computation methods, makes these spectral transforms useful
also from the practical applications’ point of view. When properly generalized, the
same properties can be extended to spectral transforms for MV functions.

With that motivation, this chapter discusses applications of the discrete Haar
transform and its generalizations to derivation of compact representations of bi-
nary and multivalued functions for potential applications in logic design and, in
general, digital system design.

2.2. Discrete Haar functions

The discrete Haar transform is among the first discrete spectral transforms that
have found applications in several areas of electrical and computer engineering,
including switching theory and logic design [1, 2]. This transform is defined in
terms of the discrete Haar functions that can be introduced and studied from dif-
ferent points of view.

(1) First, the discrete Haar functions and related transform can be viewed as
the discrete counterpart of the Haar functions and related series defined in the
Hilbert space Lp[0, 1] for p ∈ [1,∞] which take values from the set {0,

√
2i},

i a positive integer [3]. The system introduced by the Hungarian mathematician
Alfred Haar [3] has the property that every function continuous on [0, 1] can be
represented by an infinite series in terms of the Haar functions.

In some applications, especially these related intensive computations, the un-
normalized Haar functions taking values in {0,±1} are often more convenient.

(2) The discrete Haar functions, both normalized and unnormalized, can be
derived by sampling the corresponding Haar functions at 2n equidistant points in
[0, 1].
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Figure 2.1. Haar wavelet.

(3) Alternatively, some authors prefer to consider the discrete Haar functions
as a set of functions introduced independently of the Haar functions in Lp, and as
a complete orthogonal system in the discrete Hilbert space l2 of real and complex-
valued functions defined in 2n points. These functions take values from the same
set as the Haar functions and the distribution of the values resembles the wave-
forms of Haar functions. In this case, the discrete Haar functions are defined in
terms of matrices expressing particular Kronecker layered structure; see, for in-
stance [4]. Efforts have been made to study these matrices and their relationships
to the matrices defining other discrete transforms [5–8].

(4) The discrete Haar functions are a special example of the so-called bridge
functions defined in [9] and elaborated further in a series of publications; see, for
instance [10] and references therein.

(5) In a system theory approach, the discrete Haar functions are viewed as
eigenfunctions of discrete systems modeled by the discrete differential equations
in terms of the corresponding derivatives in the class of Gibbs derivatives [11, 12].
These functions are a particular example of the generalized Haar functions in-
troduced in [13]. The discrete Haar functions can also be defined as solutions
of differential equations in terms of the generalized Haar derivatives [14]. In a
more general approach, viewed as a particular complete orthogonal system on fi-
nite Abelian groups, the discrete Haar functions can be derived as solutions of
differential equations in terms of the corresponding class of Gibbs derivatives on
finite Abelian groups [15]. A generalization of these results is presented in [16].

(6) The set of Haar functions can be split into packets, and functions within
the same packet can be derived by shifting along the interval [0, 1]. Functions in a
packet can be derived from functions in the preceding packet by scaling on the in-
terval where these functions are different from zero followed by the multiplication
with the power of

√
2.

Due to these properties, the Haar functions introduced in 1910 are related to
the more recently developed wavelet theory, where the Haar wavelet (function) is
viewed as the canonical example of an orthonormal wavelet, that is a wavelet pro-
viding a complete set of basic elements for L2(R), and being at the same time the
simplest possible wavelet. Figure 2.1 shows the basic Haar wavelet. The disadvan-
tage of the Haar wavelet is that it is not continuous and therefore not differentiable
in the classical sense.
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There is apparent a renewed interest in application of the discrete Haar trans-
form and various generalizations; see, for instance [17] and references therein. For
instance, a special session devoted exclusively to Haar transforms has been orga-
nized within the International Conference on Informatics, Communications and Sig-
nal Processing (1st ICICS), 1997, in Singapore. Besides signal and image processing,
see, for instance [18–24] and references in these publications, interesting applica-
tions have been found in switching theory and logic design for circuit synthesis,
verification, and testing [5, 7, 25–32].

In this area, relating the discrete Haar transform with theory and practice
of decision diagrams for representation of discrete signals proved to be especially
interesting since it permits efficient, in terms of space and time, calculation of Haar
spectra for functions defined in 2n points for a large n, for instance, n > 50–100 or
even more, depending on the available resources.

In the first part of this chapter, we briefly discuss the Haar spectral diagrams
(HSDs). Then, we define the Haar transform decision diagrams (HSTDDs). We
show an algorithm for minimization of HSTDDs in terms of the number of nodes
and paths. This research was motivated by the following considerations.

In the second part of the chapter, we discuss extensions of the definition of
Haar functions to multivalued case through the corresponding decision diagrams.

2.3. Decision diagrams and their optimization

Decision diagrams (DDs) are an efficient data structure for representation of dis-
crete functions [34]. Formally, a decision diagram can be viewed as an acyclic di-
rected graph consisting of a set of nonterminal nodes and constant nodes con-
nected by edges. A decision diagram is characterized by several parameters.

(1) The number of nonterminal and constant nodes, that is, the size of the
diagram.

(2) The number of levels at which nonterminal nodes are distributed, de-
noted as the depth of the diagram.

(3) The maximum number of nodes at a level, called the width of the dia-
gram.

(4) The number of paths from the root node to the constant nodes, ex-
pressing, in a way, the complexity of interconnections in the diagram.
Depending on the values shown by constant nodes, the 0-paths and c-
paths, where c could be a complex number, an integer, or any other value
different from zero, are distinguished.

(5) The number of outgoing edges per node, called the cost of a node.
These parameters are strongly mutually related and determine the structure of

the decision diagram [33]. Depending on applications as well as particular classes
of decision diagrams, some other parameters of decision diagrams, such as at-
tributes at the edges, average paths length, and so forth, are also considered [34–
36].

There is a variety of decision diagrams for discrete functions, which differ in
their basic characteristics [37].
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In most of applications of decision diagrams, the objective is to reduce some of
these characteristics of the decision diagram for a given function f , which should
ensure the efficiency of methods using decision diagrams. However, exact mini-
mization algorithms exist only for some of these basic characteristics of decision
diagrams. If the exact algorithms exist, then they perform an exhaustive search
in the research space of all possible combinations of different parameters permit-
ting reduction of a characteristic. Derivation of exact and deterministic algorithms
for the optimization of decision diagrams is restricted by the large, even though,
dimension of search space for possible solutions. Therefore, a study of exact algo-
rithms for optimization of decision diagram representations is an interesting and
important topic.

In this chapter, we are particularly interested in reduction of the number of
paths of decision diagrams, which is a problem important in verification and test-
ing of digital circuits, efficient evaluation of large discrete functions, and other
areas where frequent traversing of a decision diagram may be required.

In [38], an exact algorithm is presented which for a given function f deter-
mines the Haar spectrum with the minimum number of nonzero coefficients. The
algorithm performs reordering of elements in the vector of function values for f .
In this respect, the algorithm relates to the algorithms for optimization of decision
diagrams by variables ordering, input groupings, and outputs pairing [34, 39].

The algorithm by Karpovsky [38] can be used to minimize the number of
paths in the HSTDD for a given function f . This research is motivated by the
recent renewed interest in applications of the Haar transform in logic design and
related areas [5, 27, 29, 31]. We believe that HSTDDs can improve applicability of
earlier and recent spectral methods using the Haar transform and can be useful in
its various generalizations [13, 14, 16, 29, 40].

2.4. Haar expressions for discrete functions

The discrete Haar series can be viewed as a discrete counterpart of the Haar series
for functions on the interval [0, 1) [3]. They can be considered as functional ex-
pressions defined on finite dyadic groups due to the isomorphism between [0, 1)
and the infinite dyadic group.

Consider the space C(Cn
2 ) of complex functions f defined in 2n points. The

integer-valued functions and switching functions are considered as subsets of the
complex functions with ranges of function values restricted to some particular
subsets of complex numbers. Multiple-output switching functions are represented
by integer functions whose values are determined by considering binary outputs
as coordinates in binary representations of integers. These functions can be rep-
resented by the discrete Haar series, that is, series defined in terms of the discrete
Haar functions.

Due to intended applications in representation of switching and multivalued
logic functions, in this chapter, we will use the unnormalized Haar functions; see,
for instance, [4, 36].
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Definition 2.1 (Haar matrix). Denote by har(w, x), w, x ∈ {0, . . . , 2n−1}, the Haar
function of the index w. In matrix notation, the discrete Haar functions can be
defined as rows of the (2n × 2n) Haar matrix defined as

H(n) =
⎡⎣H(n− 1)⊗ [1 1]

I(n− 1)⊗ [1 −1]

⎤⎦ (2.1)

with H(0) = [1], and where I(n− 1) is the (2n−1 × 2n−1) identity matrix.

Example 2.2. For n = 3, the unnormalized discrete Haar functions in the sequency
or Haar ordering is defined by the matrix

H(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.2)

Definition 2.3 (inverse Haar matrix). The inverse unnormalized Haar transform is
defined as

H−1(n) = 1
2

[
H−1(n− 1)⊗

[
1
1

]
, I(n− 1)⊗

[
2n−1

−2n−1

]]
. (2.3)

Example 2.4. For n = 3, the inverse unnormalized Haar matrix is

H−1(3) = 1
8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2 0 4 0 0 0
1 1 2 0 −4 0 0 0
1 1 −2 0 0 4 0 0
1 1 −2 0 0 −4 0 0
1 −1 0 2 0 0 4 0
1 −1 0 2 0 0 −4 0
1 −1 0 −2 0 0 0 4
1 −1 0 −2 0 0 0 −4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.4)
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Definition 2.5 (Haar transform ). For f represented by the vector of function val-
ues F(n) = [ f (0), . . . , f (2n − 1)]T , the Haar spectrum S f (n) = [S f (0), . . . , S f (2n−
1)]T is given by

S f (n) = 2−nH(n)F(n),

F(n) = H(n)−1S f (n).
(2.5)

Definition 2.6 (Haar coefficients). The Haar spectral coefficients for a function f
defined at 2n points are calculated as

S f (w) = 2−n
2n−1∑
x=0

f (x) har(w, x), (2.6)

where har(w, x) are the Haar functions defined as rows of the Haar matrix H(n).

Definition 2.7 (Haar expression). The Haar expression for f is defined as

f (x) =
2n−1∑
w=0

S f (w) har−1(w, x), (2.7)

where S f are Haar coefficients, and har−1(w, x) are defined by rows of the inverse
Haar matrix H−1(n).

2.5. Haar spectral diagrams

Haar spectral diagrams (HSDs) are introduced in [27] as an edge-valued modi-
fication of multiterminal binary decision diagrams (MTBDDs) [41] to represent
the Haar spectrum for a given function f .

Definition of HSDs resembles the edge-valued binary decision diagrams
(EVBDDs) [42] and their relationship to the arithmetic transform [43, 44], how-
ever, there are important differences when considered functional expressions re-
lated to the decision diagrams. Due to the mentioned relationship with arithmetic
transform coefficients, an EVBDD represents f in the form of an arithmetic ex-
pression for f . That expression is determined in terms of the arithmetic coeffi-
cients assigned to the incoming edge of the root node and the right edges of other
nonterminal nodes in the EVBDD for f . The arithmetic transform expansion rule
[45] has been adapted to the characteristics of EVBDDs, and used as the expansion
rule to assign f to an EVBDD [42]. The inverse rule is used to determine f from a
given EVBDD in the form of an arithmetic expression for f .

In HSDs, the Haar coefficients are assigned to the incoming edge of the root
node and the right outgoing edges in the MTBDDs for f . The assignment of the
Haar coefficients to the MTBDDs for f is performed through a correspondence
among the Haar coefficients and Haar functions in terms of which they are deter-
mined. A coefficient is situated at the edge ending the subpath consisting of edges
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Figure 2.2. HST for n = 3.

whose labels are used to describe the corresponding Haar function in terms of
binary variables.

However, no expansion rule is derived to determine the meaning of nodes. In
HSDs, the nodes are MTBDD nodes. Therefore, from HSD for f , we can read
f as from the MTBDD( f ), and we can read the Haar coefficients as from the
MTBDD(S f ), however, we cannot read f in terms of the Haar coefficients. In [27],
it is shown that if f is a switching function in coding (1,−1), the values of constant
nodes in the MTBDD for f can be determined by the values of spectral coefficients
assigned to the edges of nodes corresponding to xn. This is possible, since from the
definition of the Haar matrix, the processing of nodes at this level consists of sub-
traction of the function values at the neighboring points. However, that property
cannot be used for integer or complex-valued functions.

Example 2.8. Figure 2.2 shows an example of the Haar spectral tree (HST) for n =
3. The following relation shows the correspondence among the Haar functions,
labels at the edges in the multiterminal binary decision tree (MTBDT), and the
Haar coefficients

f (0) har(0, x) = 1 S f (0),

f (1) har(1, x) = (
1− 2x1

)
S f (1),

f (2) har(2, x) = (
1− 2x2

)
x1 S f (2),

f (3) har(3, x) = (
1− 2x2

)
x1 S f (3),

f (4) har(4, x) = (
1− 2x3

)
x1x2 S f (4),

f (5) har(5, x) = (
1− 2x3

)
x1x2 S f (5),

f (6) har(6, x) = (
1− 2x3

)
x1x2 S f (6),

f (7) har(7, x) = (
1− 2x3

)
x1x2 S f (7).

(2.8)
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Figure 2.3. HSD for f in Example 2.10.

From this example, as stated above, a coefficient S f (w) is situated at the end
of a subpath consisting of edges denoted by variables used in symbolic descrip-
tion of the corresponding Haar function har(w, x) with respect to which this Haar
coefficient is calculated.

Example 2.9. In HSD for n = 3, the coefficient S f (1) is situated at the edge labeled
by x1. The coefficient S f (2) is situated at the end of the subpath consisting of the
edges labeled by x1 and x2. In this way, S f (7) is situated at the path consisting of
edges labeled by x1, x2, and x3.

In the representation of the Haar functions in terms of switching variables, we
keep xi for logic NOT, since we would not like to change the notation which has
been already used in discussions of HSD [31]. However, since we are working with
integers or complex numbers, the proper meaning is xi = (1−xi) with xi ∈ {0, 1},
where 0 and 1 are the integers 0 and 1.

Example 2.10 (see [27]). Figure 2.3 shows the MTBDD and the HSD for the Haar
spectrum for the function

f = x1x2x3x4 ∨ x1x3x5 ∨ x1x2x3x4x5 ∨ x1x2x3x4x5. (2.9)
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The truth-vector for f in the (1,−1) encoding is

F = [1, 1, 1, 1,−1, 1, 1, 1,−1, 1, 1, 1, 1, 1, 1, 1,

1,−1, 1,−1, 1, 1, 1, 1, 1,−1,−1,−1, 1, 1, 1, 1]T .
(2.10)

The Haar spectrum for this function f in the Haar ordering is

S f = 1
32

[18, 6, 0, 2, 2,−2,−4,−6, 0,−2,−2, 0, 0, 0, 2, 0,

0, 0,−2, 0,−2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0]T.
(2.11)

Since in an HSD, the structure of the initial MTBDD for f is not changed
and constant nodes are preserved, but ignored in the HSD, f remains represented
by the same MTBDD from which the HSD is derived. This can be pointed out
as an advantage of HSDs, since the complexity of the diagram to represent the
Haar spectrum is equal to the complexity of the decision diagram representation of
the initial function f whose spectrum is calculated. Recall that, in general, MTB-
DDs to represent integer-valued Haar spectra of binary-valued switching func-
tions have a larger size than BDDs for the initial functions. Therefore, assigning
the Haar coefficients to edges of BDDs for f saves space in representation of the
Haar spectra.

It should be noticed that there are some classes of switching functions, that are
important in applications, with the opposite property. That is, for some switching
functions, Haar spectra are simple in the sense that can be represented by MTB-
DDs of the small size or the number of paths.

Remark 2.11. For a given f , the HSD for the Haar spectrum S f is the MTBDD
for f (MTBDD( f )) with the first Haar coefficient assigned to the incoming edge
and other Haar coefficients to the right edges of other nonterminal nodes. That
assignment corresponds to the assignment of the arithmetic transform coefficients
to the edges in EVBDDs.

Alternatively, an HSD( f ) is a modified MTBDD for the Haar spectrum
(MTBDD(S f )). The modification is done by moving Haar coefficients at the edges
from the constant nodes. This modification permits to keep the structure of the
MTBDD( f ), instead of that of MTBDD(S f ), which, as noticed above, for switch-
ing functions is usually simpler than that of the MTBDD(S f ). However, the price
is that we cannot read f in terms of the Haar coefficients, and that we cannot
represent all the spectral coefficients explicitly. As it is explained in [27], the zero
coefficients assigned to the edges at the lower levels are not explicitly shown. For
example, in Figure 2.3, 12 of 32 coefficients are shown explicitly, and just a single
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zero coefficient assigned to the right outgoing edge of the leftmost node corre-
sponding to x2. The other zero coefficients are not shown. It is assumed that they
are assigned to the outgoing edges of the cross points pointing to constant nodes.

The assignment of Haar coefficients to the edges is determined from the fol-
lowing correspondence between the rows of the Haar matrix and the correspond-
ing Haar coefficients for f . In determination of this correspondence, it is assumed
that the discrete Haar functions are expressed in terms of switching variables,
which are used as labels at the edges of MTBDDs. This is an alternative interpreta-
tion of the assignment of the Haar coefficients to the edges and it is different from
that in [27]. However, the produced HSDs are the same, since the interpretation
does not interfere with the definition of HSDs.

In [27], HDDs are defined with respect to the natural ordering of the Haar
matrix. A decomposition of the Haar matrix into a sum of two Kronecker prod
uct representable matrices is used. This decomposition was used in argumentation
for the assignment of the Haar coefficients to the edges. Different ordering of the
Haar matrix implies different enumeration of the Haar coefficients and different
ordering of variables in related decision diagrams.

However, in any ordering, the coefficients defined with respect to the same
Haar function are assigned to the same edges in the MTBDD( f ).

2.5.1. HSDs and other decision diagrams

An MTBDD for a given f represents f through the disjunctive normal form for f .
The product terms are determined as products of labels at the edges.

An HSD represents the Haar coefficients for f through the MTBDD for f .
Thus, an HSD does not represent a given f in terms of a Haar expression for f .
It follows that HSDs, although denoted as spectral diagrams, are not the spectral
transform decision diagrams (STDDs) in the sense of the definition of that concept
in [45].

The same as EVBDDs, HSDs are decision diagrams with attributed edges. In
HSDs, the attributes are the Haar coefficients. In EVBDDs, they are the arithmetic
transform coefficients [43]. However, an HSD does not use the Haar coefficients to
represent f , in a way as EVBDDs represent f in terms of the arithmetic coefficients
used as the attributes at the edges. It follows that HSDs are related to EVBDDs, but
are not a counterpart of EVBDDs in the sense that the Haar coefficients instead the
arithmetic coefficients are used in EVBDDs.

We have shown a formalism to assign Haar coefficients to the edges, expressed
through the relations of rows of the transform matrices in terms of switching vari-
ables used as labels at the edges in MTBDDs. The formalism used to define HSDs
may be extended to other spectral transforms where rows of the transform matrix
are expressed in terms of switching variables. The following example illustrates
this statement.

Example 2.12. For n = 3, the following correspondence between the Walsh func-
tions wal(w, x), which are rows of the Walsh transform matrix, switching variables,
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and Walsh coefficients may be shown:

f (0) wal(0, x) = 1 S f (0),

f (1) wal(1, x) = (
1− 2x3

)
S f (1),

f (2) wal(2, x) = (
1− 2x2

)
S f (2),

f (3) wal(3, x) = (
1− 2x2

)(
1− 2x3

)
S f (3),

f (4) wal(4, x) = (
1− 2x1

)
S f (4),

f (5) wal(5, x) = (
1− 2x1

)(
1− 2x3

)
S f (5),

f (6) wal(6, x) = (
1− 2x1

)(
1− 2x2

)
S f (6),

f (7) wal(7, x) = (
1− 2x1

)(
1− 2x2

)(
1− 2x3

)
S f (7).

(2.12)

Due to that, we may define a Walsh spectral tree (WST) for n = 3 correspond-
ing to the HST in Figure 2.2, with the Walsh coefficients at the same positions
where the Haar coefficients are in the HSD. However, since in this example we are
using the Walsh transform in Kronecker ordering, the variables should be assigned
to the levels in the descending order x3, x2, x1.

2.5.2. HSDs and ordering of Haar functions

In applications, both normalized or unnormalized Haar matrices are used with
rows ordered in different ways. Some of these orderings were intended to provide
Kronecker or Kronecker-like representations of the Haar matrices suitable for their
generation or calculations with Haar matrices [27, 38]. In [27], an ordering that
allows a particular decomposition of the Haar matrix was used to assign Haar
coefficients to the edges in MTBDD( f ).

The ordering in Example 2.8 is denoted as the sequency ordering or Haar or-
dering. However, all the considerations may be extended to any other ordering.
In the representations of Haar spectrum through decision diagrams, as MTBDDs
and HSDs, the following may be stated.

Remark 2.13. Given an HSD showing Haar coefficients for a particular ordering
of the Haar matrix. From this HSD, we can read the Haar coefficients for any other
ordering by performing different traversal of the HSD, that is, by changing the way
of visiting labels at the edges in the HSD.

We refer to [46] for more details about reading spectral coefficients from de-
cision diagrams for different orderings of spectral transform matrices and in par-
ticular, for the Haar coefficients in different ordering.

It should be noted that ordering of rows in the Haar matrix should not be
confused with the ordering of variables in f , although the rows of the Haar matrix
can be expressed in terms of switching variables. The change of the ordering of
the Haar functions in the Haar matrix change the order of the Haar coefficients in
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the Haar spectrum, but does not change their values. However, for a fixed order-
ing of rows of the Haar matrix, the change of the order of variables in f changes
the values of the Haar coefficients. This is a joint property of local wavelet-like
transforms.

Reordering of variables is a particular case of permutation of elements in the
vector of function values. The linear transformation of variables is an extension
of this method of exploiting reordering of variables for reduction of the number
of nonzero Haar coefficients. An exact algorithm for determination of the linear
transformation of variables in f which minimizes the number of nonzero Haar
coefficients is given in [38]. This linear transformation for a given f is denoted
as the optimal transformation in the number of nonzero coefficients count. In
terms of word-level decision diagrams [34], this linear transformation produces
the minimum number of paths pointing to the nonzero constant nodes, and in
many cases reduces also the number of nodes. Notice that in some cases, depend-
ing on the functions processed, the linear transformation of variables may reduce
to the reordering of variables. Thus, the algorithm by Karpovsky in [38] provides
a larger number of permutations of entries in the vector of function values com-
pared to the reorderings corresponding to the variable ordering, and therefore,
may produce Haar spectra with smaller number of coefficients.

2.6. Haar spectral transform decision diagrams

The Haar spectral transform decision diagrams (HSTDDs) are defined as deci-
sion diagrams which represent f in the form of the Haar series expression for f
[47]. For the consistency with the notation in decision diagrams, we will use an
ordering of the Haar matrix which is most compatible with decision diagrams. In
this ordering, the Haar functions, rows of the Haar matrix, are described in terms
of switching variables, as shown in Example 2.8, however, with all the variables
in descending order of indices. For example, for n = 3, that descending order of
variables implies that the Haar functions corresponding to S f (5) and S f (6) are
permuted. As in other spectral transform decision diagrams (STDDs) [44, 45], in
an HSTDD for f , each path corresponds to a term in the Haar expression for f .
Therefore, the algorithm by Karpovsky for optimal linear transformation of vari-
ables obviously produces HSTDDs with the minimum number of paths.

2.6.1. Haar spectral transform decision trees

Definition 2.14. The Haar spectral transform decision trees (HSTDTs) are defined
as the graphic representation of the Haar expression for f . In an HSTDD for f ,
each path from the root node to a constant node corresponds to a Haar function
har(w, x). The constant nodes show values of Haar coefficients.

Example 2.15. Figure 2.4 shows the HSTDT for n = 3 defined by using the non-
normalized Haar transform. This HSTDT represents f in the form of the Haar
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Figure 2.4. HSTDT for n = 3.

expression for f ,

f = 1
8

(
S f (0) + S f (1)

(
1− 2x1

)
+ 2S f (2)

(
1− 2x2

)
x1

+ 2S f (3)
(
1− 2x2

)
x1 + 4S f (4)

(
1− 2x3

)
x2x1

+ 4S f (5)
(
1− 2x3

)
x2x1 + 4S f (6)

(
1− 2x3

)
x2x1

+ 4S f (7)
(
1− 2x3

)
x2x1

)
.

(2.13)

2.6.2. Haar spectral transform decision diagrams

Definition 2.16. Haar spectral transform decision diagrams (HSTDDs) are derived
by the reduction of the corresponding HSTDTs by the generalized BDD reduction
rules [45].

Definition 2.17 (generalized BDD reduction rules). (1) Delete all the redundant
nodes where both edges point to the same node and connect the incoming edges
of the deleted nodes to the corresponding successors. Relabel these edges as shown
in Figure 2.5(a).

(2) Share all the equivalent subgraphs, Figure 2.5(b).

Example 2.18. In the ordering of Haar matrix used in the definition of HSTDT for
f in Example 2.10, the Haar spectrum is given by

S f = 1
32

[18, 6, 0, 2, 2,−4,−2,−6, 0, 0,−2, 2,−2, 0, 0, 0,

0, 2, 0, 2,−2, 0, 0, 0,−2, 2, 0, 0, 0, 0, 0, 0]T.
(2.14)
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Figure 2.5. Generalized BDD rules.

Figure 2.6 shows the HSTDD for f in Example 2.10. This HSTDD represents f in
the form of the Haar expression

f = 1
32

(
1 · 18 + 6 · (1− 2x1

)
+ 2 · 2

(
1− 2x2

)
x1

+ 2 · 4
(
1− 2x3

)
x2x1 − 4 · 4

(
1− 2x3

)
x2x1

− 2 · 4
(
1− 2x3

)
x2x1 − 6 · 4

(
1− 2x3

)
x2x1

− 2 · 8
(
1− 2x4

)
x3x2x1 + 2 · 8

(
1− 2x4

)
x3x2x1

− 2 · 8
(
1− 2x4

)
x3x2x1 + 2 · 16

(
1− 2x5

)
x4x3x2x1

+ 2 · 16
(
1− 2x5

)
x4x3x2x1 − 2 · 16

(
1− 2x5

)
x4x3x2x1

− 2 · 16
(
1− 2x5

)
x4x3x2x1 + 2 · 16

(
1− 2x5

)
x4x3x2x1

)
.

(2.15)

2.7. HSTDDs with the minimal number of paths

2.7.1. Haar spectrum with the minimal number of nonzero coefficients

In bit-level decision diagrams, the 0-paths and 1-paths are distinguished. The 1-
paths correspond to terms in AND-EXOR expressions in form of which a decision
diagram represents f . In the word-level decision diagrams, we consider 0-paths
and c-paths, where c is an arbitrary integer or complex number. Thus, a c-path is
a path from the root node to a constant node showing the value c. We denote by
QDD the number of c-paths in a given decision diagram DD.

As noticed above, Karpovsky presented in [38] an algorithm for ordering ele-
ments in the vector F representing a function f defined in 2n points, such that the
Haar spectrum for f has the minimum number of coefficients. The algorithm is
based upon the calculation of the total autocorrelation function for f defined as
follows.

Definition 2.19 (autocorrelation function). For a given n-variable switching func-
tion f (x), x = (x0, . . . , xn), xi ∈ {0, 1}, the autocorrelation function Bf is defined
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Figure 2.6. HSTDD for f in Example 2.10.

as

Bf (τ) =
2n−1∑
x=0

f (x) f (x ⊕ τ), τ ∈ {
0, . . . , 2n − 1

}
, (2.16)

Definition 2.20 (characteristic functions). For a system of k switching functions
f (i)(x1, . . . , xn), i = 0, . . . , k−1, xi ∈ {0, 1}, we define the integer-valued equivalent

f (x) = ∑k−1
i=0 2k−1−i f (i)(x), x = (x1, . . . , xn). For each distinct value of f (x), we

determine the characteristic function fi defined as

fi(x) =
⎧⎪⎨⎪⎩

1 if fz(x) = i,

0 otherwise.
(2.17)

Definition 2.21 (total autocorrelation function). For a system of k switching func-
tions f (i)(x1, . . . , xn), i = 0, . . . , k − 1, the total autocorrelation function is defined
as the sum of autocorrelation functions for the characteristic functions fi(x) for
the integer function f (x) assigned to the system. Thus,

Bf (τ) =
k−1∑
i=0

Bfi(τ). (2.18)
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K-procedure

(1) Assign to a given multi-output function f = ( f (0), . . . , f (k−1)), x = (x0, . . . , xn−1),
xi ∈ {0, 1}, an integer equivalent function f (x).

(2) Denote by R the range of f (x) assigned to f . For every i ∈ R, construct characteristic
functions fi(x).

(3) Calculate the autocorrelation functions B fi for each fi(x), and the total autocorrela-
tion function B f =

∑
i B fi .

(4) Determine the n-tuple of input variables τ = (x1, . . . , xn), where B f takes the max-
imum value, excepting the value B f (0). If there are several choices, select anyone of
them.

(5) Determine a matrix σ from the requirement

σ � τ = (0, . . . , 0, 1)T , (2.20)

where � denotes the multiplication over GF(2).

(6) Determine a function fσ such that

fσ (σ � x) = f (x). (2.21)

That means, reorder values in a vector F representing values of f by the mapping
x = (x1, . . . , xn)→ xσ , where xσ = σ−1 � x.

(7) In a vector Fσ representing the values of fσ , perform an encoding of pairs of adja-
cent values by assigning the same symbol to the identical pairs. Denote the resulting
function of (n− 1) variables by Qn−1.

(8) Repeat the previous procedure for i = i− 1 to some k until there are identical pairs
in Qk .

(9) Determine MTBDD for fσk .

End of procedure

Algorithm 2.1

The algorithm by Karpovsky assigns a function fσ to a given function f , de-
fined as

fσ(σ � x) = f (x), (2.19)

where � denotes the multiplication modulo 2, and σ is an (n × n) matrix deter-
mining the transformation over the binary representation of arguments of f to
determine the elements of Fσ representing fσ . Thus, Fσ and F are vectors with
equal elements, but in different order uniquely determined by σ . The algorithm
determines σ in such a way that the Haar spectrum for fσ has the minimum num-
ber of nonzero coefficients.

The procedure for minimization of the number of nonzero Haar coefficients
can be performed through Algorithm 2.1.
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Remark 2.22. The K-procedure produces the maximal number of identical pairs
of values in F or, equivalently, pairs of isomorphic subtrees in the MTBDD( f ) at
the positions pointed by the outgoing edges xi and xi for all i = n,n− 1, . . . , 1.

Example 2.23 (see [38]). Table 2.1 shows a two-output function f (0), f (1) of four
variables. This function is represented by the integer equivalent function f =
2 f (0) + f (1). This function has the Haar spectrum with 14 nonzero coefficients.
The matrix determined by the algorithm proposed by Karpovsky,

σ =

⎡⎢⎢⎢⎣
0 1 1 0
1 0 0 1
0 0 1 1
1 1 1 0

⎤⎥⎥⎥⎦ , (2.22)

defines a reordering of the variables xi, i = 1, 2, 3, 4, in the binary representation
for x = (x1, x2, x3, x4) through the relation

xσ = σ−1 � x. (2.23)

Since

σ−1 =

⎡⎢⎢⎢⎣
1 0 0 1
0 1 1 1
1 1 1 1
1 1 0 1

⎤⎥⎥⎥⎦ , (2.24)

the vector

F = [
f (0), f (1), f (2), f (3), f (4), f (5), f (6), f (7), f (8),

f (9), f (10), f (11), f (12), f (13), f (14), f (15)
]T (2.25)

is transformed into the vector

Fσ =
[
f (0), f (15), f (6), f (9), f (7), f (8), f (1), f (14),

f (11), f (4), f (13), f (2), f (12), f (3), f (10), f (5)
]T
.

(2.26)

The matrix σ defines a function fσ min which has the Haar spectrum with 9 nonzero
coefficients, compared to the 14 coefficients in the Haar spectrum for f .

2.7.2. HSTDDs for the minimized Haar spectrum

The following consideration permits derivation of optimized HSTDDs by exploit-
ing the K-procedure.
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Table 2.1. Function with the minimized Haar spectrum.

x, w f (0), f (1) f (x) 16S f (w) fσ (x) 16S fσ

0 00 0 22 0 22

1 10 2 0 0 2

2 00 0 −5 2 −8

3 01 1 1 0 2

4 10 2 1 3 −2

5 01 1 0 3 −2

6 10 2 −2 2 2

7 11 3 1 2 0

8 11 3 −2 2 0

9 00 0 3 2 0

10 01 1 1 2 0

11 10 2 −1 0 0

12 01 1 −1 1 2

13 10 2 −1 1 2

14 10 2 −1 1 0

15 00 0 2 1 0

The algorithm by Karpovsky for the optimization of the Haar spectrum re-
duces the number of nonzero coefficients in the Haar spectrum for f . Each nonz-
ero coefficient corresponds to a term in the Haar expression for f . In an HSTDD
for f , each c-path from the root node to a constant node corresponds to a term in
the Haar expression for f . Thus, this algorithm reduces the number of c-paths in
the HSTDD for f .

Remark 2.24. Consider a function f and the function fσ for f determined by the
K-procedure. Denote by QHSTDD( f ) the number of c-paths in the HSTDD for
f . Then, QHSTDD( fσ) < QHSTDD( f ). Moreover, HSTDD for fσ has the minimum
number of c-paths among HSTDDs for functions generated for other possible or-
derings of elements in the vector F representing f .

It is shown in [48] that reduced number of implicant in the disjoint cover of
a given function f , which means the reduced number of paths in the BDD for
f , does not necessarily implies the reduced size of this BDD and vice versa. As
is pointed out in [48], different ordering of variables produces BDDs with dif-
ferent paths and number of nodes, which corresponds to different disjoint covers
of functions. However, the size of the disjoint cover, equivalently, the number of
paths, cannot be used as a means to determine the best variable ordering in BDDs.
The same result is extended to BDDs with complemented edges [48].
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We believe that the same applies to any STDD, including MTBDDs, HSDs,
and HSTDDs. In this case, instead of implicants, we consider the number of
spectral coefficients, since each coefficient is assigned to a term in the function
expression in respect to which the considered STDD is defined [45]. Reordering
of variables can be considered as a particular example of the linear transform of
variables used to reduce the number of Haar coefficients, when σ is a permutation
matrix. Therefore, we were interested to consider the impact of the linear trans-
form that reduces the number of Haar coefficients to the size of HSTDDs and
MTBDDs.

Reduction of the number of paths in many cases implies the reduction of the
size of the decision diagram, since each nonterminal node means branching of
edges into two different subpaths. Therefore, the following remark is possible.

Remark 2.25 (size of HSTDD ). In many cases, size(HSTD( fσ))<size(HSTD( f )).

For w ≥ 2n−1, we may write w = 2n−1 + j, where j = 0, . . . , 2n−1 − 1.
From definition of the Haar functions, for w ≥ 2n−1, S f (w) = 0 if and only if
f (2 j) = f (2 j + 1). In F, that property implies constant subvectors of order 2. In
MTBDDs, and thus HSDs, this means the possibility to reduce a node at the level
corresponding to xn whose outgoing edges point to f (2 j) and f (2 j + 1). Similar,
for w < 2n−1, S f (w) = 0 if there are constant or equal subvectors of orders 2k,
k = 2, . . . ,n − 1 in F. Equal and constant subvectors mean possibility to share or
delete nonterminal nodes at upper levels in the MTBDD( f ).

Remark 2.26 (size of MTBDD and HSD). In many cases, size(MTBDD( fσ))< size
(MTBDD( f )). Notice that there are exceptions as, for example, the function in
[48]. The same remark applies for HSDs, since the size of an HSD is equal to the
size of the MTBDD from which it is derived. However, the total amount of data
that should be stored in an HSD is increased for the values of nonzero coefficients,
compared to that in the MTBDD .

Example 2.27. Figure 2.7.2 shows HSTDD for the function f in Table 2.1, and
Figure 2.7.2 shows HSTDD for the function obtained after the linearization fσ . In
this example, size(MTBDD( f ))=18, size(MTBDD( fσ))=11, size(HSTDD( f ))=
22, size(HSTDD( fσ)) = 15, QHSTDD( f ) = 13, and QHSTDD( fσ ) = 8, since a path
contains a cross-point.

However, unlike the number of c-paths that depends on the number of
nonzero coefficients, the size of an HSTDD depends also on the number of dif-
ferent nonzero coefficients and their distribution in the spectrum.

Example 2.28. The output of a two-bit adder is described by the vector

F = [0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6]T. (2.27)
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22 0 −5 1 −2 3 −1 2

Figure 2.7. HSTDD for f in Example 2.27.

The Haar spectrum for this adder is

Sadd2 = [48,−16,−4,−4,−4,−4,−4,−4,

− 1,−1,−1,−1,−1,−1,−1,−1]T .
(2.28)

After the linear transformation of variables, we get the Haar spectrum

Sadd2σ = [48, 0, 0, 0,−8, 0,−8, 0,−2,−2, 0, 0,−2,−2, 0, 0]T . (2.29)

Although the number of nonzero coefficient is reduced from 15 to 7, it is
size(HSTDD)(add2-LTA) > size(HSTDD)(add2), since in the Haar spectrum for
add2 there is a constant vector of order 4 and a constant vector of order four.
That permits reduction of a subtree with 7 nonterminal nodes and a subtree with
three nonterminal nodes. In the linearly transformed spectrum, equal subvectors
are of order two which permits reduction of a single nonterminal node for each
constant or equal subvector. Table 2.2 shows the basic characteristics of MTBDD
and HSTDD for a two-bit adder. Figures 2.9 and 2.10 show HSTDD(add2) and
HSTDD(add2-LTA), respectively.

2.8. Experimental results

We have performed a series of experiments to illustrate the statements in this pa-
per. The experiments are performed over mcnc benchmark functions and ran-
domly generated multiple-output switching functions.
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x1
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22 2 −8 −2 0

Figure 2.8. HSTDD for fσ in Example 2.27.

Table 2.2. Complexity of MTBDD, HSTDs, and HSTDD-LTA for two-bit adder.

MTBDD

ntn cn s w paths

0 c total

13 7 20 6 1 15 16

HSTDD

ntn cn s w paths

0 c total

4 4 8 1 0 5 5

HSTDD-LTA

ntn cn s w paths

0 c total

6 4 10 2 4 3 7

Table 2.3 shows the number of nonzero Haar coefficients in the Haar spec-
trum for n-bit adders and the Haar spectrum for linearly transformed n-bit adders
with linear transform of variables determined by the K-procedure. The number of
coefficients is reduced for about 50%.

Table 2.4 compares the characteristics of HSTDDs for adders. Due to this lin-
ear transform of variables, the number of c-paths and the number of constant
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Figure 2.9. HSTDD for two-bit adder.

add2-LTA
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Figure 2.10. HSTDD for two-bit adder with linearly transformed variables.
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Table 2.3. Haar coefficients for adders.

n Haar Haar-LTA %

2 16 7 56.25

3 64 29 54.69

4 256 121 52.74

5 1024 497 51.47

6 4096 2017 50.76

7 16 384 8129 50.39

Table 2.4. HSTDDs and HSTDD-LTAs for adders.

HSTDD HSTDD-LTA

n ntn cn s w paths ntn cn s w paths

0 c total 0 c total

2 4 4 8 1 0 5 5 6 4 10 3 4 3 7

3 6 7 13 1 0 7 7 9 5 14 4 6 4 10

4 8 7 15 1 0 9 9 12 6 18 5 8 5 13

5 10 11 21 1 0 11 11 15 7 22 6 10 6 16

6 12 10 22 1 0 13 13 18 8 26 7 12 7 19

7 14 15 29 1 0 15 15 21 9 30 8 14 8 22

nodes are reduced. However, the number of nonterminal nodes and the width are
increased.

It should be noted that HSTDDs and HSTDD-LTA are quite smaller than
MTBDDs with respect to all the characteristics of a decision diagram. We consider
that as a justification of study of HSTDDs.

Table 2.5 illustrates the impact of the linear transform of variables determined
by the K-procedure to the characteristics of MTBDDs. This transform reduces all
the characteristics of MTBDDs.

Table 2.6 compares the number of nonzero coefficients in the Haar spectrum
and the Haar spectrum after the linear transform of variables for some bench-
mark functions and randomly generated functions. The savings in the number of
nonzero coefficients range from 0.81% to 88.24%. The average savings for bench-
mark functions are 49.48%, and 12.254% for random generated functions.

Tables 2.7 and 2.8 compare the complexity of HSTDDs before and after the
linear transform of variables determined by the K-procedure. It is shown the num-
ber of nonterminal nodes (ntn), constant nodes (cn), whose sum is the size of the
HSTDD (s = ntn + cn), and the width (w) of HSTDDs. We also show the num-
ber of 0-paths, c-paths, and the total number of paths. The K-procedure reduced
the number of c-paths and the width of HSTDDs for all the considered functions.
For 14 functions, the size is reduced. For 16 functions, the number of nonterminal
nodes is reduced. For 11 functions, the number of constant nodes is reduced. In
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Table 2.5. MTBDDs and MTBDD-LTAs for adders.

MTBDD

n ntn cn s w paths

0 c total

2 13 7 20 6 1 15 16

3 41 15 56 14 1 63 64

4 113 31 144 30 1 255 256

5 289 63 352 62 1 1023 1024

6 705 127 832 126 1 4096 4097

7 1665 255 1920 254 1 16383 16384

LTA-MTBDD

n ntn cn s w paths

0 c total

2 8 7 15 3 1 8 9

3 24 15 39 7 1 26 27

4 64 31 95 15 1 80 81

5 160 63 223 31 1 242 243

6 384 127 511 63 1 728 729

7 896 255 1151 127 1 2186 2187

other functions, these parameters are equal or increased as a price for the reduced
number of c-paths and the width of HSTDDs.

Tables 2.9 and 2.10 compare the complexity of MTBDDs for the same set of
functions before and after the application of the linear transform of variables used
in HSTDDs. The linear transform used in HSTDDs reduced the number of c-paths
for all the considered functions. The width is reduced for 14 functions, and size for
23 functions.

2.9. Multivalued Haar functions

In the previous sections, we started from the Haar functions and related expres-
sions and defined the Haar spectral transform decision diagrams as the graphical
form of these expressions. The discrete Haar functions are used to determine la-
bels at the edges of these diagrams. For an extension of the Haar functions to mul-
tivalued case, we do the opposite. We generalize the definition of Haar spectral
transform decision diagrams by appropriately selecting the decomposition rules
at the nonterminal nodes. Then we define the corresponding multivalued Haar
functions by traversing paths from the root node to the constant nodes in these
diagrams.

The BDDs, MTBDDs, and HSTDDs discussed above are examples of decision
diagrams in the space C(C2) of complex-valued functions defined in 2n points,
that is, defined on the group Cn

2 , where C2 is the cyclic group of order 2.
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Table 2.6. Number of coefficients in the Haar spectrum and the Haar-LTA spectrum.

f Haar LTA-Haar %

9sym 211 106 49.77

ex1010 989 971 1.83

misex1 32 28 12.50

rd53 32 22 31.25

rd73 128 32 75.00

rd84 265 64 75.85

xor5 17 2 88.24

add2 16 7 56.25

add3 64 29 54.69

f1 161 131 18.64

f6 141 122 13.48

f7 163 133 18.41

f8 234 212 8.41

f9 247 245 0.81

n1 162 136 1.05

n2 169 108 36.10

n3 165 155 6.07

n4 165 152 7.88

n5 156 139 10.90

n6 147 125 14.97

n7 150 127 15.34

n8 150 133 11.34

n9 161 137 14.10

n10 273 242 11.36

In this section, we discuss generalization of the definition of Haar functions
to multivalued case, that is, we consider the discrete Haar functions defined in
pn, p >, points, and taking values in a field P, that can be the finite Galois field
GF(p) or the complex field C. These functions are defined by referring to paths
in the corresponding decision diagrams for multivalued functions. Notice that in
this case, multiple-place decision diagrams (MDDs) [49, 50], being defined with
respect to the identity transform on the cyclic group Cp of order p performed at
each node, are counterparts of BDDs, since the values of constant nodes are in P.
A generalization of MTBDDs, is derived by allowing in MDDs complex numbers
as the values of constant nodes [51]. We denote these decision diagrams as multi-
terminal decision diagrams (MTDDs), that is, we delete the word binary, since in
this case there are p outgoing edges of a node.

Definition 2.29. For f ∈ P(Cn
p), Haar spectral transform multivalued decision

trees (HSTMVDTs) are decision trees where the expansion rules at the leftmost
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Table 2.7. Complexity of HSTDs.

HSTDD

f ntn cn s w paths

0 c total

9sym 111 16 127 26 189 197 381

ex1010 1023 639 1662 512 35 989 1024

misex1 34 17 51 11 22 18 40

rd53 23 9 32 9 0 30 30

rd73 52 11 63 14 0 103 103

rd84 74 16 90 18 0 201 201

xor5 12 4 16 3 4 17 21

add2 4 4 8 1 0 5 5

add3 6 7 13 1 0 7 7

f1 137 13 150 47 72 140 212

f6 135 13 148 46 80 122 202

f7 137 10 147 49 68 137 205

f8 220 33 253 93 22 227 249

f9 250 55 305 123 9 246 255

f10 192 26 218 66 37 208 245

n1 150 13 163 52 70 143 213

n2 155 13 168 58 65 150 215

n3 160 15 175 58 69 156 225

n4 160 14 174 56 68 155 223

n5 152 17 169 52 70 147 217

n6 130 12 142 46 71 125 196

n7 133 10 143 48 73 131 204

n8 135 11 146 48 79 133 212

n9 137 11 148 51 74 142 216

n10 235 15 250 73 158 234 392

nodes are defined by a basis Q for the Fourier series or a polynomial expressions
in P(Cp) and for other nodes by the identity transforms for functions in P(Cp).

Definition 2.30. Haar functions in P(Cn
p), are functions described by products of

labels at the edges along the paths from the root node to the constant nodes in the
HSTMVDTs for functions in P(Cp).

Algorithm 2.2 performs construction of HSTMVDT in P(Cp) [52].
When an HSTMVDT is constructed, we determine the corresponding

multivalued Haar-like functions by multiplying labels at the edges in these de-
cision trees. The method will be illustrated by the example of the Haar functions
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Table 2.8. Complexity of HSTDD-LTA.

HSTDD-LTA

f ntn cn s w paths

0 c total

9sym 89 13 102 25 85 87 172

ex1010 1019 636 1655 508 53 969 1022

misex1 41 17 58 13 26 18 44

rd53 19 10 29 7 8 19 27

rd73 20 6 26 7 0 23 23

rd84 32 8 40 10 0 44 44

xor5 5 3 8 1 4 2 6

add2 6 4 10 2 4 3 7

add3 9 5 14 2 6 4 10

f1 129 16 135 41 76 114 190

f6 134 17 151 43 83 110 193

f7 134 14 148 45 83 120 203

f8 223 36 259 97 40 205 245

f9 241 52 293 114 11 238 249

f10 198 26 224 71 37 210 247

n1 118 42 160 55 18 107 125

n2 118 42 160 55 18 107 125

n3 91 13 104 31 38 77 115

n4 153 19 172 55 76 139 215

n5 155 20 175 52 82 132 214

n6 132 14 146 43 79 111 190

n7 135 14 149 45 83 118 201

n8 134 13 147 43 82 117 199

n9 137 12 149 46 80 122 202

n10 238 20 258 73 157 228 385

defined by using the basic Vilenkin-Chrestenson transform for p = 3 instead of the
Walsh transform that is used in definition of the discrete Haar functions through
the HSTMVDTs, as discussed in Section 2.6.

Example 2.31. For p = 3, the basic Vilenkin-Chrestenson matrix is given by

VC3(1) =

⎡⎢⎢⎣
1 1 1

1 e1 e2

1 e2 e1

⎤⎥⎥⎦ , (2.30)
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Table 2.9. Complexity of MTBDDs.

MTBDD

f ntn cn s w paths

0 c total

9sym 33 2 35 6 72 148 220

ex1010 894 177 1071 383 190 800 990

misex1 17 11 28 6 5 13 18

rd53 15 6 21 5 1 31 32

rd73 28 8 36 7 1 127 128

rd84 36 9 45 8 1 255 256

xor5 9 2 11 2 16 16 32

add2 13 7 20 6 1 15 16

add3 41 15 66 14 1 63 64

f1 75 2 77 30 88 82 170

f6 58 2 60 18 61 74 135

f7 72 2 74 28 86 87 173

f8 174 8 182 64 33 210 243

f9 222 16 238 95 20 229 249

f10 139 5 144 56 49 171 220

n1 84 3 87 30 13 151 164

n2 89 3 92 29 22 148 170

n3 91 3 94 31 34 136 170

n4 90 3 93 31 40 129 169

n5 82 3 85 27 48 108 156

n6 68 2 70 25 56 93 149

n7 78 2 80 28 62 92 154

n8 72 2 74 29 65 87 152

n9 73 2 75 28 75 88 163

n10 118 2 120 41 176 113 289

where e1 = −(1/2)(1 − i
√

3), and e2 = e∗1 = −(1/2)(1 + i
√

3), where z∗ denotes
the complex-conjugate of z.

The Vilenkin-Chrestenson transform is defined by the transform matrix

VC−1 = VC∗ = ⊗n
i=1VC3(1). (2.31)

Vilenkin-Chrestenson-Haar spectral transform decision trees (VCHSTDTs)
are defined as decision trees where the expansion rule for the leftmost nodes is
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Table 2.10. Complexity of MTBDD-LTAs.

MTBDD-LTA

f ntn cn s w paths

0 c total

9sym 24 2 26 5 27 48 75

ex1010 871 177 1048 367 180 791 971

misex1 17 11 28 5 4 14 18

rd53 17 6 23 6 1 23 24

rd73 17 7 24 6 1 31 32

rd84 23 8 41 7 1 63 64

xor5 1 2 3 1 1 1 2

add2 8 7 15 3 1 8 9

add3 24 15 39 7 1 26 27

f1 66 2 68 24 2 63 65

f6 69 2 71 25 58 64 122

f7 67 2 69 23 62 64 126

f8 168 8 176 59 29 189 218

f9 219 16 235 94 19 226 245

f10 136 5 141 54 48 170 218

n1 80 3 83 26 14 122 136

n2 80 3 83 26 21 135 156

n3 50 3 53 15 18 64 82

n4 89 3 92 28 39 111 150

n5 77 3 80 24 43 93 136

n6 62 2 64 19 46 70 116

n7 63 2 65 20 50 70 120

n8 72 2 74 28 58 78 136

n9 68 2 70 25 61 68 129

n10 115 2 117 42 140 102 242

determined by the matrix VC(1), and for the other nodes by the identity matrix

I3 =

⎡⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦ . (2.32)

In VCHSTDTs, the values of constant nodes are the Vilenkin-Chrestenson co-
efficients. The labels at the edges are determined by the analytic expression for
columns of VC3(1). Thus, they are r0 = 1, r1 = 1 + vx + dx2, r2 = 1 + v∗x + d∗x2,
where v = −i√3, and d = −(3/2)(1− i

√
3).

Figure 2.9 shows VCHSTDT for n = 2. In this VCHSTDT, products of labels
at the edges determine the Haar functions in C(C2

3) [38]. In the notation used in
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(1) Given an MTDT in P(Cn
p).

(2) Determine the positive Davio (pD) expansion from the basic matrix for the Fourier trans-
form or the polynomial expressions in P(Cp).
(3) In MTDD, assign the pD-expansion to the leftmost nodes and relabel the outgoing edges
of these nodes.
(4) Reorder the variables in the descending order.
(5) Determine the columns of a (pn × pn) matrix Q as product of labels at the edges.
(6) Calculate the values of constant nodes by using the Q−1 inverse for Q over P.

Algorithm 2.2. Design of HSTMVDT.

VCHSTDTs, they are

har3(0) = 1,

har3(1) = 1 + vx1 + dx2
1,

har3(2) = 1 + v∗x1 + d∗x2
1,

har3(3) = (
1 + vx2 + dx2

2

)
J0
(
x1
)
,

har3(4) = (
1 + vx2 + dx2

2

)
J1
(
x1
)
,

har3(5) = (
1 + vx2 + dx2

2

)
J2
(
x1
)
,

har3(6) = (
1 + v∗x2 + d∗x2

)
J0
(
x1
)
,

har3(7) = (
1 + v∗x2 + d∗x2

)
J1
(
x1
)
,

har3(8) = (
1 + v∗x2 + d∗x2

2

)
J2
(
x1
)
,

(2.33)

where Ji(xj) are characteristic functions defined as Ji(xj) = 1 for xj = i, and
Ji(xj) = 0 for xj �= i.

In Figure 2.9, S3 denotes the generalized Shannon expansion in C(C3) defined
as

f = J0
(
xi
)
f0 + J1

(
xi
)
f1 + J2

(
xi
)
f2, (2.34)

where fi, i = 0, 1, 2, are cofactors of f for xi ∈ 0, 1, 2. The nodes labeled by VC3 are
the positive Davio nodes representing the positive Davio expansion defined from
VC3(1) as

f = 1 · S f0 +
(
1 + vxi + dx2

i

)
S f1 +

(
1 + v∗xi + d∗x2

i

)
S f2

= 1 · ( f0 + f1 + f2
)

+
(
1 + vxi + dx2

i

)(
f0 + e2 f1 + e1 f2

)
+
(
1 + v∗xi + d∗x2

i

)(
f0 + e1 f1 + e2 f2

)
.

(2.35)

The Vilenkin-Chrestenson-Haar transform defined by the VCHSTDT in
Figure 2.9 is equivalent up to reordering to the Watari transform [53–55]. This
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f

VC3

1
1 + vx2 + dx2

2 1 + vx2 + dx2
2

VC3 S3 S3

1

1 + vx1 + dx2
1

1 + vx1 + dx2
1

J0(x1)
J1(x1) J2(x1)

J0(x1)

J1(x1) J2(x1)

S f (0) S f (1) S f (2) S f (3) S f (4) S f (5) S f (6) S f (7) S f (8)

Figure 2.11. VCHSTDT for n = 2.

means that the decision tree discussed above may be properly modified to gener-
ate Watari transforms for different parameters.

Further, by selecting some other transforms to determine expansion rules in
the leftmost nodes, various classes of p-valued Haar-like functions can be defined.
For instance, we can select the Galois field transforms on Cp over GF(p) and define
the corresponding decision diagrams and Haar functions.

2.10. Closing remarks

HSTDDs introduced in this chapter are a representative of STDDs. A given func-
tion f is assigned to an HSTDD through the Haar expression for f .

The algorithm by Karpovsky permits to minimize the number of paths point-
ing to the nonzero constant nodes in an HSTDD. In this way, HSTDDs belong to
rare examples of decision diagrams with a deterministic algorithm for minimiza-
tion of a characteristic of decision diagrams. Minimization of the number of paths
usually implies minimization of the width and, in many cases, the size of the HST-
DDs. It is believed that HSTDDs are useful in applications where descending of
the decision diagrams many times is required.

The same linear transform of variables used in HSTDDs provides for the re-
duction of the number of c-paths, the width, and in many cases, the size of MTB-
DDs.

Since HSDs are MTBDDs with Haar coefficients assigned to the edges, the
complexity of HSDs is equal to that of MTBDDs increased for the space to store
the values of Haar coefficients.

Definition of Haar spectral transform decision diagrams can be directly ex-
tended to the corresponding diagrams for multivalued functions by appropriately
selecting the basic transforms performed at the nodes. Conversely, thus defined
decision diagrams determine the p-valued Haar functions.
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3
Discrete transforms, fast algorithms,
and point spread functions of
numerical reconstruction of digitally
recorded holograms

Leonid P. Yaroslavsky

In digital reconstruction of holograms, holograms are sampled first by CCD or
CMOS photosensitive cameras and the array of numbers obtained is then sub-
jected in computer to digital transformations that imitate wave back propagation
from the camera to the object plane. As a result, samples of the object wave front
amplitude are obtained. Accuracy and computational complexity of numerical
implementation of the wave propagation transforms are of primary importance
for digital holography. The chapter addresses these problems. Specifically, (i) dif-
ferent versions are introduced of discrete representations of the integral Fourier,
Fresnel and Kirchhoff-Reileigh-Zommerfeld transforms that correspond to differ-
ent geometries of hologram and reconstructed image sampling, including canon-
ical discrete Fourier transform (DFT), scaled shifted DFT, rotated DFT, affine
DFT, canonical discrete Fresnel transform (DFrT), scaled shifted DFrT, partial
DFrT, convolutional DFrT; (ii) fast computational algorithms for these transforms
are outlined, and (iii) point spread functions of different hologram reconstruc-
tion algorithms are derived that show how reconstruction results depend on the
holographic setup and photographic camera physical parameters such as object-
to-camera distance, radiation wavelength, camera size, pitch, fill factor, and the
like.

3.1. Introduction

Digital recording and numerical reconstruction of optical holograms in comput-
ers is a revolutionary breakthrough in optical holography and metrology. It elim-
inates the need in photochemical development for recording holograms, allows
real time reconstruction, in a numerical form, of both amplitude and phase of the
object wave front, and directly provides numerical data that can be in a straight-
forward way used in frame of modern informational technologies. In addition, it
allows employing flexibility of digital signal and image processing tools for adap-
tive correction of imperfections of analog optics and optical sensors. Although
first attempts to use digital computers for numerical reconstruction of optical
holograms date back to 1968–1972 (see [1–3]), only relatively recently computers
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and electro-optical light modulators and sensors reached the level high enough to
make this application practical (see [4–6]).

In digital reconstruction of holograms, holograms are first sampled by CCD
or CMOS photosensitive cameras and arrays of obtained numbers are then sub-
jected in computer to digital transformations aimed at the reconstruction of sam-
ples of the object wave front. The core of these transformations is computation of
diffraction integral transforms that describe wave back propagation from holo-
grams to objects. Accuracy in numerical implementation of wave propagation
transformations and computational complexity of the implementations are of pri-
mary importance for digital holography.

A quite number of methods for numerical integration are known in com-
putational mathematics. However, standard numerical integration methods are
intended for integration of analytically defined functions and are not fully ade-
quate to the situation one faces in the problem of numerical reconstruction of
holograms where the number of hologram samples is fixed and the option of
increasing this number to achieve better integration accuracy, which is conven-
tional for numerical integration methods, does not exists. Moreover, these meth-
ods do not take into consideration parameters of the process of hologram sam-
pling.

In this chapter, we present an approach to discrete representation of diffrac-
tional transforms that is based on signal sampling theory and oriented on the
use of fast computational algorithms. In Section 3.2, we outline principles of digi-
tal recording holograms and introduce major diffraction integrals. In Section 3.3,
sampling theory-based principles of discrete representation of diffraction integral
transforms are formulated and in Section 3.4, they are applied to show how holo-
gram sampling results in the sampling of the integral transform kernel and leads
to different versions of the discrete representation of the Fourier integral trans-
form which plays the most fundamental role in holography, those of canonical
discrete Fourier transform, shifted and scaled discrete Fourier transforms, affine
and rotated, and scaled 2D discrete Fourier transforms. In Section 3.5, these prin-
ciples are extended to derivation of different versions of discrete representation
of Fresnel integral transform that are defined by ways in which hologram and
object wave field are supposed to be sampled and by the needs of applications.
Then, in Section 3.6, discrete representation of the most general diffraction trans-
form, Kirchhoff-Rayleigh-Sommerfeld integral transform, is given. All introduced
discrete transforms are oriented on the use of fast FFT-type algorithms for their
computational implementation, and the ways in which it can be done are de-
scribed.

Section 3.7 opens the second part of this chapter devoted to the analysis of
metrological properties of the discrete transforms in the numerical reconstruction
of holograms. These properties are formulated in terms of point spread functions
of the numerical reconstruction processes and it is shown how they depend on the
physical parameters of recording and sampling of holograms and on the type of
the reconstruction algorithm. Some mathematical details and a summary table of
the discrete transforms are collected in the appendix.
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Figure 3.1. Schematic diagram of hologram recording.

3.2. Preliminaries

3.2.1. Mathematical models of recording and
reconstruction of holograms

Consider schematic diagram of recording hologram shown in Figure 3.1. In holo-
gram recording, an object whose hologram is to be recorded is illuminated by a co-
herent radiation from a radiation source, which simultaneously illuminates also a
hologram recording medium with a “reference” beam. Usually, the photosensitive
surface of the recording medium is a plane. We refer to this plane as a hologram
plane. At each point of the hologram plane, the recording medium, whether it is
continuous, such as a photographic film, or discrete, such as a photosensitive ar-
ray of CMOS or CCD digital cameras, measures energy of the sum of the reference
beam and the object beam reflected or transmitted by the object.

Conventional mathematical models of recording and reconstruction of holo-
grams assume that (i) monochromatic coherent radiation that can be described
by its complex amplitude as a function of spatial coordinates is used for holo-
gram recording and reconstruction and (ii) object characteristics defining its abil-
ity to reflect or transmit incident radiation are described by radiation reflection
or transmission factors which are also functions of spatial coordinates. Specifi-
cally, if I(x, y, z) is complex amplitude of the object illumination radiation at point
(x, y, z), complex amplitude a(x, y, z) of the radiation reflected or transmitted by
the object at this point is defined by the equation

a(x, y, z) = I(x, y, z)O(x, y, z), (3.1)

where O(x, y, z) is object reflection or, correspondingly, transmission factor.
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If α( fx, fy) and R( fx, fy) denote complex amplitudes of the object and refer-
ence beams, respectively, at point ( fx, fy) of the hologram plane, signal recorded
by the recording medium at this point is a squared module of their sum:

H
(
fx, fy

) = ∣∣α( fx, fy
)

+ R
(
fx, fy

)∣∣2

= α
(
fx, fy

)
R∗

(
fx, fy

)
+ α∗

(
fx, fy

)
R
(
fx, fy

)
+
∣∣α( fx, fy

)∣∣2
+
∣∣R( fx, fy

)∣∣2
,

(3.2)

where asterisk denotes complex conjugate. This signal is a hologram signal, or
a hologram. The first term in the sum in the right-hand part of (3.2) is propor-
tional to the object’s beam complex amplitude. We will call this term a “mathemat-
ical hologram.” Hologram reconstruction consists in applying to the mathematical
hologram a transform that implements wave back propagation from the hologram
plane to object. For this, one has either to eliminate, before the reconstruction, the
other three terms or to apply the reconstruction transform to the entire hologram
and then, separate the contribution of other terms in the reconstruction result
from that of the mathematical hologram term.

The latter solution is known as a classical method of off-axis recording holo-
gram (see [7]). In off-axis recording, a spatial angle between reference and object
beams is introduced that exceeds the angular size of the object under which it is
seen from the hologram plane. A drawback of this method is that it requires at least
twice as much degrees of freedom (resolution cells) of the recording medium com-
pared to that required for recording hologram without those interference terms.

The method of eliminating interfering terms in recorded holograms before
the reconstruction is known as phase-shifting holography (see [5]). This method
assumes several exposures of holograms of the object with shifting, for each ex-
posure, the phase of the reference beam plane wave front that has the same prop-
agation direction as the object wave front. With an appropriate selection of the
phase, one can than determine the mathematical hologram term by solving sys-
tem of (3.2) for different reference wave front phase shifts. One can show (see
Appendix A) that at least three exposures with phase shifts 2π/3 and 4π/3 with
respect to the first one are required in this method. Although the method can,
in principle, be implemented optically for optical reconstruction of holograms, it
was suggested and is used for numerical reconstruction of holograms.

As it is known, wave propagation transformations are, from the signal theory
point of view, linear transformations. As such, they are mathematically modeled
as integral transformation. Thus, object complex amplitude of radiation a(x, y, z)
and object beam wave front α( fx, fy) at hologram plane are related through “for-
ward propagation”

α
(
fx, fy

) = ∫∫∫∞
−∞

a(x, y, z) WPK
(
x, y, z; fx, fy

)
dx dy dz (3.3)
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and “backward propagation”

a(x, y, z) =
∫∫∞
−∞

α
(
fx, fy

)
WPK

(
x, y,−z; fx, fy

)
dfx dfy (3.4)

integral transforms, where WPK(·; ·) is a transform (wave propagation) kernel.
Commonly, this model is simplified by considering wave propagation between
plane slices of the object and the hologram plane:

α
(
fx, fy

) = ∫∫∞
−∞

a(x, y, 0) WPK
(
x, y,Z; fx, fy

)
dx dy dz,

a(x, y, 0) =
∫∫∞
−∞

α
(
fx, fy

)
WPK

(
x, y,−Z; fx, fy

)
dfx dfy ,

(3.5)

where Z is the distance between the object and hologram planes. Equations (3.5)
are called diffraction transforms.

3.2.2. Diffraction integrals

In numerical reconstruction of holograms, diffraction transforms defined in the
scalar diffraction theory of light propagation are usually considered and numer-
ically implemented. According to the theory, wave front α(f) of an object a(x) is
defined by the Kirchhoff-Rayleigh-Sommerfeld integral (see [8]):

α(f) =
∫∞
−∞

a(x)
Z

R

(
1− i

2π
λ
R
)

exp(i2πR/λ)
R2

dx, (3.6)

where x = (x, y) is a coordinate vector in the object plane, f = ( fx, fy) is a coor-
dinate vector in the hologram plane, Z is a distance between object and hologram
planes, R = √

Z2 + ‖x − f‖2, ‖ · ‖ symbolizes vector norm, and λ is the radiation
wavelength.

Usually, an approximation to the integral (3.6) is made(
1− i

2π
λ
R
)
≈ i

2π
λ
R, (3.7)

and the above integral is reduced to

α( f ) ≈ −i2π
λ
Z
∫∞
−∞

a(x)
exp(i2πR/λ)

R2
dx

∝
∫∞
−∞

a(x)
exp

(
i2π

(
Z
√

(1 + (x − f )2/Z2)/λ
))

1 + (x − f )2/Z2
dx.

(3.8)

This transform is called Kirchhoff-Rayleigh-Sommerfeld integral transform. In (3.8)
and throughout the rest of the paper we, for the sake of brevity, use one-dimen-
sional denotation unless otherwise is indicated.
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98 Discrete transforms for digital holography

Most frequently, object size and hologram size are small with respect to the
object-to-hologram distance Z. Depending on how small they are, two other ap-
proximations to the Kirchhoff-Rayleigh-Sommerfeld integral equation (3.8) are
used, “near-zone diffraction” (Fresnel) approximation:

α( f )∝
∫∞
−∞

a(x) exp
[
iπ

(x − f )2

λZ

]
dx (3.9)

known as Fresnel integral transform, and “far-zone diffraction” (Fraunhofer) ap-
proximation which is well-known Fourier integral transform:

α( f )∝
∫∞
−∞

a(x) exp
(
−i2π x f

λZ

)
dx. (3.10)

There is also a version of the Fresnel transform called angular spectrum prop-
agation (see [8]). In this version, Fresnel transform is treated as a convolution. By
the Fourier convolution theorem, Fresnel transform (3.9) can be represented as
inverse Fourier transform:

α( f )∝
∫∞
−∞

[∫∞
−∞

a(x) exp(i2πxξ)dx

]

×
[∫∞

−∞
exp

(
iπ

x2

λZ

)
exp(i2πxξ)dx

]
exp(−i2π f ξ)dξ

=
∫∞
−∞

[∫∞
−∞

a(x) exp(i2πxξ)dx

]

×
[∫∞
−∞

exp
(
iπ

x2

λZ

)
exp(i2πxξ)dx

]
exp(−i2π f ξ)dξ

=
∫∞
−∞

[∫∞
−∞

a(x) exp(i2πxξ)dx

]
exp

(−iπλZξ2) exp(−i2π f ξ)dξ

(3.11)

of the product of signal Fourier transform and Fourier transform of the chirp
function exp(iπx2/λZ), which is, in its turn, a chirp-function (Appendix B, (B.1)).

For numerical reconstruction of holograms recorded in different diffraction
zones, as well as for synthesis of computer-generated holograms, discrete repre-
sentations of the above diffraction integrals are needed that are suited for efficient
computational implementation.
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3.3. Discrete representation of transforms: principles

As far as quantum effects are not concerned, physical reality is a continuum
whereas computers have only finite number of states. How can one imitate phys-
ical reality of optical signals and transforms in computers? Two principles lie in
the base of digital representation of continuous signal transformations: the confor-
mity principle with digital representation of signals and the mutual correspondence
principle between continuous and discrete transformations (see [9]). The confor-
mity principle requires that digital representation of signal transformations should
parallel that of signals. Mutual correspondence between continuous and digital
transformations is said to hold if both act to transform identical input signals into
identical output signals. According to these principles, digital processors incorpo-
rated into optical information systems should be regarded and treated together
with signal digitization and signal reconstruction devices as integrated analogous
units.

Discretization is a process of measuring, in the discretization devices such as
image scanners and hologram sensors, of coefficients of signal expansion into a
series over a set of functions called discretization basis functions. These coefficients
represent signals in computers. It is assumed that original continuous signals can
be, with certain agreed accuracy, reconstructed by summation of functions called
reconstruction basis functions with weights equal to the corresponding coefficients
of signal discrete representation. The reconstruction is carried out in signal recon-
struction devices such as, for instance, image displays and computer-generated
hologram recorders.

In digital holography and image processing, discretization and reconstruc-
tion basis functions that belong to a family of “shift,” or sampling, basis functions
are most commonly used. All functions from this family are obtained from one
“mother” function by means of its spatial shifts through multiple of a sampling
interval. Signal discrete representation coefficients obtained for such functions are
called signal samples.

The mathematical formulation of signal sampling and reconstruction from
the sampled representation is as follows. Let a(x) be a continuous signal as a func-
tion of spatial coordinates given by a vector x(s), let

ϕ(s)
k

(
x(s)

)
= ϕ(s)

(
x(s) − k̃(s)Δx(s)

)
, ϕ(r)

k

(
x(r)

)
= ϕ(r)

(
x(r) − k̃(r)Δx(r)

)
(3.12)

be sampling and reconstruction basis functions defined in the sampling and re-
construction devices coordinates {x(s)} and {x(r)}, respectively, let Δx(s) and Δx(r)

be vectors of the sampling intervals in, respectively, sampling and reconstruction

devices, let k̃(s) = k + u(s) and k̃(r) = k + u(r) be vectors of signal sample indices
k biased by certain shift vectors u(s) and u(r). Shift vectors describe shift, in units
of the corresponding sampling intervals, of the sampling grid with respect to the
corresponding coordinate systems x(s) and x(r) such that samples with index k = 0
are assumed to have respective coordinates x(s) = u(s), x(r) = u(r).
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100 Discrete transforms for digital holography

At sampling, signal samples {ak} are computed as projections of the signal
onto sampling basis functions:

ak =
∫

X
a(x)ϕ(s)

(
x(s) − k̃(s)Δx(s)

)
dx, (3.13)

assuming certain relationship between signal and sampling device coordinate sys-
tems {x} and {x(s)}.

Signal reconstruction from the set of their samples {ak} is described as signal
expansion over the set of reconstruction basis functions:

ã
(

x(r)
)
=
∑

k

akϕ
(r)
(

x(r) − k̃(r)Δx(r)
)

, (3.14)

in a reconstruction device coordinate system.
The result ã(x) of the signal reconstruction from its discrete representation

obtained according to (3.14) is not, in general, identical to the initial signal a(x).
It is understood, however, that it can, in the given application, serve as a substitute
for the initial signal.

Equations (3.13) and (3.14) model processes of hologram sampling in digital
cameras and, respectively, object reconstruction in display devices.

According to the above-formulated conformity principle, (3.13) and (3.14)
form the base for adequate discrete representation of signal transformations. In
what follows, we describe discrete representations of optical diffraction integral
transforms generated by this kind of signal representation.

3.4. Discrete Fourier transforms

In this section, we will provide, using the above outlined approach, a full deriva-
tion of discrete Fourier transforms as discrete representations of the integral
Fourier transform. This derivation will explicitly demonstrate approximations that
are done in this continuous-to-discrete conversion and will serve as an illustrative
model for other diffraction transforms considered hereafter.

Let α( f ) and a(x) be, correspondingly, hologram and object wave fronts
linked through the integral Fourier transform:

α( f ) =
∫∞
−∞

a(x) exp
(
i2π

x f

λZ

)
dx. (3.15)

In digital recording of holograms, samples of the hologram wave front are ob-
tained as

αr =
∫∞
−∞

α( f )ϕ(s)
(
f − r̃ (s)Δ f (s)

)
df . (3.16)
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Replacing here α( f ) through its representation as Fourier transform of a(x) (3.15),
we obtain

αr =
∫∞
−∞

{∫∞
−∞

a(x) exp
(
i2π

x f

λZ

)
dx

}
ϕ(s)

(
f − r̃ (s)Δ f (s)

)
df

=
∫∞
−∞

a(x)dx

{∫∞
−∞

ϕ(s)
[
f − r̃ (s)Δ f (s)

]
exp

(
i2π

x f

λZ

)}
df

=
∫∞
−∞

a(x) exp

(
i2π

xr̃ (s)
Δ f (s)

λZ

)
dx

{∫∞
−∞

ϕ(s)( f ) exp

(
i2π

x f

λZ

)}
df

=
∫∞
−∞

a(x) exp

(
i2π

xr̃ (s)Δ f (s)

λZ

)
Φ(s)(x)dx,

(3.17)

where

Φ(s)(x) =
∫∞
−∞

ϕ(s)( f ) exp
(
i2π

x f

λZ

)
df (3.18)

is Fourier transform of the sampling device point spread function, or its “fre-

quency response,” {r̃ (s) = r + v(s)} are sample indices shifted as it was explained in
Section 3.1. Now we can replace the object wave front a(x) with its representation

a(x) =
N−1∑
k=0

akϕ
(r)
(
x − k̃(r)Δx(r)

)
(3.19)

through its samples {ak}, assuming that N its samples are available, and that they

are indexed from k = 0 to k = N − 1 with {k̃ = k(r) + u(r)} as correspondingly
shifted indices. Using in (3.17) the representation of (3.19), we obtain

αr =
∫∞
−∞

a(x) exp

(
i2π

xr̃ (s)
Δ f (s)

λZ

)
dxΦ(s)(x)

=
∫∞
−∞

{N−1∑
k=0

akϕ
(r)
(
x − k̃(r)Δx(r)

)}
exp

(
i2π

xr̃ (s)Δ f (s)

λZ

)
dxΦ(s)(x)

=
{N−1∑

k=0

ak exp

(
i2π f k̃(r)r̃ (s) Δx(r)Δ f (s)

λZ

)}

×
{∫∞

−∞
ϕ(r)(x)Φ(s)

(
x + k̃(s)Δx(r)

)
exp

(
i2π

xr̃ (s)Δ f (s)

λZ

)
dx

}
.

(3.20)
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102 Discrete transforms for digital holography

As the discrete representation of the integral Fourier transform, only the first mul-
tiplier in the product in (3.20) is used

αr =
N−1∑
k=0

ak exp

(
i2π f k̃(r)r̃ (s) Δx(r)Δ f (s)

λZ

)
. (3.21)

The second multiplier that depends on physical parameters of sampling and re-
construction (display) devices, on sampling intervals, and on object-to-hologram
distance is ignored. It is this term that, in addition to the approximative signal re-
construction from the final number of its samples as described by (3.19), reflects
approximative nature of the discrete representation of integral Fourier transform.
The most straightforward way to quantitatively evaluate implication of the ap-
proximation is to consider the point spread function and the resolving power of
signal Fourier spectrum analysis or of numerical reconstruction of Fourier holo-
grams that can be achieved using discrete Fourier transforms. This issue is ad-
dressed in Section 3.7.2.

Sampling intervals in signal and Fourier domains Δx(r) and Δ f (s) are known
to be linked with the “uncertainty relationship”:

Δx(r) ≥ λZ

NΔ f (s)
. (3.22a)

The case

Δx(r) = λZ

NΔ f (s)
(3.22b)

associated with the assumption of the “band-limitedness” of signals is referred
to as cardinal sampling. Depending on relationships between sampling intervals
Δx(r)and Δ f (s)and on shift parameters u(s) and u(r), the following modifications of
the discrete Fourier transforms outlined in Sections 3.4.1–3.4.5 can be obtained.

3.4.1. 1D direct and inverse canonical discrete Fourier transforms

In the assumption that signal and its Fourier spectrum sampling intervals Δx(r)

and Δ f (s) satisfy the “cardinal” sampling relationship of (3.22b) and that object
signal and object sampling device coordinate systems as well as those of the holo-
gram and of the hologram sampling device are, correspondingly, identical, and
object signal samples {ak} as well as samples {αr} of its Fourier hologram are po-
sitioned in such a way that samples with indices k = 0 and r = 0 are taken in signal
and its Fourier hologram coordinates in points x = 0 and f = 0, respectively, 1D
direct

αr = 1√
N

N−1∑
k=0

ak exp
(
i2π

kr

N

)
(3.23a)
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and inverse

ak = 1√
N

N−1∑
r=0

αr exp
(
− i2π

kr

N

)
. (3.23b)

Canonical discrete Fourier transforms (DFTs) are obtained.
Canonical DFT plays a fundamental role in digital signal processing and, in

particular, in digital holography and digital image processing thanks to the exis-
tence of fast Fourier transform (FFT) algorithms. With the use of FFT, computa-
tional complexity of transforms is as small as O(logN) operations per sample. All
discrete transforms reviewed in this chapter are reducible to DFT and can be com-
puted using FFT algorithms. Thanks to the existence of FFT algorithms, DFT is
also very frequently used for fast computation of signal cyclic convolution through
the following algorithm:

N−1∑
n=0

anb(k−n) mod N = IFFTN
{

FFTN
({
an
}) • FFTN

({
bn
})}

, (3.24)

where FFTN{·} and IFFTN{·} are operators of N-point FFTs applied to vectors of
N signal samples and symbol • designates componentwise multiplication of the
transform results.

3.4.2. 1D direct and inverse shifted DFTs: discrete cosine and
cosine-sine transforms

If object and object signal sampling device coordinate systems as well as those of
signal spectrum and the spectrum sampling device are laterally shifted such that
signal sample {a0} and, correspondingly, sample {α0} of its Fourier spectrum are
taken in signal and spectrum coordinates at points x = u(r)Δx(r) and f = v(s)Δ f (s),
respectively, 1D direct

αu,v
r = 1√

N

N−1∑
k=0

ak exp

(
i2π

k̃r̃

N

)
(3.25a)

and inverse

au,v
k = 1√

N

N−1∑
r=0

αu,v
r exp

(
− i2π

k̃r̃

N

)
. (3.25b)

Shifted DFTs (SDFTs(u, v)) are obtained (see [9, 10]). The “cardinal” sampling
relationship (3.22b) between object signal and its Fourier spectrum sampling in-
tervals Δx(r) and Δ f (s) is also assumed here.

SDFT can obviously be reduced to DFT and, therefore, be computed using
FFT algorithms. The availability in SDFT of arbitrary shift parameters enables ef-
ficient algorithms for hologram reconstruction and object signal resampling with
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104 Discrete transforms for digital holography

discrete sinc-interpolation, which is, as it is shown in Chapter 8, the best possible
interpolation method for sampled data. For instance, for u-shifted signal resam-
pling using SDFT, the following relationship links initial signal samples {an} and
resampled ones {au

k
}:

au
k
=

N−1∑
n=0

an
sin

[
π(n− k + u)

]
N sin

[
π(n− k + u)/N

] = N−1∑
n=0

an sincd
[
N ,π(n− k + u)

]
, (3.26)

where

sincd(N ; x) = sin x

N sin x/N
(3.27)

is the discrete sinc-function (sincd-function).
Important special cases of shifted DFTs are discrete cosine transform (DCT):

αr =
N−1∑
k=0

ak cos
(
π
k + 1/2

N
r
)

(3.28a)

and discrete cosine-sine transform (DcST):

αr =
N−1∑
k=0

ak sin
(
π
k + 1/2

N
r
)
. (3.28b)

They are SDFTs, with shift parameters 1/2 in the signal domain and 0 in the trans-
form domain, of signals that exhibit even and, correspondingly, odd symmetry
({ak = ±a2N−1−k}). DCT and DcST have fast computational algorithms that be-
long to the family of fast Fourier transform algorithms (see [9]).

DCT and DcST have numerous applications in image processing and digi-
tal holography. In particular, using fast DCT and DcST algorithms, one can effi-
ciently, with the complexity of O(logN) operations per output sample, implement
fast digital convolution with virtually no boundary effects. This allows to substan-
tially alleviate severe boundary effects that are characteristic for using DFT for sig-
nal convolution as the DFT-based convolution algorithm (3.24) implements cyclic
(periodic) convolution rather than usually required aperiodic convolution. This
DCT-based algorithm for computing signal convolution is described in Appendix
B. In conclusion of this section note that many other versions of SDFT, DCT, and
DcST with semiinteger and integer shift parameters can be easily derived for dif-
ferent types of signal and its spectrum symmetries.

3.4.3. 1D scaled DFT

If one assumes that sampling rate of either signal samples or spectrum samples,
or both is σ-times the “cardinal” sampling rate (Δx(r) = λZ/σNΔ f (s)), and that
signal and its Fourier hologram samples {a0} and {α0} are positioned with shifts
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(u(r), v(s)) with respect to the origin of the corresponding signal and spectrum co-
ordinate systems, scaled DFT (ScDFT)

ασr =
1√
σN

N−1∑
k=0

ak exp

(
i2π

k̃r̃

σN

)
(3.29a)

is obtained. Modification of this transform for zero-shift parameters is also known
under the names of “chirp z-transform” (see [11, 12]) and “fractional discrete
Fourier transform.” The first name is associated with the way to compute it effi-
ciently (see (3.30)). The second name assumes that it is a discretized version of the
fractional integral Fourier transform (see [13, 14]) that has found some applica-
tions in optics and quantum mechanics. We prefer the name “scaled DFT” because
it is more intuitive, refers to its physical interpretation, and fits the entire nomen-
clature of discrete Fourier transforms (shifted, scaled, rotated, scaled and rotated,
affine) introduced in this chapter.

Scaled DFT has its inverse only if σN is an integer number (σN ∈ Z). In this
case, inverse ScDFT is defined as

aσk =
1√
σN

σN−1∑
r=0

αr

(
− i2π

k̃r̃

σN

)
=
⎧⎨⎩ak, k = 0, 1, . . . ,N − 1,

0, k = N ,N + 1, . . . , σN − 1.
(3.29b)

For computational purposes, it is convenient to express ScDFT as a cyclic convo-
lution

ασr =
1√
σN

N−1∑
k=0

ak exp

(
i2π

k̃r̃

σN

)

= exp
(
iπ
(
r̃2/σN

))
√
σN

N−1∑
k=0

[
ak exp

(
iπ

k̃2

σN

)]
exp

[
−iπ (k̃ − r̃ )2

σN

]
,

(3.30)

that can be computed using FFT algorithm as follows:

α(σ)
r = IFFT�σN�

{
ZP�σN�

[
FFTN

{
ak exp

(
iπ

k̃2

σN

)}]

• FFT�σN�

{
exp

(
−iπ ñ 2

σN

)}}
,

(3.31)

where FFTM{·} and IFFTM{·} denote M-point direct and inverse FFTs, �σN� is
an integer number defined by the inequality σN ≤ �σN� < σN + 1, and ZPM[·] is
a zero-padding operator. If σ > 1, it pads the array of N samples with zeros to the
array of �σN� samples. If σ < 1, it cuts array of Nsamples to size of �σN� samples.

The availability in ScDFT of the arbitrary scale parameter enables signal
discrete sinc-interpolated resampling and Fourier hologram reconstruction in an
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106 Discrete transforms for digital holography

arbitrary scale. For instance, if one computes canonical DFT of a signal and then
applies to the obtained spectrum scaled IDFT with a scale parameter σ , discrete
sinc-interpolated samples of the initial signal in a scaled coordinate system will be
obtained:

aσk =
N−1∑
n=0

an sincd
[
N ;π

(
n− k

σ

)]
. (3.32)

If σ > 1, signal {ak} is subsampled (its discrete representation is zoomed in)
with discrete sinc-interpolation and the subsampled signal retains the initial signal
bandwidth. If σ < 1, signal {ak} is downsampled (decimated). For signal down-
sampling, an appropriate signal low pass filtering required to avoid aliasing arti-
facts is automatically carried out by the imbedded zero-padding operator ZP�σN�.

3.4.4. 2D canonical separable DFTs

For 2D integral Fourier transform, the following separable 2D canonical direct
and inverse DFTs:

αr,s = 1√
N1N2

N1−1∑
k=0

exp
(
i2π

kr

N1

) N2−1∑
l=0

ak,l exp
(
i2π

ls

N1

)
,

ak,l = 1√
N1N2

N1−1∑
r=0

exp
(
− i2π

kr

N1

) N2−1∑
s=0

αr,s exp
(
− i2π

ls

N2

) (3.33)

are obtained in the assumption that object signal and its hologram sampling and
reconstruction are performed in rectangular sampling grids (rowwise, column-
wise) collinear with the object coordinate system. Here N1 and N2 are dimensions
of 2D arrays of signal and its Fourier spectrum samples. In separable 2D DFTs,
1D shifted and scaled DFTs can also be used to enable signal 2D separable discrete
sinc-interpolated resampling and rescaling.

3.4.5. 2D rotated and affine DFTs

In 2D case, a natural generalization of 1D shifted and scaled DFTs is 2D affine DFT
(AffDFT). AffDFT is obtained in the assumption that either signal or its spectrum
sampling or reconstructions are carried out in affine transformed, with respect to
signal/spectrum coordinate systems (x, y), coordinates (x̃, ỹ):

[
x
y

]
=
[
A B
C D

][
x̃
ỹ

]
. (3.34)

With σA = λZ/N1AΔx̃Δ fx, σB = λZ/N2BΔ ỹΔ fx, σC = λZ/N1CΔx̃Δ fy , σD =
λZ/N2DΔ ỹΔ fy , where Δx̃, Δ ỹ, Δ fx, and Δ fy are object and its Fourier hologram

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


Leonid P. Yaroslavsky 107

sampling intervals in object (x̃, ỹ) and hologram ( fx, fy) planes, AffDTF is defined
as

αr,s =
N1−1∑
k=0

N2−1∑
l=0

ak,l exp

[
i2π

(
r̃ k̃

σAN1
+

s̃ k̃

σCN1
+

r̃ l̃

σBN2
+

s̃ l̃

σDN2

)]
, (3.35)

where {k̃, l̃} and {r̃, s̃} are biased (shifted) sampling indices in object and hologram
planes as it is explained in Section 3.3.

A special case of affine transforms is rotation. For rotation angle θ,

[
x
y

]
=
[

cos θ sin θ
− sin θ cos θ

][
x̃
ỹ

]
. (3.36)

With N1 = N2 = N , Δx̃ = Δ ỹ = Δx, Δ fx = Δ fy = Δ f , and ΔxΔ f = λZ/N
(cardinal sampling), 2D rotated DFT (RotDFT) is obtained as

αθr,s =
1
σN

N−1∑
k=0

N−1∑
l=0

ak,l exp

[
i2π

(
k̃ cos θ + l̃ sin θ

N
r̃ − k̃ sin θ − l̃ cos θ

N
s̃
)]

.

(3.37)

An obvious generalization of RotDFT is rotated and scaled RotDFT (RotScDFT):

αθr,s =
1
σN

N−1∑
k=0

N−1∑
l=0

ak,l exp

[
i2π

(
k̃ cos θ + l̃ sin θ

σN
r̃ − k̃ sin θ − l̃ cos θ

σN
s̃
)]

,

(3.38)

that assumes 2D signal sampling in θ-rotated and σ-scaled coordinate systems.
Similar to ScDFT, RotScDFT can be reduced to 2D cyclic convolution using the
following identities:

αθr,s =
1
σN

N−1∑
k=0

N−1∑
l=0

ãk,l exp

[
i2π

(
k̃ cos θ + l̃ sin θ

σN
r̃ − k̃ sin θ − l̃ cos θ

σN
s̃
)]

= 1
σN

N−1∑
k=0

N−1∑
l=0

ãk,l exp

[
i2π

(
k̃r̃ + l̃ s̃

σN
cos θ +

l̃ r̃ − k̃s̃

σN
sin θ

)]
,

(3.39)

2(k̃r̃ + l̃ s̃ ) = r̃ 2 + k̃2 − s̃ 2 − l̃
2 − (r̃ − k̃)2 + (s̃ + l̃)2, (3.40)

2(l̃ r̃ − k̃s̃ ) = 2k̃ l̃ − 2r̃ s̃ + 2(r̃ − k̃)(s̃ + l̃). (3.41)
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108 Discrete transforms for digital holography

With inserting (3.39) and (3.40) into (3.39), we obtain

αθr,s =
1
σN

N−1∑
r=0

N−1∑
s=0

ãk,l exp

[
i2π

(
k̃r̃ + l̃ s̃

σN
cos θ +

l̃ r̃ − k̃s̃

σN
sin θ

)]

= 1
σNa

N−1∑
k=0

N−1∑
l=0

ãk,l exp

[
iπ
r̃ 2 + k̃2 − s̃ 2 − l̃

2 − (r̃ − k̃)2 + (s̃ + l̃)2

σN
cos θ

]

× exp

[
−i2π 2k̃ l̃ − 2r̃ s̃ + 2(r̃−k̃)(s̃ + l̃)

σN
sin θ

]

=
{

1
σN

N−1∑
k=0

N−1∑
l=0

(
αr,sAr,s

)
ChF(s̃+ l̃, r̃−k̃)

}
exp

[
−iπ

(
k̃2− l̃ 2)

cos θ−2k̃ l̃ sin θ

σN

]
,

(3.42)

where

ChF(s̃ + l̃, r̃ − k̃) = exp

[
iπ

(s̃ + l̃)2 cos θ − (r̃ − k̃)2 cos θ − 2(r̃ − k̃)(s̃ + l̃) sin θ

σN

]
,

Ar,s =
{

exp

[
−iπ

(
r̃2 − s̃

)2
cos θ + 2r̃ s̃ sin θ

σN

]}
.

(3.43)

The convolution defined by (3.42) can be efficiently computed using FFT as

{
ãk,l

} = IFFT 2�σN�
{

FFT 2�σN�
[
ZP�Nσ�

[
FFT 2N

(
ak,l

)] • Ar,s
]

• FFT 2�σN�
[

ChF(r, s)
]}

,
(3.44)

where FFT 2�Nσ�[·] and IFFT 2�Nσ�[·] are operators of direct and inverse �Nσ�-
point 2D FFT, �Nσ� is the smallest integer larger than Nσ , ZP�Nσ�[·] is a 2D zero-
padding operator. For σ > 1, it pads array of N × N samples with zeros to the
array of �σN� × �σN� samples with �σN� defined, as above, by the inequality
σN ≤ �σN� < σN + 1. For σ < 1, the padding operator cuts array of N × N
samples to the size of �σN� × �σN� samples.

3.5. Discrete Fresnel transforms

In this section, we outline discrete transforms and their fast algorithms that can
be used for numerical evaluation of the “near-zone” (Fresnel) diffraction integral.
Using above described principles of discretization of signal transforms one can
obtain its following discrete representations.
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3.5.1. Canonical discrete Fresnel transform

Similar to canonical DFT, direct and inverse canonical discrete Fresnel transforms
(CDFrT)

αr = 1√
N

N−1∑
k=0

ak exp

[
iπ

(kμ− r/μ)2

N

]
,

ak = 1√
N

N−1∑
r=0

αr exp

[
− iπ

(kμ− r/μ)2

N

] (3.45a)

are obtained as a discrete representation of the integral Fresnel transform (3.5) in
the assumption of the cardinal sampling relationship Δx(r) = λZ/NΔ f (s) between
sampling intervals in signal and transform domains and of zero shifts of object and
hologram sampling grids with respect to the corresponding coordinate systems.
Parameter μ2 in (3.45) is defined as

μ2 = λZ

NΔ f 2
. (3.45b)

It plays in DFrT a role of a distance (focusing) parameter.
CDFrT can easily be expressed via DFT:

αr = 1√
N

{N−1∑
k=0

[
ak exp

(
iπ
k2μ2

N

)]
exp

(
− i2π

kr

N

)}
exp

(
iπ

r2

μ2N

)
(3.46)

and, therefore, can be computed using FFT algorithms. In numerical reconstruc-
tion of Fresnel holograms, this method for computing DFrT is known as the
“Fourier reconstruction algorithm.”

3.5.2. Shifted discrete Fresnel transforms

If one assumes cardinal sampling condition and arbitrary shift parameters in ob-
ject and/or its hologram sampling, shifted discrete Fresnel transforms (SDFrTs)

α
(μ,w)
r = 1√

N

N−1∑
k=0

ak exp

[
−iπ (kμ− r/μ + w)2

N

]
(3.47)

are obtained similar to how it was done for the discrete representation of the
Fourier integral transform (3.10). Parameter w in (3.47) is a joint shift parame-
ter that unifies shifts u(r) and v(s) of sampling grids in object and hologram planes:

w = u(r)

μ
− v(s)μ. (3.48)
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110 Discrete transforms for digital holography

3.5.3. Focal plane invariant discrete Fresnel transform

Because shift parameter w in shifted DFrT is a combination of shifts in object
and hologram planes, shift in object plane causes a corresponding shift in Fresnel
hologram plane, which, however, depends, according to (3.48), on the focusing
parameter μ. One can break this interdependence if, in the definition of the discrete
representation of integral Fresnel transform, one imposes a symmetry condition

α
(μ,w)
r = α

(μ,w)
N−r for the transform α

(μ,w)
r = exp[−iπ(r/μ − w)2/N] of a point source

δ(k) = 0k, k = 0, 1, . . . ,N − 1. This condition is satisfied when w = N/2μ, and
SDFrT for such a shift parameter takes the form

α
(μ,N/2μ)
r = 1√

N

N−1∑
k=0

ak exp

{
−iπ

[
kμ− (r −N/2)/μ

]2

N

}
. (3.49)

We refer to this discrete transform as to focal plane invariant discrete Fresnel trans-
form (FPIDFrT). In numerical reconstruction of holograms, position of the re-
constructed object in the output sampling grid depends on the object-hologram
distance when canonical DFrT is used. FPIDFrT defined by (3.48) allows keeping
position of reconstructed objects invariant to the object-hologram distance (see
[15]), which might be useful in applications. For instance, invariance of the recon-
struction object position with respect to the distance parameter can ease automatic
object focusing and usage of pruned FFT algorithms in reconstruction of a part of
the field of view (see [9]).

3.5.4. Partial discrete shifted Fresnel transform

When, in hologram reconstruction, only intensity of the object wave front is re-
quired, direct and inverse partial discrete Fresnel transforms (PDFrTs),

�
α

(μ,w)

r = 1√
N

N−1∑
k=0

ak exp
(
− iπ

k2μ2

N

)
exp

[
i2π

k(r −wμ)
N

]
,

a
(μ,w)
k = 1√

N

N−1∑
r=0

�
α

(μ,w)

r exp
[
− i2π

(r −wμ)k
N

]
exp

(
iπ
k2μ2

N

)
,

(3.50)

can be used as discrete representations of the integral Fresnel transform. They are
obtained by removing from (3.45) exponential phase terms that do not depend on
signal sampling index k. As one can see from (3.50), direct and inverse PDFrTs are
essentially versions of SDFT. Their focal plane invariant versions can be defined
correspondingly.
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3.5.5. Invertibility of discrete Fresnel transforms and frincd-function

For shifted shift and focusing parameters, discrete Fresnel transforms are invert-
ible orthogonal transforms. If, however, one computes, for a discrete signal {ak},
k = 0, 1, . . . ,N −1, direct SDFrT with parameters (μ+,w+) and then inverts it with
inverse SDFrT with parameters (μ−,w−), the following result, different from {ak},
will be obtained:

a
(μ±,w±)
k =

exp
[
− iπ

((
kμ− + w−

)2
/N

)]
N

×
N−1∑
n=0

an exp

[
iπ

(
nμ+ + w+

)2

N

]
frincd

(
N ; q;n− k + w± +

qN

2

)
,

(3.51)

where q = 1/μ2
+ − 1/μ2−, w± = w+/μ+ −w−/μ−, and

frincd (N ; q; x) = 1
N

N−1∑
r=0

exp
(
iπ
qr2

N

)
exp

(
− i2π

xr

N

)
. (3.52a)

It is a function analogous to the sincd-function of the DFT (3.27) and identical
to it when q = 0. We refer to this function as to frincd-function. In numerical
reconstruction of holograms, frincd-function is the convolution kernel that links
object and its “out of focus” reconstruction.

Focal plane invariant version of frincd-function is obtained as

frincd (N ; q; x) = 1
N

N−1∑
r=0

exp
[
iπ
qr(r −N)

N

]
exp

(
− i2π

xr

N

)
. (3.52b)

Figure 3.2 illustrates behavior of absolute values of function frincd (N ; q; x)
for different values of q in the range 0 ≤ q ≤ 1. In Figure 3.3, absolute values of
function

√
q frincd (N ; q; x) for q in the range 0 ≤ q ≤ 2.5 are shown as an image

in coordinates (q, x) to demonstrate aliasing artifacts that appear q > 1.
As one can see from (3.52), frincd-function is DFT of a chirp-function. It is

known that integral Fourier transform of a chirp-function is also a chirp-function.
In Appendix C it is shown that, in distinction from the continuous case, frincd-
function can only be approximated by a chirp-function (see [16]),

frincd (N ;±q; x) ∼=
√
±i
Nq

exp
[
∓ iπ

x2

qN

]
rect

[
x

q(N − 1)

]
. (3.53a)

For q = 1 and integer x, it is reduced to an exact chirp-function

frincd (N ; 1; x) =
√

i

N
exp

(
− iπ

x2

N

)
, x ∈ Z. (3.53b)
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Figure 3.2. Absolute values of function frincd (N ; q; x) for several values of q.
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Figure 3.3. Function
√
q frincd (N ; q; x) represented, in coordinates (q, x), as an image with lightness

proportional to its absolute values of. Note aliasing artifacts for q > 1 that culminate when q ≥ 2.

For q = 0, frincd-function reduces to sincd-function:

frincd (N ; 0; x) = sincd(N ;πx) exp
(
− iπ

N − 1
N

x
)
. (3.53c)
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3.5.6. Convolutional discrete Fresnel transform

In numerical reconstruction of holograms, canonical discrete Fresnel transform
and its above-described versions face aliasing problems for small distance Z, when
focusing parameter μ2 = λZ/NΔ f 2 is becoming less than 1. For such cases, dis-
crete representation of integral Fresnel transform can be used which is built on the
base of the angular spectrum propagation version of the integral Fresnel transform
(3.11):

α( f )∝
∫∞
−∞

[∫∞
−∞

a(x) exp(i2πxξ)dx

]
exp

(− iπλZξ2) exp(−i2π f ξ)dξ

=
∫∫∞
−∞

a(x) exp
[
i2π(x − f )ξ

]
exp

(− iπλZξ2)dx dξ
(3.54)

and in the deliberate assumption that sampling intervals Δx(r) and Δ f (s) of the
object signal and its Fresnel transform are identical; Δx(r) = Δ f (s). In this assump-
tion, the following version of discrete Fresnel transform referred to as convolu-
tional discrete Fresnel transform (ConvDFrT) is obtained for object and hologram
sampling shift parameters u(r) and v(s):

αr = 1
N

N−1∑
s=0

[ N−1∑
k=0

ak exp
(
i2π

k − r + w

N
s
)]

exp
(
− iπ

μ2s2

N

)

= 1
N

N−1∑
k=0

ak

[ N−1∑
s=0

exp
(
− iπ

μ2s2

N

)
exp

(
i2π

k − r + w

N
s
)]

,

(3.55a)

or

αr =
N−1∑
k=0

ak frincd ∗
(
N ;μ2; k − r + w

)
, (3.55b)

where w = u(r) − v(s) and asterisk denotes complex conjugate.
ConvDFrT, similar to DFTs and DFrTs, is an orthogonal transform with in-

verse ConvDFrT defined as

ak = 1
N

N−1∑
s=0

[ N−1∑
r=0

αr exp
(
− i2π

k − r + w

N
s
)]

exp
(
iπ
μ2s2

N

)

=
N−1∑
r=0

αr frincd
(
N ;μ2; k − r + w

)
.

(3.55c)

When μ2 = 0 and w = 0, ConvDFrT degenerates to the identical transform.
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114 Discrete transforms for digital holography

Although ConvDFrT as a discrete transform can be inverted for any μ2, in
numerical reconstruction of holograms it can be recommended only for μ2 =
λZ/NΔ f 2 ≤ 1. If μ2 = λZ/NΔ f 2 > 1, aliasing appears in the form of overlap-
ping periodical copies of the reconstruction result.

The Fresnel hologram reconstruction algorithm based on ConvFrT is fre-
quently referred to as the “convolution reconstruction algorithm”.

3.5.7. 2D discrete Fresnel transforms: scaled and rotated transforms

2D discrete Fresnel transforms are usually defined as separable row-column
transforms. For instance, canonical 2D Fresnel transform is defined as

α
(μ,0,0)
r,s = 1√

N1N2

N−1∑
k=0

exp

[
− iπ

(kμ− r/μ)2

N

] N2−1∑
l=0

ak,l exp

[
− iπ

(lμ− s/μ)2

N2

]
.

(3.56)

As the last stage in the algorithmic implementations of all versions of dis-
crete Fresnel transforms is discrete Fourier transform implemented via FFT algo-
rithm, scaled and rotated modifications of DFT can be applied at this stage. This
will enable scaling and/or rotation of the transform result, if they are required
when using discrete Fresnel transforms for numerical reconstruction of digitally
recorded holograms. For instance, scaled reconstruction is required in reconstruc-
tion of hologram of the same object recorded in different wavelengths, such as
color holograms.

3.6. Discrete Kirchhoff-Rayleigh-Sommerfeld transforms

Using the above-described transform discretization principles and assuming, as in
the case of the convolutional Fresnel transform, identical sampling intervals Δx(r)

and Δ f (s) of the signal and its transform, one can obtain the following 1D and 2D
(for square data arrays) discrete representations of integral Kirchhoff-Payleigh-
Sommerfeld transform:

αr =
N−1∑
k=0

ak KRS(1D)(k̃ − r̃ ),

αr,s =
N−1∑
k=0

N−1∑
l=0

ak,l KRT(2D)(k̃ − r̃; l̃ − r̃ ),

(3.57)
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where it is denoted as

KRS(1D)
z̃ ,μ (n) = exp

[
i2π

(
z̃ 2
√

(1 + n2/z̃ 2)/μ2N
)]

1 + n2/z̃ 2 ,

KRS(2D)
z̃ ,μ (m,n) = exp

[
i2π

(
z̃ 2
√

(1 + m2/z̃ 2 + n2/z̃ 2)/μ2N
)]

1 + m2/z̃ 2 + n2/z̃ 2 ,

z̃ = Z

Δ f
, μ2 = λZ

NΔ f 2
= λz̃

NΔ f
.

(3.58)

We refer to these transforms as 1D and 2D discrete Kirchhoff-Rayleigh-Sommerfeld
transforms (DKRSTs). When z̃ → 0, DKRS-transform degenerates into the identi-
cal transform. When z̃ → ∞, DKRS-transform converts to discrete Fresnel trans-
forms. In distinction from 2D DFTs and DFrTs, 2D discrete KRS-transform is in-
separable transform.

As one can see from (3.58), discrete Kirchhoff-Rayleigh-Sommerfeld trans-
forms are digital convolutions. Therefore, they can be computed using FFT as

{
αr
} = IFFT

{
FFT

[{
ak
}] • FFT

[
KRSz̃,μ(n)

]}
. (3.59)

From this representation, inverse DKRS-transform can be obtained as

{
ãk
} = IFFT

{
FFT

{
αr
} • 1

FFT
[

KRSz̃,μ(n)
]}. (3.60)

3.7. Resolving power and point spread functions of numerical
reconstruction of holograms

3.7.1. PSF of numerical reconstruction of holograms:
a general formulation

In numerical reconstruction of holograms, samples of the object wave front are re-
constructed out of samples of its hologram using above described discrete diffrac-
tion transforms. This process can be treated as object wave front sampling by a
sampling system that consists of the hologram sampling device and a computer, in
which the hologram is numerically reconstructed.

Signal sampling is a linear transformation that is fully specified by its point
spread function (PSF) that establishes a link between an object signal a(x) and its
samples {ak}:

ak =
∫
X
a(x) PSF(x, k)dx. (3.61)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


116 Discrete transforms for digital holography

According to the sampling theory (see, e.g., [9]), for a given sampling interval Δx,
PSF of the ideal sampling device is a sinc-function:

PSF(x, k) = sin c
[
π(x − kΔx)

Δx

]
= sin

[
π(x − kΔx)/Δx]

π(x − kΔx)/Δx
. (3.62)

Provided that the continuous signal is reconstructed from its samples using, as
reconstruction basis functions, the same sinc-functions, this PSF secures minimal
root mean square signal reconstruction error.

In this section, we consider point spread functions of different reconstruction
algorithms and how do they depend on algorithm parameters and physical param-
eters of holograms and their sampling devices. For the sake of simplicity, we will
consider 1D holograms and transforms. Corresponding 2D results are straightfor-
ward in the conventional assumption of separability of sampling and transforms.

Let, in numerical reconstruction of holograms, samples {ak} of the object
wave front be obtained through a transformation

ak =
N−1∑
r=0

αr DRK(r, k) (3.63)

of available hologram samples {αr} with a certain discrete reconstruction kernel
DRK(r, k) that corresponds to the type of the hologram. Hologram samples {αr}
are measured by a hologram recording and sampling device as

αr =
∫∞
−∞

α( f )ϕ(s)
f

(
f − r̃ (s)

Δ f (s)
)
df , (3.64)

where α( f ) is a hologram signal, {ϕ(s)
f (·)} is a point spread function of the holo-

gram sampling device, Δ f (s) is a hologram sampling interval, r̃ (s) = r + v(s), r is
an integer index of hologram samples, and v(s) is a shift, in units of the hologram
sampling interval, of the hologram sampling grid with respect to the hologram
coordinate system.

The hologram signal α( f ) is linked with object wave front a(x) through a
diffraction integral

α( f ) =
∫∞
−∞

a(x) WPK(x, f )dx, (3.65)

where WPK(x, f ) is a wave propagation kernel. Threrefore, one can rewrite (3.64)
as

αr =
∫∞
−∞

[∫∞
−∞

a(x) WPK(x, f )dx

]
ϕ(s)
f

(
f − r̃ (s)Δ f (s)

)
df

=
∫∫∞
−∞

a(x) WPK(x, f )ϕ(s)
f

(
f − r̃ (s)

Δ f (s)
)
dx df

=
∫∞
−∞

a(x)dx
∫∞
−∞

WPK(x, f )ϕ(s)
f

(
f − r̃ (s)Δ f (s)

)
df .

(3.66)
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Insert now (3.66) into (3.63) and establish a link between object wave front a(x)
and its samples {ak} reconstructed from the sampled hologram:

ak =
N−1∑
r=0

[∫∞
−∞

a(x)dx
∫∞
−∞

WPK(x, f )ϕ(s)
f

(
f − r̃ (s)

Δ f (s)
)
df

]
DRK(r, k)

=
∫∞
−∞

a(x)dx

[∫∞
−∞

WPK(x, f )df
N−1∑
r=0

DRK(r, k)ϕ(s)
f

(
f − r̃ (s)

Δ f (s)
)]

=
∫∞
−∞

a(x) PSF(x, k)dx,

(3.67)

where function

PSF(x, k) =
∫∞
−∞

WPK(x, f )df
N−1∑
r=0

DRK(r, k)ϕ(s)
f

(
f − r̃ (s)Δ f (s)

)
(3.68)

can be treated as a point spread function (PSF) of the numerical reconstruction of
holograms. As one can see from (3.68), it depends on all factors involved in the
process of sampling and reconstruction of holograms: wave propagation kernel
WPK(·, ·), discrete reconstruction kernel DRK(·, ·), and point spread function of
the hologram sampling device ϕ(s)

f (·).
For further analysis, it is convenient to replace point spread function of the

hologram sampling device through its Fourier transform, or its frequency response

Φ(s)
f (·):

ϕ(s)
f

(
f − r̃ (s)Δ f

)
=
∫∞
−∞

Φ(s)
f (ξ) exp

[
i2π

(
f − r̃ (s)Δ f (s)

)
ξ
]
dξ

=
∫∞
−∞

Φ(s)
f (ξ) exp

(
−i2πr̃ (s)Δ f (s)ξ

)
exp(i2π f ξ)dξ.

(3.69)

Then obtain

PSF(x, k) =
∫∞
−∞

WPK(x, f )df
N−1∑
r=0

DRK(r, k)

×
∫∞
−∞

Φ(s)
f (ξ) exp

(
−i2πr̃ (s)

Δ f (s)ξ
)

exp(i2π f ξ)dξ

=
∫∞
−∞

Φ(s)
f (ξ)dξ

∫∞
−∞

WPK(x, f ) exp(i2π f ξ)df

×
N−1∑
r=0

DRK(r, k) exp
(
−i2πr̃ (s)Δ f (s)ξ

)
.

(3.70)
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118 Discrete transforms for digital holography

Introduce function

PSF(x, ξ; k)=
∫∞
−∞

WPK(x, f ) exp(i2π f ξ)df
N−1∑
r=0

DRK(r, k) exp
(
− i2πr̃ (s)

Δ f (s)ξ
)

=WPK(x, ξ) ·DRK(ξ, k),
(3.71)

where

WPK(x, ξ) =
∫∞
−∞

WPK(x, f ) exp(i2π f ξ)df (3.72)

is Fourier transform of the wave propagation kernel WPK(·, ·) and

DRK(ξ, k) =
N−1∑
r=0

DRK(r, k) exp
(
− i2πr(s)Δ f (s)ξ

)
(3.73)

which is a Fourier series expansion with the discrete reconstruction kernel
DRK(r, k) as expansion coefficients. Function PSF(x, ξ; k) does not depend on
parameters of the hologram sampling device. We will refer to this function as
PSF of sampled hologram reconstruction. PSF of the numerical reconstruction of
holograms PSF(x, k) and PSF of sampled hologram reconstruction PSF(x, ξ; k) are
linked through the integral transform

PSF(x, k) =
∫∞
−∞

Φ(s)
f (ξ)PSF(x, ξ; k)dξ (3.74)

with frequency response of the hologram sampling device as a transform kernel.

3.7.2. Point spread function of numerical reconstruction of holograms
recorded in far diffraction zone (Fourier holograms)

For far diffraction zone (3.10), wave propagation kernel is

WPK(x, f ) = exp
(
−i2π x f

λZ

)
. (3.75)

Its Fourier transform is a delta function:

WPK(x, ξ) =
∫∞
−∞

WPK(x, f ) exp(i2π f ξ)df

=
∫∞
−∞

exp
[
−i2π f

(
x

λZ
− ξ

)]
df = δ

(
x

λZ
− ξ

)
.

(3.76)

Assume that shifted DFT with discrete reconstruction kernel

DRK(r, k) = exp
[
i2π

(k + u)(r + v)
N

]
(3.77)
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is used for that for numerical reconstruction of Fourier hologram. Fourier series
expansion over this discrete reconstruction kernel is

DRK(ξ, k) =
N−1∑
r=0

DRK(r, k) exp
(
− i2πr̃ (s)

Δ f (s)ξ
)

=
N−1∑
r=0

exp
[
i2π

(k + u)(r + v)
N

]
exp

[
−i2π

(
r + v(s)

)
Δ f (s)ξ

]

= exp
(
−i2πv(s)Δ f (s)ξ

)
exp

[
i2π

(k + u)v
N

]

×
N−1∑
r=0

exp
[
i2π

(
(k + u)
N

− Δ f (s)ξ
)
r
]

= exp
(
− i2πv(s)Δ f (s)ξ

)
exp

[
i2π

(k + u)v
N

]

×
exp

[
i2πN

(
(k + u)/N − Δ f (s)ξ

)]
− 1

exp
[
i2π

(
(k + u)/N − Δ f (s)ξ

)]
− 1

= exp
[
−i2π

(
v(s) +

N − 1
2

)
Δ f (s)ξ

]
exp

{
i2π

(k + u)
N

(
v +

N − 1
2

)}

× sin
[
πN

(
Δ f (s)ξ − (k + u)/N

)]
sin

[
π
(
Δ f (s)ξ − (k + u)/N

)] .

(3.78)

It is only natural now to choose shift parameters v(s) and v of sampling and recon-
struction transform as

v(s) = v = −N − 1
2

. (3.79)

With these shift parameters,

DRK(ξ, k) = sin
[
π
(
Δ f (s)ξ − (k + u)/N

)
N
]

sin
[
π
(
Δ f (s)ξ − (k + u)/N

)]
= N sincd

[
N ;π

(
Δ f (s)ξ − (k + u)

N

)
N

]
,

(3.80)

PSF(x, ξ; k) =WPK(x, ξ) ·DRK(ξ, k)

= N sincd
[
N ;π

(
Δ f (s)ξ − (k + u)

N

)
N
]
δ
(

x

λZ
− ξ

)
.

(3.81)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


120 Discrete transforms for digital holography

Then, finally, obtain that the point spread function of numerical reconstruction of
Fourier hologram is

PSF(x, k) =
∫∞
−∞

Φ(s)
f (ξ)PSF(x, ξ; k)dξ

= N sincd
[
N ;π

(
Δ f (s)x

λZ
− (k + u)

N

)
N
]∫∞

−∞
Φ(s)

f (ξ)δ
(

x

λZ
− ξ

)
dξ

= N sincd
[
N ;π

(
Δ f (s)x

λZ
− (k + u)

N

)
N
]
Φ(s)

f

(
x

λZ

)

= N sincd
[
N ;π

(
x − (k + u)Δx

)
Δx

]
Φ(s)

f

(
x

λZ

)
,

(3.82)

where

Δx = λZ

NΔ f (s)
= λZ

SH
(3.83)

and SH = NΔ f (s) is the physical size of the hologram.
Formula (3.82) has a clear physical interpretation illustrated in Figure 3.4. As

it was mentioned, point spread function of the ideal signal sampling device is a
sinc-function and its frequency response is a rect-function. Provided the hologram
sampling device is such an ideal sampler with frequency response:

Φ(s)
f

(
x

λZ

)
= rect

(
x + λZ/2Δ f (s)

Δ f (s)/λZ

)
=
⎧⎪⎨⎪⎩1, − λZ

2Δ f (s)
≤ x ≤ λZ

2Δ f (s)
,

0, otherwise,
(3.84)

point spread function of numerical reconstruction of Fourier hologram is a dis-
crete sinc-function, and object wave front samples are measured within the object’s
spatial extent interval −λZ/2Δ f (s) ≤ x ≤ λZ/2Δ f (s) defined by the spread of the
hologram sampling device frequency response. Therefore, with an ideal hologram
sampler, numerical reconstruction of Fourier hologram is almost ideal object wave
front sampling, as discrete sinc-function approximates continuous sinc-function
within the interval −λZ/2Δ f (s) ≤ x ≤ λZ/2Δ f (s) relatively closely, the closer, the
larger the number of hologram samples N . Parameter Δx defined by (3.83) is half
width of the main lobe of the discrete sinc-function. It characterizes the virtual
intersample distance and the resolving power of the reconstruction algorithm.

In reality, hologram sampling devices are, of course, not ideal samplers, and
their frequency responses are not rectangular functions. They are not uniform
within the basic object extent interval−λZ/2Δ f (s) ≤ x ≤ λZ/2Δ f (s) and decay not
abruptly outside this interval but rather gradually. As a consequence, each of the
object samples is a combination of the sample measured by the main lobe of the
discrete sinc-function within the basic object extent interval and samples collected
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x

Figure 3.4. PSF of numerical reconstruction of holograms digitally recorded in far diffraction zone
(thin solid line). Rectangle in bold line is Fourier transform of the hologram ideal sampling device.
Bold dots plot sinc-function, the ideal sampling PSF.

by other lobes of the discrete sinc-function outside the basic interval. This is one
source of the measurement errors. In particular, for diffusely reflecting objects, it
may result in an additional speckle noise in the reconstructed object image. One
can avoid this distortion if, in the process of making object hologram, object is
illuminated strictly within the basic interval as defined by the hologram sampling
interval (camera pitch).

The second source of the reconstruction errors is associated with nonunifor-
mity of the hologram sampler frequency response within the basic interval. These
errors can be compensated by multiplying the reconstruction results by the func-
tion inverse to the frequency response of the hologram sampler.

One can also see from (3.82) that the resolving power of numerical recon-
struction of Fourier hologram is determined by the distance between zeros of the
discrete sinc-function, which is equal to λZ/NΔ f (s) = λZ/SH , where SH = NΔ f (s)

is size of the sampled hologram. Due to this finite resolving power, one can also
expect, for diffuse objects, a certain amount of speckle noise in the reconstructed
object.

3.7.3. Point spread function of numerical reconstruction of holograms
recorded in near diffraction zone (Fresnel holograms)

For near diffraction zone (3.9), wave propagation kernel is

WPK(x, f )∝ exp
[
iπ

(x − f )2

λZ

]
. (3.85)
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122 Discrete transforms for digital holography

Its Fourier transform is

WPK(x, ξ)∝
∫∞
−∞

exp
[
iπ

(x − f )2

λZ

]
exp(i2π f ξ)df

= exp(i2πxξ)
∫∞
−∞

exp
(
iπ

f 2

λZ

)
exp(i2π f ξ)df ,

(3.86)

or, with an account of (B.1) (Appendix B),

WPK(x, ξ)∝ exp(i2πxξ) exp
(− iπλZξ2). (3.87)

In what follows, we will separately consider point spread function for Fourier and
convolution reconstruction algorithms. For simplicity, zero shifts will be assumed
in both, hologram and object wave front domains.

3.7.3.1. Fourier reconstruction algorithm

In the Fourier reconstruction algorithm, discrete reconstruction kernel is, with
zero shifts in hologram and object wave front domains,

DRK(r, k) =
[

exp
(
−iπ k

2μ2

N

)
exp

(
i2π

kr

N

)]
exp

(
−iπ r2

μ2N

)
. (3.88)

Fourier series expansion over this kernel is

DRK(ξ, k) = exp
(
−iπ k

2μ2

N

) N−1∑
r=0

exp
(
−iπ r2

μ2N

)

× exp
(
i2π

kr

N

)
exp

(
− i2πrΔ f (s)ξ

)

= exp
(
− iπ

k2μ2

N

) N−1∑
r=0

exp
(
− iπ

r2

μ2N

)
exp

[
i2πr

(
k

N
− Δ f (s)ξ

)]
,

(3.89a)

or, in a more compact form,

DRK(ξ, k) = exp
(
−iπ k

2μ2

N

)
frincd ∗

(
N ;

1
μ2

;
k

N
− Δ f (s)ξ

)
. (3.89b)
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Then, obtain that PSF of sampled hologram reconstruction is

PSF(x, ξ; k) =WPK(x, ξ) ·DRK(ξ, k)

∝ exp(i2πxξ) exp
(− iπλZξ2)

× exp
(
− iπ

k2μ2

N

)
frincd∗

(
N ;

1
μ2

;
k

N
− Δ f (s)ξ

) (3.90)

and that PSF of numerical reconstruction of Fresnel holograms with Fourier re-
construction algorithm is

PSF(x, k) = exp
(
− iπ

k2μ2

N

)

×
∫∞
−∞

Φ(s)
f (ξ) exp

(−iπλZξ2) frincd∗
(
N ;

1
μ2

;
k

N
−Δ− + f (s)ξ

)
× exp(i2πxξ)dξ.

(3.91)

Equation (3.91) is much more involved for an analytical treatment than the cor-
responding equation for PSF of numerical reconstruction of Fourier holograms
and, in general, requires numerical methods for analysis. In order to facilitate its
treatment, rewrite (3.91) using (3.89a) for DRK(ξ, k):

PSF(x, k) = exp
[
iπ
(
x2

λZ
− k2μ2

N

)]

×
∫∞
−∞

Φ(s)
f (ξ)

N−1∑
r=0

exp
(
− iπ

r2

μ2N

)

× exp
[
i2πr

(
k

N
− Δ f (s)ξ

)]
exp

[
−iπ (x − λZξ)2

λZ

]
dξ

= exp
[
iπ
(
x2

λZ
− k2μ2

N

)] N−1∑
r=0

exp
(
−iπ r2

μ2N

)
exp

(
i2π

kr

N

)

×
∫∞
−∞

Φ(s)
f (ξ) exp

[
−iπ (x − λZξ)2

λZ

]
exp

(−i2πrΔ f (s)ξ
)
dξ.

(3.92)

Assume now that frequency response of the hologram sampling device Φ(s)
f (ξ) is

constant, which is equivalent to the assumption that its PSF is a delta function.
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124 Discrete transforms for digital holography

Practically, this means that the hologram recording photographic camera is as-
sumed to have a very small fill factor, or ratio of the size of camera sensitive ele-
ments to the interpixel distance. In this simplifying assumption,

PSF0(x, k) = exp
[
iπ
(
x2

λZ
− k2μ2

N

)] N−1∑
r=0

exp
(
− iπ

r2

μ2N

)

× exp
(
i2π

kr

N

)∫∞
−∞

exp
[
−iπ (x − λZξ)2

λZ

]
exp

(−i2πrΔ f (s)ξ
)
dξ

= exp
[
iπ
(
x2

λZ
− k2μ2

N

)] N−1∑
r=0

exp
(
−iπ r2

μ2N

)
exp

(
i2π

kr

N

)

×
∫∞
−∞

exp
[
−iπ (x − λZξ)2

λZ

]
exp

(−i2πrΔ f (s)ξ
)
dξ

= exp
[
iπ
(
x2

λZ
− k2μ2

N

)] N−1∑
r=0

exp
(
−iπ r2

μ2N

)
exp

(
i2π

kr

N

)

×
∫∞
−∞

exp
(
−iπ ξ̃2

λZ

)
exp

(
−i2πrΔ f (s) x − ξ̃

λZ

)
dξ

= exp
[
iπ
(
x2

λZ
− k2μ2

N

)] N−1∑
r=0

exp
(
−iπ r2

μ2N

)

× exp
(
i2π

kr

N

)
exp

(
−i2πrΔ f (s) x

λZ

)

×
∫∞
−∞

exp
(
−iπ ξ̃2

λZ

)
exp

(
i2π

rΔ f (s)

λZ
ξ̃
)
dξ

∝ exp
[
iπ
(
x2

λZ
− k2μ2

N

)]

×
N−1∑
r=0

exp
(
−iπ r2

μ2N

)
exp

[
i2π

(
k

N
− Δ f (s)x

λZ

)
r
]

exp
(
iπ
r2Δ f (s)2

λZ

)

= exp
[
iπ
(
x2

λZ
− k2μ2

N

)] N−1∑
r=0

exp
[
−iπ

(
NΔ f (s)2

λZ
− 1

μ2

)
r2

N

]

× exp
[
i2π

(
k

N
− Δ f (s)x

λZ

)
r
]

,

(3.93a)

or

PSF0(x, k) = exp
[
iπ
(
x2

λZ
− k2μ2

N

)]
frincd∗

(
N ;

NΔ f (s)2

λZ
− 1

μ2
;
k

N
− Δ f (s)x

λZ

)
.

(3.93b)
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As one can see from (3.93b), PSF of numerical reconstruction of Fresnel holo-
grams recorded with cameras with very small fill factor is basically proportional to
frincd-function illustrated in Figures 3.2 and 3.3.

An important special case is “in focus” reconstruction, when

μ2 = λZ

NΔ f (s)2
. (3.94)

In this case numerical reconstruction point spread function is discrete sinc-
function

PSF0(x, k) = exp
[
i

λZ

Δ f (s)2

(
Δ f (s)2x2

λ2Z2
− k2

N2

)]
sincd

[
N ;π

(
Δ f (s)x

λZ
− k

N

)
N
]

= exp
[
i

λZ

Δ f (s)2

(
Δ f (s)2x2

λ2Z2
− k2

N2

)]
sincd

[
N ;

π
(
x − kΔx

)
Δx

]
,

(3.95)

where Δx = λZ/NΔ f (s) = λZ/SH is defined by (3.83). As one can see, “in focus”
reconstruction PSF is essentially the same as that of numerical reconstruction of
Fourier holograms (3.82) for the same assumption regarding the hologram sam-
pling device. It has the same resolving power and provides aliasing free object re-
construction within the interval So = λZ/Δ f (s). One can establish a link between
the size of this interval and the value μ2 = λZ/NΔ f (s)2 = λZN/S2

H of the focusing
parameter required for the reconstruction:

So = λZ

Δ f (s)
= λZN

SH
= μ2SH. (3.96)

From this relationship it follows that aliasing free reconstruction of the object from
a hologram recorded on a distance defined by the focusing parameter μ2 is possible
if the object size does not exceed the value μ2SH . Therefore, for μ2 < 1, allowed
object size should be less than the hologram size otherwise aliasing caused by the
periodicity of the discrete sinc-function will appear.

This phenomenon is illustrated in Figure 3.5. Figure 3.5(a) shows a sketch of
an object that consists of two crossed thin wires and a ruler installed at different
distances from the hologram.1

A result of reconstruction of the hologram for focusing parameter μ2 = 0.66
using the Fourier reconstruction algorithm is shown in Figure 3.5(b) in which one
can clearly see aliasing artifacts due to overlapping of reconstructions from two
side lobes of the discrete sinc-functions. One can remove these artifacts if, before
the reconstruction, one sets to zeros outer parts of the hologram outside the circle

1The hologram courtesy to Dr. J. Campos, Autonomous University of Barcelona, Bellaterra,
Barcelona, Spain.
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Figure 3.5. Fresnel hologram reconstruction for μ2 < 1 using Fourier and convolution reconstruction
algorithms: (a) sketch of the object setup, (b) and (c), respectively, reconstructions using the Fourier
reconstruction algorithm without and with hologram masking with a circular window function of
the diameter equal to μ2th fraction of the hologram size, (d) reconstruction using the convolution
reconstruction algorithm.

with diameter equal to μ2th fraction of the hologram size. The result of such a
reconstruction is shown in Figure 3.5(c). These artifacts are the reason why, for
μ2 < 1, the convolution reconstruction algorithm is frequently used. The result
of the reconstruction using the convolution algorithm is shown in Figure 3.5(d).
Note that, with respect to the convolution algorithm reconstruction, Fourier re-
construction algorithm, with above-mentioned zeroing of the excessive part of the
hologram, for μ2 < 1, acts as a “magnifying glass.” Object aliasing artifacts for
μ2 < 1 can also be avoided if the hologram is reconstructed by fragments of μ2SH
size.

3.7.3.2. Convolution reconstruction algorithm

In the convolution reconstruction algorithm, discrete reconstruction kernel is,
with zero shifts in hologram and object wave front domains,

DRK(r, k) = frincd
(
N ;μ2; k − r

) = 1
N

N−1∑
s=0

exp
(
iπ
μ2s2

N

)
exp

[
− i2π

(k − r)s
N

]
.

(3.97)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


Leonid P. Yaroslavsky 127

Fourier series expansion over this kernel is

DRK(ξ, k) = 1
N

N−1∑
r=0

N−1∑
s=0

exp
(
iπ
μ2s2

N

)
exp

[
−i2π (k − r)s

N

]
exp

(− i2πrΔ f (s)ξ
)

= 1
N

N−1∑
s=0

exp
(
iπ
μ2s2

N

)
exp

(
−i2π ks

N

) N−1∑
r=0

exp
[
i2πr

(
s

N
− Δ f (s)ξ

)]
.

(3.98)

Then obtain that PSF of sampled hologram reconstruction is

PSF(x, ξ; k) =WPK(x, ξ) ·DRK(ξ, k)∝ exp(i2πxξ) exp(−iπλZξ2)
N

×
N−1∑
s=0

exp
(
iπ
μ2s2

N

)
exp

(
−i2π ks

N

) N−1∑
r=0

exp
[
i2πr

(
s

N
− Δ f (s)ξ

)]
(3.99)

and that PSF of numerical reconstruction of Fresnel holograms with Fourier re-
construction algorithm is

PSF(x, k) =
∫∞
−∞

Φ(s)
f (ξ) exp

(−iπλZξ2) exp(i2πxξ)dξ

× 1
N

N−1∑
s=0

exp
(
iπ
μ2s2

N

)
exp

(
− i2π

ks

N

) N−1∑
r=0

exp
[
i2πr

(
s

N
− Δ f (s)ξ

)]

=
∫∞
−∞

Φ(s)
f (ξ) exp

(− iπλZξ2) exp(i2πxξ)dξ

×
N−1∑
s=0

exp
(
iπ
μ2s2

N

)
exp

(
−i2π ks

N

)

× sin
[
π
(
s−NΔ f (s)ξ

)]
N sin

[
(π/N)

(
s−NΔ f (s)ξ

)] exp
[
iπ
N − 1
N

(
s−NΔ f (s)ξ

)]
,

(3.100)

or finally,

PSF(x, k) =
∫∞
−∞

Φ(s)
f (ξ) exp

(− iπλZξ2) exp(i2πxξ)dξ

×
N−1∑
s=0

exp
(
iπ
μ2s2

N

)
exp

(
− i2π

ks

N

)

× sincd
[
N ;π

(
s−NΔ f (s)ξ

)]
exp

[
iπ
N − 1
N

(
s−NΔ f (s)ξ

)]
.

(3.101)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


128 Discrete transforms for digital holography

Note that the last phase exponential term in (3.101) is inessential, as it appears due
to the assumption of zero-shift parameters in the reconstruction algorithm.

Although (3.101) is quite nontransparent for analysis, at least one important
property, that of periodicity of the PSF over object sample index k with period N ,
can be immediately seen from it. As, by the definition of the convolutional Fresnel
transform, sampling interval Δx(r) in the object plane is identical to the hologram
sampling interval Δ f (s), this periodicity of the PSF implies that object wave front
is reconstructed within the physical interval NΔx = NΔ f (s) = SH , where SH is
the physical size of the hologram. Further detailed analysis is not feasible without
bringing in numerical methods. Some results of such a numerical analysis2 are
illustrated in Figure 3.6

Figures 3.6(a) and 3.6(b), in particular, reveal that, although object sampling
interval in the convolution method is deliberately set equal to the hologram sam-
pling interval, resolving power of the method is still defined by the same funda-
mental value λZ/SH as that of the Fourier reconstruction algorithm and of the
Fourier reconstruction algorithm for Fourier holograms. One can clearly see this
when one compares width of the main lobe of the point spread function in Figure
3.6(a) with the distance between vertical ticks that indicate object sampling posi-
tions and from observing, in Figure 3.6(b), three times widening of the width of
the main lobe of PSF that corresponds to the object-to-hologram distance Z = 15
with respect to that for Z = 5. Figure 3.6(c) shows reconstruction of nine point
sources placed uniformly within the object size. The plot vividly demonstrates
that the hologram sampling device point function acts very similarly to its action
in case of the Fourier reconstruction algorithm and of reconstruction of Fourier
holograms: it is masking the reconstruction result with a function close to its
Fourier transform.

Finite width of the reconstruction algorithm PSFs does not only limit their
resolving power, but it also produces speckle noise in the reconstruction of diffuse
objects. This phenomenon is illustrated in Figure 3.7 that compares reconstruc-
tions of rectangular shaped nondiffuse and diffuse objects.

3.8. Conclusion

In this chapter, we described discrete transforms and algorithms for numerical re-
construction of digitally recorded holograms. The transforms are numerical ap-
proximations to diffractional integral transforms and, as such, are oriented on
FFT-type of fast algorithms for their computer implementation. In Appendix B,
a summary table of transforms is provided for reference and ease of comparison.

We also analyzed point spread functions of main hologram reconstruction
algorithms to show how reconstruction aliasing artifacts and reconstruction re-
solving power depend on physical parameters of holographic optical setups and
digital cameras used for hologram recording.

2The analysis was carried out with the help of Dr. Fucai Zhang, Institute of Technical Optics,
Stuttgart University, Germany.
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Figure 3.6. Point spread function of the convolution algorithm: (a) central lobe of the PSF shown
along with boundaries of object sampling interval (vertical ticks); (b) PSF of reconstructions for two
distances between object and hologram (Z = 5 and Z = 15); (c) reconstruction result for 9 point
sources placed uniformly within object area.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


130 Discrete transforms for digital holography

10

20

30

40

50

60

70

80

90

O
bj

ec
t

w
av

e
fr

on
t

in
te

n
si

ty

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Object coordinate

Nondiffuse object

Diffuse object

Figure 3.7. Results of reconstruction of a Fresnel hologram of nondiffuse and diffuse objects that
demonstrate appearance of heavy speckle noise for the diffuse object.

One can also add that same discrete transforms can be used for synthesis of
computer-generated holograms as well. In this application, computer-generated
holograms are reconstructed optically, and the relationship between properties
of transforms and the reconstruction results depends on methods of hologram
recording. Interested readers can find more details in [3, 9].

Appendices

A. The principle of phase-shifting holography

In phase-shifting holography, several holograms are recorded with a reference
beam having different preset phase shifts. Let θk be a phase shift of the reference
beam in kth hologram exposure, k = 1, . . . ,K . Then,

Hk
(
fx, fy

) = ∣∣α( fx, fy
)

+ R
(
fx, fy

)
exp

(
iθk

)∣∣2

= α
(
fx, fy)R∗

(
fx, fy

)
exp

(− iθk
)

+ α∗
(
fx, fy

)
R
(
fx, fy

)
exp

(
iθk

)
+
∣∣α( fx, fy

)∣∣2
+
∣∣R( fx, fy

)∣∣2

(A.1)

is a hologram recorded in kth exposure. For reconstruction of the term α( fx, fy)
that represents object wave front, K holograms {Hk} are summed up with the
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same phase shift used in their recording:

H = 1
K

K∑
k=1

Hk exp
(
iθk

)

= α
(
fx, fy

)
R∗

(
fx, fy

)
+ α∗

(
fx, fy

)
R
(
fx, fy

) K∑
k=1

exp
(
i2θk

)

+
[∣∣α( fx, fy

)∣∣2
+
∣∣R( fx, fy

)∣∣] K∑
k=1

exp
(
iθk

)
.

(A.2)

For perfect reconstruction of the first term, phases {θk} should be found from
equations

K∑
k=1

exp
(
iθk

) = 0, (A.3a)

K∑
k=1

exp
(
i2θk

) = 0. (A.3b)

Assume θk = kθ0. Then,

K∑
k=1

exp
(
iθk

) = K∑
k=1

exp
(
ikθ0

) = exp
[
i(K + 1)θ0

]− exp
(
iθ0

)
exp

(
iθ0

)− 1

= exp
(
iKθ0

)− 1
exp

(
iθ0)− 1

exp
(
iθ0

)
,

K∑
k=1

exp
(
i2θk

) = K∑
k=1

exp
(
i2kθ0

) = exp
[
i2(K + 1)θ0

]− exp
(
i2θ0

)
exp

(
i2θ0

)− 1

= exp
(
i2Kθ0

)− 1
exp

(
i2θ0

)− 1
exp

(
i2θ0

)
= exp

(
iKθ0

)− 1
exp

(
iθ0

)− 1
exp

(
iKθ0

)
+ 1

exp
(
iθ0

)
+ 1

exp
(
i2θ0

)
,

(A.4)

from which it follows that solution of (A.3a) is θk = 2π(k/K) for any integer
K ≥ 3. For K = 2, solution θ0 = π does not satisfy (A.3b) as

exp
(
i2θ0

)− 1
exp

(
iθ0

)− 1
exp

(
i2θ0

)
+ 1

exp
(
iθ0

)
+ 1

exp
(
i2θ0

) = [
exp(i2π) + 1

]
exp(i2π) = 2.

(A.5)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


132 Discrete transforms for digital holography

B. Computation of convolution of signals with
“mirror reflection” extension using discrete cosine
and discrete cosine/sine transforms

Let signal {ãk} be obtained from signal {ak} of N samples by its extension by
“mirror reflection” and periodical replication of the result with a period of 2N
samples:

ã(k) mod 2N =
⎧⎨⎩ak, k = 0, 1, . . . ,N − 1,

a2N−k−1, k = N , N = 1, . . . , 2N − 1,
(B.1)

and let {hn} be a convolution kernel of N samples (n = 0, 1, . . . ,N − 1). Then,

c̃k =
N−1∑
n=0

hnã(k−n+[N/2]) mod 2N , (B.2)

where

[
N

2

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N

2
for even N ,

(N − 1)
2

for odd N

(B.3)

is a convolution of the extended signal {ãk} with kernel {hn}. It will coincide with
the cyclic convolution of period 2N :

c(k) mod 2N =
N−1∑
n=0

h̃(n) mod 2N ã(k−n+[N/2]) mod 2N (B.4)

for kernel

h̃(n) mod 2N =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, n = 0, . . . ,
[
N

2

]
− 1,

hn−[N/2], n =
[
N

2

]
, . . . ,

[
N

2

]
+ N − 1,

0,
[
N

2

]
+ N , . . . , 2N − 1.

(B.5)

The cyclic convolution described by (B.4) and (B.5) is illustrated in Figure B.1.
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Extended signal {ãk}

Initial signal {ak}
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Convolution kernel in its position for the first convolution term
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Convolution kernel in its position for the middle convolution term
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Convolution kernel in its position for the last convolution term

Figure B.1. Cyclic convolution of a signal extended by its mirror reflection from its borders.

Consider computing convolution of such signals by means of IDFT of product
of signal DFT spectra. DFT spectrum of the extended signal {ãk} is

α̃r = 1√
2N

2N−1∑
k=0

ãk exp
(
i2π

kr

2N

)

=
{

2√
2N

N−1∑
k=0

ak cos
[
π

(k+1/2)r
N

]}
exp

(
−iπ r

2N

)
=α(DCT)

r exp
(
− iπ

r

2N

)
,

(B.6)

where

α(DCT)
r = DCT

{
ak
} = 2√

2N

N−1∑
k=0

ak cos
(
π
k + 1/2

N

)
(B.7)

is discrete cosine transform (DCT) of the initial signal {ak}. Therefore, DFT spec-
trum of the signal extended by “mirror reflection” can be computed via DCT using
fast DCT algorithm. From properties of DCT, it follows that DCT spectra feature
the following symmetry property:

αDCT
N = 0, αDCT

k = −αDCT
2N−k. (B.8)

For computing convolution, the signal spectrum defined by (B.6) should be
multiplied by the filter frequency response for signals of 2N samples and then, the
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inverse DFT should be computed for the first N samples:

bk = 1√
2N

2N−1∑
r=0

α(DCT)
r exp

(
−iπ r

2N

)
η̃r exp

(
− i2π

kr

2N

)
, (B.9)

where {η̃r} are the DFT coefficients of samples of the filter PSF (filter discrete
frequency response):

η̃r = 1√
2N

2N−1∑
n=0

h̃(n) mod 2N exp
(
i2π

nr

2N

)
. (B.10)

They are real numbers and, therefore, they feature the symmetry property

{
ηr = η∗2N−r

}
, (B.11)

where asterisk symbolizes complex conjugate. From (B.9) and (B.11), one can now
obtain that

bk = 1√
2N

{
α(DCT)

0 η0 +
N−1∑
r=1

α(DCT)
r ηr exp

(
− i2π

k + 1/2
2N

r
)

+
N−1∑
r=1

α(DCT)
2N−r η2N−r exp

[
−i2π k + 1/2

2N
(2N − r)

]}

= 1√
2N

{
α(DCT)

0 η0 +
N−1∑
r=1

α(DCT)
r

[
ηr exp

(
−i2π k + 1/2

2N
r
)

+ η∗r exp
(
i2π

k + 1/2
2N

r
)]}

.

(B.12)

As

ηr exp
(
−i2π k + 1/2

2N
r
)

+ η∗r exp
(
i2π

k + 1/2
2N

r
)

= 2 Re
[
ηr exp

(
− i2π

k + 1/2
2N

r
)]

= ηre
r cos

(
π
k + 1/2

N
r
)
− ηim

r sin
(
π
k + 1/2

N
r
)

,

(B.13)
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where {ηre
r } and {ηim

r } are real and imaginary parts of {ηr}, we obtain, finally,

bk = 1√
2N

{
α(DCT)

0 η0 +
N−1∑
r=1

α(DCT)
r ηre

r cos
(
π
k + 1/2

N
r
)

−
N−1∑
r=1

α(DCT)
r ηim

r sin
(
π
k + 1/2

N
r
)}

.

(B.14)

The first two terms of this expression constitute inverse DCT of the product
{α(DCT)

r ηre
r } while the third term is discrete cosine/sine transform (DcST) of the

product {α(DCT)
r ηim

r }. Both transforms can be computed using corresponding fast
algorithms ([9]).

C. Approximation of function frincd (·)

Consider a discrete analog of the known relationship (see [17]):

∫∞
−∞

exp
(
iπσ2x2) exp(−i2π f x)dx =

√
i

σ
exp

(
−iπ f 2

σ2

)
. (C.1)

By definition of integral,

∫∞
−∞

exp
(
iπσ2x2) exp(−i2π f x)dx

= lim
N→∞
Δx→0

N/2−1∑
k=−N/2

exp
(
iπσ2k2Δx2) exp(−i2πrkΔxΔ f )Δx,

(C.2)

where x = kΔx, and the integral is considered in points f = rΔ f . Select Δ f Δx =
1/N and assume that N is an odd number. Then,

∫∞
−∞

exp
(
iπσ2x2) exp(−i2π f x)dx

= lim
N→∞
Δx→0

(N−1)/2∑
k=−(N−1)/2

exp
(
iπσ2k2Δx2) exp(−i2πrkΔxΔ f )Δx.

(C.3)
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Therefore,

lim
N→∞
Δx→0

1
NΔ f

(N−1)/2∑
k=−(N−1)/2

exp
(
iπ

σ2

NΔ f 2

k2

N2

)
exp

(
− i2π

rk

N

)

= lim
N→∞

√
i

σ
exp

(
−iπ r

2Δ f 2

σ2

)
.

(C.4)

Denote σ2/NΔ f 2 = q. Then,

lim
N→∞

1
NΔ f

(N−1)/2∑
k=−(N−1)/2

exp
(
iπ
qk2

N

)
exp

(
− i2π

rk

N

)

= lim
N→∞

√
i

Δ f
√
Nq

exp
(
−iπ r2Δ f 2

qΔ f 2N

)
= lim

N→∞

√
i

Δ f
√
Nq

exp
(
−iπ r2

qN

)
,

(C.5)

or

lim
N→∞

1
N

(N−1)/2∑
k=−(N−1)/2

exp
(
iπ
qk2

N

)
exp

(
− i2π

rk

N

)
= lim

N→∞

√
i√

Nq
exp

(
− iπ

r2

qN

)
.

(C.6)

Therefore, one can say that

1
N

(N−1)/2∑
k=−(N−1)/2

exp
(
iπ
qk2

N

)
exp

(
− i2π

rk

N

)
∼=
√
i√

Nq
exp

(
− iπ

r2

qN

)
. (C.7)

It is assumed in this formula that both k and r are running in the range −(N −
1)/2, . . . , 0, . . . ,(N−1)/2. Introduce variables n = k+(N−1)/2 and s = r+(N−1)/2
to convert this formula to the formula that corresponds to the canonical DFT in
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which variables n and s run in the range 0, . . . ,N − 1,

1
N

(N−1)/2∑
k=−(N−1)/2

exp
(
iπ
qk2

N

)
exp

(
− i2π

rk

N

)

= 1
N

N−1∑
n=0

exp

{
iπ
q
[
n− (N − 1)/2

]2

N

}

× exp
{
− i2π

[
s− (N − 1)/2

][
n− (N − 1)/2

]
N

}

= 1
N

exp

[
iπ
(
q

2
− 1

)
(N − 1)2

2N

]
exp

[
iπ
s(N − 1)

N

]

×
N−1∑
n=0

exp
(
iπ
qn2

N

)
exp

[
iπ

(1− q)(N − 1)
N

n
]

exp
(
− i2π

ns

N

)

∼=
√
i√

Nq
exp

{
−iπ

[
s− (N − 1)/2

]2

qN

}
.

(C.8)

From this, we have

1
N

N−1∑
n=0

exp
(
iπ
qn2

N

)
exp

(
− i2π

n
[
s− (1− q)(N − 1)/2

]
N

)

∼=
√
i√

Nq
exp

{
−iπ

[(
q

2
− 1

)
(N − 1)2

2N

]}

× exp

[
−iπ s(N − 1)

N

]
exp

{
−iπ

[
s− (N − 1)/2

]2

qN

}
(C.9)

within boundaries (1 − q)((N − 1)/2) < s < (1 + q)((N − 1)/2), 0 ≤ q ≤ 1, or
finally,

1
N

N−1∑
n=0

exp
(
iπ
qn2

N

)
exp

[
−i2π n

(
s− vq

)
N

]

∼=
√

i

Nq
exp

[
−iπ

(
s− vq

)2

qN

]
rect

[
s− vq

q(N − 1)

]
,

(C.10)

where vq = (1− q)(N − 1)/2, 0 ≤ q ≤ 1, and s runs from 0 to N − 1.
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Figure C.1. Plots of absolute values (magnitude) and phase (in radians) of function RCT (N; q, s,
(C.11), for N = 512 and four different values of q (0.25; 0.5; 0.75 and 1.0). Rect-function that approx-
imates this function is shown in bold line.

Numerical evaluation of the relationship

RCT (N ; q; s) = 1
N

N−1∑
n=0

exp
(
iπ
qn2

N

)

× exp
[
−i2π n

(
s− vq

)
N

]/√
i

Nq
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[
−iπ

(
s− vq

)2

qN

]

=
√
q exp
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((
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√
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×
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n=0

exp
(
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qn2

N

)
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[
−i2π n

(
s− vq

)
N

]
∼= rect

[
s− vq
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(C.11)
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confirms the validity of this approximation (see [16]). This is illustrated in Figure
C.1 for N = 512 and four different values of q (0.25, 0.5, 0.75, and 1.0). Rect-
function of (C.11) is shown in bold line.

D. Summary of the fast discrete diffractional transforms

Table D.1

Transform

Canonical discrete
Fourier transform
(DFT)

αr = 1√
N

N−1∑
k=0

ak exp
(
i2π

kr

N

)

Shifted DFT αu,v
r = 1√

N

N−1∑
k=0

ak exp
[
i2π

(k + u)(r + v)
N

]
Discrete cosine

transform(DCT)
αDCT
r = 2√

2N

N−1∑
k=0

ak cos
(
π
k + 1/2

N
r
)

Discrete cosine-sine

transform (DcST)
αDcST
r = 2√

2N

N−1∑
k=0

ak sin
(
π
k + 1/2

N
r
)

Scaled DFT ασr =
1√
σN

N−1∑
k=0

ak exp
[
i2π

(k + u)(r + v)
σN

]
= 1√

σN

N−1∑
k=0

ak exp
(
i2π

k̃r̃

σN

)

Scaled DFT as a

cyclic convolution
ασr =

exp
(
iπ(r̃ 2/σN)

)
√
σN

N−1∑
k=0

[
ak exp

(
iπ

k̃2

σN

)]
exp

[
−iπ (k̃ − r̃ )2

σN

]

Canonical 2D DFT αr,s = 1√
N1N2

N1−1∑
k=0

N2−1∑
l=0

ak,l exp
[
i2π

(
kr

N1
+

ls

N1

)]

Affine DFT

αr,s =
N1−1∑
k=0

N2−1∑
l=0

ak,l

× exp
[
i2π

(
rk

σAN1
+

sk

σCN1
+

rl

σBN2
+

sl

σDN2

)]

Rotated DFT (RotDFT)

αr,s =
N−1∑
k=0

N−1∑
l=0

ak,l exp
[
i2π

(
r cos θ − s sin θ

N
k +

r sin θ + s cos θ
N

l
)]

=
N−1∑
k=0

N−1∑
l=0

ak,l exp
[
i2π

(
rk + sl

N
cos θ − sk − rl

N
sin θ

)]

Rotated scaled DFT

αr,s =
N−1∑
k=0

N−1∑
l=0

ak,l exp
[
i2π

(
r cos θ − s sin θ

σN
k +

r sin θ + s cos θ
σN

l
)]

=
N−1∑
k=0

N−1∑
l=0

ak,l exp
[
i2π

(
rk + sl

σN
cos θ − sk − rl

σN
sin θ

)]

Discrete sinc-function sincd(N , x) = sin x

N sin(x/N)

Canonical discrete Fresnel

transform (DFrT)
αr = 1√

N

N−1∑
k=0

ak exp
[
iπ

(k/μ− rμ)2

N

]
; μ2 = λZ/NΔ f 2
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140 Discrete transforms for digital holography

Table D.1. Continued.

Transform

Shifted DFrT

α
(μ,w)
r = 1√

N

N−1∑
k=0

ak

× exp

[
−iπ (kμ− r/μ + w)2

N

]
; w = u/μ− vμ

Fourier reconstruction algorithm

for Fresnel holograms

α
(μ,w)
r = exp

(− iπ
(
r2/μ2N

))
√
N

×
N−1∑
k=0

ak exp

[
−iπ (kμ + w)2

N

]
exp

(
i2π

k + w/μ

N
r
)

Focal plane invariant DFrT

α
(μ,(N/2μ))
r = 1√

N

N−1∑
k=0

ak

× exp

{
−iπ

[
kμ− (r −N/2)

/
μ
]2

N

}

Partial DFrT (PDFT)

�
α

(μ,w)
r = 1√

N

N−1∑
k=0

ak

× exp
(
− iπ

k2μ2

N

)
exp

[
i2π

k(r −wμ)
N

]

Convolutional discrete Fresnel

transform (ConvDFrT)

αr =
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k=0
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(
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)
= 1
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s
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Convolutional reconstruction

algorithm for Fresnel holograms
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Frincd-function

frincd (N ; q; x) = 1
N
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exp
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N
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− i2π

xr

N
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frincd (N ; 1; x) =

√
i

N
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(
− iπ

x2

N
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Analytical approximation:

frincd (N ;±q; x) ∼=
√ ±i

Nq
exp

[
∓ iπ

x2

qN

]
× rect

[
x

q(N − 1)

]

Discrete
Kirchhoff-Rayleigh-Sommerfeld
transform (DKRST)

αr =
N−1∑
k=0

ak

×
exp

[
i2π

(
z̃ 2
√

1 + (k̃ − r̃ )2/z2/μ2N
)]

1 + (k̃ − r̃ )2/z2
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4
Irregular sampling for
multidimensional polar processing
of integral transforms

A. Averbuch, R. Coifman, M. Israeli, I. Sedelnikov,
and Y. Shkolnisky

We survey a family of theories that enable to process polar data via integral trans-
forms. We show the relation between irregular sampling and discrete integral
transforms, demonstrate the application of irregular (polar) sampling to image
processing problems, and derive approximation algorithms that are based on un-
equally spaced samples. It is based on sampling the Fourier domain. We describe
2D and 3D irregular sampling geometries of the frequency domain, derive efficient
numerical algorithms that implement them, prove their correctness, and provide
theory and algorithms that invert them. We also show that these sampling geome-
tries are closely related to discrete integral transforms. The proposed underlying
methodology bridges via sampling between the continuous nature of the physical
phenomena and the discrete nature world. Despite the fact that irregular sampling
is situated in the core of many scientific applications, there are very few efficient
numerical tools that allow robust processing of irregularly sampled data.

4.1. Introduction

Polar (directional) processing and irregular sampling interleave each other in many
physical, scientific, and computational disciplines. Despite the fact that it is situ-
ated in the core of many scientific applications, there are very few efficient nu-
merical tools that allow robust processing of irregularly sampled polar data. As a
result, the solution for problems that involve irregular sampling usually resorts to
approximation or regridding to a Cartesian grid, where efficient numerical tools
exist. This necessarily sacrifices some aspects of the solution like accuracy and
analytical properties. Sometimes it is possible to trade accuracy at the expense
of speed by using slow algorithms. However, this approach fails in high dimen-
sions, where straightforward slow algorithms are impractical. As a result, solutions
for high-dimensional problems sometimes consist of separable application of 1D
tools, which sacrifices the interrelations between dimensions. In this chapter, we
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144 Irregular sampling for multidimensional transforms

survey a coherent related family of approaches that enable to process irregularly
sampled data, as well as some applications of these algorithms to image process-
ing problems. We consider sampling of the Fourier domain of discrete objects. We
describe 2D and 3D irregular sampling geometries of the frequency domain, de-
rive efficient numerical algorithms that implement them, prove their correctness,
and provide theory and algorithms that invert them. We present the 2D pseu-
dopolar Fourier transform, which samples the Fourier transform of an image on a
near-polar grid. The 2D pseudopolar Fourier transform also presents discrete in-
tegral transforms, which provide discretizations of continuous integral transforms
to discrete objects. The formulation of these directional processing tools in the fre-
quency domain results in special irregular sampling patterns. The algorithms that
implement the discrete transforms are based on sampling the Fourier transform
of the input object on these irregularly distributed points. We proved that these
transforms are algebraically accurate and preserve the geometric properties of the
continuous transforms.

We present the 2D and 3D pseudopolar Fourier transforms. The pseudopolar
Fourier transform is a fast algorithm that samples the Fourier transform of an im-
age on the pseudopolar grid. The pseudopolar grid, also known as the concentric
squares grid, consists of equally spaced samples along rays, where different rays
are equally spaced and not equally angled. This grid is different from the polar
grid since the angles between the rays are unequal. The algorithm that computes
the pseudopolar Fourier transform is shown to be fast (the same complexity as
the FFT), stable, invertible, requires only 1D operations, and uses no interpola-
tions. As a result, the pseudopolar Fourier transform is accurate and requires no
parameters besides the input function. The algorithm that computes the pseu-
dopolar Fourier transform is based on 1D applications of the fractional Fourier
transform,1 which samples the Fourier transform of a 1D sequence at arbitrary
equally spaced points. Since the pseudopolar Fourier transform is computed us-
ing only 1D operations, it is suitable for real-time implementations. Although the
algorithm produces irregular samples in the Fourier domain, it does not use any
interpolations, and the computed values have machine accuracy. The pseudopolar
Fourier transform is invertible. Invertibility is of major importance from a prac-
tical point of view, as many real-life problems can be formulated as the recovery
of image samples from frequency samples (e.g., medical imagery reconstruction
algorithms). Invertibility assures that no information about the physical phenom-
enon is lost due to the transformation. The inversion algorithms for the pseu-
dopolar Fourier transform face several numerical and computational difficulties,
as the transform is ill-conditioned and not selfadjoint. We consider two inversion
algorithms for the pseudopolar Fourier transform: iterative and direct. The iter-
ative algorithm is based on the application of the conjugate-gradient method to
the Gram operator of the pseudopolar Fourier transform. Since both the forward
pseudopolar Fourier transform and its adjoint can be computed in O(N2 logN)
and O(32 logN) operations, where N ×N and N ×N ×N are the sizes of the input

1It is also called scaled DFT in the terminology of Chapter 3 in this book.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


A. Averbuch et al. 145

images, respectively, the Gram operator can also be computed in the same com-
plexity. However, since the transform is ill-conditioned, we introduce a precon-
ditioner, which significantly accelerates the convergence. In addition, we develop
a direct inversion algorithm, which resamples the pseudopolar grid to a Carte-
sian frequency grid, and then, recovers the image from the Cartesian frequency
grid. The algorithm is based on an “onion-peeling” procedure that at each step
recovers two rows/columns of the Cartesian frequency grid, from the outermost
rows/columns to the origin, by using columns/rows recovered in previous steps.
The Cartesian samples of each row/column are recovered using trigonometric in-
terpolation that is based on a fast multipole method (FMM). Finally, the original
image is recovered from the Cartesian frequency samples, which are not the stan-
dard DFT samples, by using a fast Toeplitz solver. Then, we use the pseudopolar
Fourier transform to construct the 2D discrete Radon transform.

The Radon transform is a fundamental tool in many areas, for example, in
reconstruction of an image from its projections (CT imaging). Although it is sit-
uated in the core of many modern physical computations, the Radon transform
lacks a coherent discrete definition for 2D discrete images, which is algebraically
exact, invertible, and rapidly computable. We define a 2D discrete Radon trans-
form for discrete 2D images, which is based on summation along lines with abso-
lute slopes less than 1. Values at nongrid locations are defined using trigonometric
interpolation on a zero-padded grid where shearing is the underlying transform.
The discrete 2D definition of the Radon transform is shown to be geometrically
faithful as the lines used for summation exhibit no wraparound effects. We show
that our discrete Radon transform satisfies the Fourier slice theorem, which states
that the 1D Fourier transform of the discrete Radon transform is equal to the sam-
ples of the pseudopolar Fourier transform of the underlying image that lie along
a ray. We show that the discrete Radon transform converges to the continuous
Radon transform, as the discretization step goes to zero. This property is of major
theoretical and computational importance since it shows that the discrete trans-
form is indeed an approximation of the continuous transform, and thus can be
used to replace the continuous transform in digital implementations. We utilize
the same concepts used in the construction of the 2D discrete Radon transform
to derive a 3D discrete X-ray transform. The analysis of 3D discrete volumetric
data becomes increasingly important as computation power increases. 3D analysis
and visualization applications are expected to be especially relevant in areas like
medical imaging and nondestructive testing where extensive continuous theory
exists. However, this theory is not directly applicable to discrete datasets. There-
fore, we have to establish theoretical foundations for discrete analysis tools that
will replace the existing inexact discretizations, which are based on the continuous
theory. We want the discrete theory to preserve the concepts, properties, and main
results of the continuous theory. Then, we develop a discretization of the continu-
ous X-ray transform that operates on 3D discrete images. The suggested transform
preserves summation along true geometric lines without using arbitrary interpola-
tion schemes. As for the 2D discrete Radon transform, the 3D discrete X-ray trans-
form satisfies the Fourier slice theorem, which relates the Fourier transform of a
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146 Irregular sampling for multidimensional transforms

3D object to the Fourier transform of its discrete X-ray transform. Specifically, we
prove that the samples of the Fourier transform of a 3D object on a certain family
of planes is equal to the 2D Fourier transform of the 3D discrete X-ray transform.
We then derive a fast algorithm that computes the discrete X-ray transform that
is based on the Fourier slice theorem. The algorithm resamples the 3D Fourier
transform of the input object over the required set of planes by using the 1D chirp
Z-transform, and then, applies to each plane the 2D inverse Fourier transform.
The resampling of the Fourier transform of the input object over the set of planes
is accurate, involves no interpolations, and requires only 1D operations. Finally,
we show that the discrete X-ray transform is invertible.

Radon and X-ray transformations are closely related. However, there is a fun-
damental difference between them. The Radon transform in n-dimensions decom-
poses an n-dimensional object into a set of integrals over hyperplanes of dimen-
sion n2. On the other hand, an n-dimensional X-ray transform decomposes an
object into its set of line integrals. The two transforms coincide in the 2D case.
The 2D discrete Radon transform together with the 3D discrete Radon transform
and the 3D discrete X-ray transform provide a complete framework for defining n-
dimensional Radon and X-ray transforms for discrete objects, as extensions from
3D to n-dimensions are straightforward. These transforms are algebraically accu-
rate and geometrically faithful, as they do not involve arbitrary interpolations and
preserve summation along lines/hyperplanes. These transforms are invertible, can
be computed using fast algorithms, and parallel with the continuum theory, as
they preserve, for example, the Fourier slice theorem.

A discrete transform that results in a different sampling geometry is the dis-
crete diffraction transform. The continuous diffraction transform is the mathe-
matical model that underlies, for example, ultrasound imaging. The discrete dif-
fraction transform is defined as a collection of discrete diffracted projections taken
at a specific set of angles along a specific set of lines. A discrete diffracted projection
is a discrete transform whose properties are shown to be similar to the properties
of the continuous diffracted projection. We prove that when the discrete diffrac-
tion transform is applied on samples of a continuous object, it approximates a set
of continuous vertical diffracted projections of a horizontally sheared object and
a set of continuous horizontal diffracted projections of a vertically sheared object.
Also, we prove that the discrete transform satisfies the Fourier diffraction theorem,
is rapidly computable, and is invertible.

Recently, we proposed two algorithms for the reconstruction of a 2D object
from its continuous projections. The first algorithm operates on parallel projec-
tion data, while the second uses the more practical model of fan-beam projec-
tions. Both algorithms are based on the discrete Radon transform, which extends
the continuous Radon transform to discrete data. The discrete Radon transform
and its inverse can be computed in a complexity comparable with the 2D FFT, and
are shown to accurately model the continuum as the number of samples increases.
Numerical results demonstrate high quality reconstructions for both parallel and
fan-beam acquisition geometries. The sane idea is currently extended to process a
3D object.
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4.1.1. CT processing

An important problem in image processing is to reconstruct a cross section of
an object from several images of its projections. A projection is a shadowgram
obtained by illuminating an object by penetrating radiation. Figure 4.1(a) shows a
typical method for obtaining projections. Each horizontal line shown in this figure
is a one-dimensional projection of a horizontal slice of the object. Each pixel of the
projected image represents the total absorption of the X-ray along its path from
the source to the detector. By rotating the source-detector assembly around the
object, projections for several different angles can be obtained. The goal of image
reconstruction from projections is to obtain an image of a cross section of the object
from these projections. Imaging systems that generate such slice views are called
CT (computerized tomography) scanners.

The Radon transform is the underlying fundamental concept used for CT
scanning, as well as for a wide range of other disciplines, including radar imag-
ing, geophysical imaging, nondestructive testing, and medical imaging [1–4].

4.1.1.1. 2D continuous Radon transform

For the 2D case, the Radon transform of a function f (x, y), denoted as � f (θ, s),
is defined as its line integral along a line L inclined at an angle θ and at distance s
from the origin (see Figure 4.1(b)). Formally,

� f (θ, s) =
∫
L
f (x, y)du =

∫∫∞
−∞

f (x, y)δ(x cos θ + y sin θ − s)dx dy, (4.1)

where δ(x) is Dirac’s delta function. The Radon transform maps the spatial do-
main (x, y) to the domain (θ, s). Each point in the (θ, s) space corresponds to a
line in the spatial domain (x, y).

In the paper, we will use the following version of the continuous direct and
inverse Fourier transform:

f̂ (w) =
∫∞
−∞

f (x)e−2πıwxdx, f (x) =
∫∞
−∞

f̂ (w)e2πıwxdw. (4.2)

4.1.1.2. The Fourier slice theorem

There is a fundamental relationship between the 2D Fourier transform of a func-
tion and the 1D Fourier transform of its Radon transform. The result is summa-
rized in the following theorem.

Theorem 4.1.1 (Fourier slice theorem). The 1D Fourier transform with respect to
s of the projection � f (θ, s) is equal to a central slice, at angle θ, of the 2D Fourier
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Figure 4.1. (a) An X-ray CT scanning system. (b) 2D spatial domain. (c) 3D projection geometry.

transform of the function f (x, y). That is,

�̂ f (θ, ξ) = f̂ (ξ cos θ, ξ sin θ), (4.3)

where f̂ (ξ1, ξ2) = ∫∫∞
−∞ f (x, y)e−2πı(xξ1+yξ2)dx dy is the 2D Fourier transform of

f (x, y).

4.1.1.3. 3D continuous Radon transform

The 2D Radon transform, which is obtained using 1D line integrals, can be gener-
alized to 3D using integrals on planes. The 3D Radon transform is defined using
1D projections of a 3D object f (x, y, z) where these projections were obtained by
integrating f (x, y, z) on a plane, whose orientation can be described by a unit vec-
tor �α (see Figure 4.1(c)). Formally, we have the following.

Definition 4.1.2 (3D continuous Radon transform). Given a 3D function f (�x) �
f (x, y, z), and a plane (whose representation is given using the normal �α and the
distance from the origin s), the Radon transform for this plane is defined by

� f (�α, s) =
∫∫∫∞

−∞
f (�x)δ

(
�xT�α− s

)
d�x

=
∫∫∫∞

−∞
f (x, y, z)δ(x sin θ cosφ + y sin θ sinφ + z cos θ − s)dx dy dz,

(4.4)

where �x = [x, y, z]T , �α = [sin θ cosφ, sin θ sinφ, cos θ]T , and δ is Dirac’s delta
function.

The Fourier slice theorem for the 3D discrete Radon transform is the
following.
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Theorem 4.1.3 (3D Fourier slice theorem). The 1D Fourier transform with respect
to s of the function� f (�α, s) is equal to a central slice at direction �α of the 3D Fourier
transform of the function f (�x ). That is,

�̂ f (�α, ξ) = f̂ (ξ�α ) = f̂ (ξ sin θ cosφ, ξ sin θ sinφ, ξ cos θ), (4.5)

where

f̂
(
ξ1, ξ2, ξ3

) = ∫∫∫∞
−∞

f (�x )e−2πı(�x T ·�ξ)d�x, �ξ = [
ξ1, ξ2, ξ3

]T
, �x = [x, y, z]T.

(4.6)

4.1.2. Discretization of the Radon transform

For modern applications it is important to have a discrete analogues of� f for dig-
ital images I = (I(u, v) : −n/2 ≤ u, v < n/2) for the 2D case and I = (I(u, v,w) :
−n/2 ≤ u, v,w < n/2) for the 3D case. As guidelines for developing the no-
tion of the discrete Radon transform, we define the following set of properties
which should be satisfied by any definition of the discrete Radon transform: alge-
braic exactness, geometric fidelity, be rapidly computable, for example, admit an
O(N logN) algorithm where N is the size of the data in I (N = n2 in the 2D case,
N = n3 in the 3D case), invertible and parallels with continuum theory.

The structure of the paper is the following: in Section 4.2 the relationship be-
tween earlier works and the processed results in this chapter is discussed. The 2D
pseudopolar Fourier transform is described in Section 4.3, which is the basis for
the rest of the developments. The 2D discrete Radon transform following the no-
tion in [6, 7] is described in Section 4.4. In Section 4.5, we give a definition of
the 3D discrete Radon transform for 3D discrete images using slopes, and explain
its relation to conventional plane representation using normals. We present a 3D
Fourier slice theorem for the 3D discrete Radon transform and define the 3D pseu-
dopolar Fourier transform. Finally, for a special set of planes, we show that the 3D
discrete Radon transform is rapidly computable. The 3D discrete X-ray transform
is described in Section 4.6. In the summary section we mentioned some applica-
tions that are based on this methodology.

4.2. Related works

We describe here the relationship between earlier works and the processed results
in this chapter. Over the years, many attempts were made to define the notion
of the discrete Radon transform. For a survey of these approaches see [7, 8]. All
these approaches failed to meet the requirements in Section 4.1.2 simultaneously,
but recently [5–8, 10] established a coherent methodology for the definition of
the discrete Radon transform that satisfies these requirements. In this chapter, we
sketch this approach for the 2D and 3D cases. The full constructions and proofs
can be found in [5–7, 11] for the 2D case and in [8, 10] for the 3D case. A combined
description appears in [18].
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Bailey and Swarztrauber [21] described the fractional Fourier transform
(FRFFT). It lacks the discussion of the chirp-Z transform, dating from twenty
years earlier [22], which is in fact more general than the fractional Fourier trans-
form as introduced in [21]. Bailey and Swarztrauber consider the problem of sum-
ming along a family of lines in an array, and suggest the idea like in our case of
trigonometric interpolation. However, FFRT does not explicitly define or defend a
notion “Radon transform.” Moreover, they do not proceed as above, that is, es-
tablishing a projection-slice theorem which relates sums along lines to Fourier
coefficients on a pseudopolar grid. Another difference is that their definition of
summing along lines can be shown equivalent to ours using interpolating kernel
Dm for m = n rather than m = 2n + 1. For us, this is a crucial difference, be-
cause of the wraparound artifacts that it causes. It shows that coefficients in the
m = n case are indeed formed by summing along wrapped lines. FRFFT deserve
a great deal of credit for an important series of algorithmic insights. Our contri-
butions are (1) to insist on a specific definition of a full Radon transform, using a
specific set of offsets and angles, and not merely a convenient algorithm for gen-
eral families of sums; (2) to insist on m = 2n + 1 and so on geometric fidelity of
the corresponding family of lines; (3) to formalize a pseudopolar FFT and recog-
nize a projection-slice theorem relating the pseudopolar FFT to the Radon; (4) to
establish properties for the Radon transform, including injectivity and inversion
algorithms; and (5) to put the various results in scholarly context. In a survey pa-
per (see [23]) a non-Cartesian grid in the 2D Fourier plane was introduced. This is
a pseudopolar grid of the type we have described here in the paper, except for the
degree of radial sampling. It is called there the concentric squares grid. The authors
of that paper assumed that data on a continuum object were gathered in unequally
spaced projections chosen so that the 1D Fourier transform corresponded to the
concentric squares grid. They considered the problem of reconstructing a discrete
array of n2 pixels from such Fourier domain data, and developed an algorithm
based on interpolating from the data given in the concentric squares grid to the
Cartesian grid. They used simple 1-dimensional interpolation based on linear in-
terpolation in rows/columns. In short, a key organizational tool, a trapezoidal grid
for Fourier space, has been known since 1974, under the name concentric squares
grid. In fact, this grid has since been rediscovered numerous times. The authors in
[23] seem to be the real inventors of this concept. In comparison to our work, (1)
[23]’s definition samples half as frequently as that in the radial direction. This can
be shown to be exactly the grid which would arise if we had developed our orig-
inal Radon definition for the m = n case. Hence, the original concentric squares
grid involves wraparound of the underlying lines; (2) [23]’s methodology is about
reconstruction from data given about a continuum object; the authors do not at-
tempt to define a Radon transform on digital data, or establish the invertibility
and conditioning of such a transform; and (3) their methodology is approximate;
they do not obtain an exact conversion between concentric squares and Cartesian
grids.

Another important set of papers in the literature of computed tomography
are both medical tomography [24–26] and synthetic aperture radar imaging [27].
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Like [23], these authors are concerned with image reconstruction; effectively they
assume that one is given data in the Fourier domain on a concentric squares grid.

Reference [24], unpublished work, which is known among tomography ex-
perts through a citation in Natterer’s book [3], showed in 1980 that by the given
data on a pseudopolar grid in Fourier space, one could calculate a collection of n2

sums which, using the notation, we can write as

∑
csk,l exp

{
i(u, v)′ζsk,l

}
, −n

2
≤ u, v <

n

2
, (4.7)

where the ζsk,l are points in the concentric squares grid. (Reference [24] makes no
reference to [23].) Pasciak in [24] studied this calculation, which is essentially the
calculation of adjP for a variant of P based on m = n rather than m = 2n + 1,
and showed it may be done in order n2 logn time. His key insight was to use the
chirp-Z transform to calculate Fourier-like sums with exponents different from
the usual 2π/nkt by a factor α.

The authors in [25, 26] develop the linogram, with a very similar point of
view. They assume that data on a continuum object have been gathered by what
we have called the continuous Slant Stack, at a set of projections which are equi-
spaced in tan(θ) rather than θ. By digitally sampling each constant θ projection
and making a 1D discrete Fourier transform of the resulting samples, they argue
that they are essentially given data on a concentric squares grid in Fourier space,
(making no reference to [23] or [24]). They are concerned with reconstruction
and consider the sum (4.7) and derive a fast algorithm—the same as [24], using
again the chirp-Z transform.

References [25, 27] develop the so called Polar Fourier transform for Syn-
thetic Aperture Radar (SAR) imagery. They introduce a concentric squares grid,
assuming that SAR data are essentially given on such a concentric squares grid in
Fourier space, and consider the problem of rapidly reconstructing an image from
such data. They consider the sum (4.7) and derive a fast algorithm using again
the chirp-Z transform. They refer to [23]. These authors deserve major credit for
identifying an important algorithmic idea use of chirp-Z techniques to resample
data from Cartesian to concentric squares grids which obviously is the same idea
we use in our fast algorithms.

In comparison to our work, (1) this methodology is about reconstruction
only, assuming that data are gathered about a continuum object by a physical de-
vice, and (2) the algorithmic problem they consider is equivalent to rapidly com-
puting (4.7).

4.3. 2D pseudopolar Fourier transform

The pseudopolar representation is the basis for the rest of the developments.
Therefore, we provide here a detailed description for its construction. Given an
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image I of size n× n, its 2D Fourier transform, denoted by Î(ωx,ωy), is given by

Î
(
ωx,ωy

) = n/2−1∑
u,v=−n/2

I(u, v)e−(2πı/m)(uωx+vωy), ωx,ωy ∈ R, (4.8)

Fourier transform of I where m ≥ n is an arbitrary integer. We assume for simplic-
ity that the image I has equal dimensions in the x- and y- directions and that n is
even. Equation (4.8) uses continuous frequencies ωx and ωy . For practical appli-

cations we need to evaluate Î on discrete sets. Given a set Ω, we denote the samples
of Î on Ω by ÎΩ. For example, let Ωc be the Cartesian grid of size m×m given by

Ωc =
{

(k, l), k, l = −m
2

, . . . ,
m

2− 1

}
. (4.9)

Then, the Fourier transform in (4.8) has the form

ÎΩc(k, l) � Î(k, l) =
n/2−1∑

u,v=−n/2
I(u, v)e−(2πı/m)(uk+vl), (4.10)

k, l = −m/2, . . . ,m/2 − 1, which is usually referred to as the 2D DFT of the im-
age I . It is well known that ÎΩc , given by (4.10), can be computed in O(m2 logm)
operations using the FFT algorithm.

4.3.1. Definition

Definition 4.3.1 (2D pseudopolar grid). The 2D pseudopolar grid, denoted byΩpp,
is given by

Ωpp � Ω1
pp ∪Ω2

pp, (4.11)

where

Ω1
pp �

{(
− 2l

n
k, k

)
| −n

2
≤ l ≤ n

2
, − n ≤ k ≤ n

}
,

Ω2
pp �

{(
k,−2l

n
k
)
| −n

2
≤ l ≤ n

2
, − n ≤ k ≤ n

}
.

(4.12)

We denote a specific point in Ω1
pp and Ω2

pp by

Ω1
pp(k, l) �

(
− 2l

n
k, k

)
, Ω2

pp(k, l) �
(
k,−2l

n
k
)

,

k = −n, . . . ,n, l = −n
2

, . . . ,
n

2
.

(4.13)
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(a) (b) (c)

Figure 4.2. (a) Pseudopolar sector Ω1
pp. (b) Pseudopolar sector Ω2

pp. (c) Pseudopolar grid Ωpp =
Ω1

pp ∪Ω2
pp.

See Figure 4.2 for an illustration of Ω1
pp, Ω2

pp, and Ωpp, respectively. As can
be seen from the figures, k serves as a “pseudo-radius” and l serves as a “pseudo-
angle.”

The resolution of the pseudopolar grid, given by Definition 4.3.1, is n + 1 in
the angular direction and m = 2n + 1 in the radial direction. In polar coordinates,
the pseudopolar grid is given by

Ω1
pp(k, l) = (

r1
k , θ1

l

)
, Ω2

pp(k, l) = (
r2
k , θ2

l

)
, (4.14)

where

r1
k = k

√√√
4
(
l

n

)2

+ 1, r2
k = k

√√√
4
(
l

n

)2

+ 1,

θ1
l =

π

2
− arctan

(
2l
n

)
, θ2

l = arctan
(

2l
n

)
,

(4.15)

k = −n, . . . ,n and l = −n/2, . . . ,n/2.
As we can see in Figure 4.2(c), for each fixed angle l, the samples of the pseu-

dopolar grid are equally spaced in the radial direction. However, this spacing is
different for different angles. Also, the grid is not equally spaced in the angular
direction, but has equally spaced slopes. Formally,

Δr1
k � r1

k+1 − r1
k =

√√√
4
(
l

n

)2

+ 1, Δr2
k � r2

k+1 − r2
k =

√√√
4
(
l

n

)2

+ 1,

Δ tan θ1
pp(l) � cot θ1

l+1 − cot θ1
l =

2
n

, Δ tan θ2
pp(l) � tan θ2

l+1 − tan θ2
l =

2
n

,

(4.16)

where r1
k , r2

k , θ1
l , and θ2

l are given by (4.15).
The pseudopolar Fourier transform is defined by resampling Î , given by (4.8),

on the pseudopolar grid Ωpp, given by (4.11)-(4.12).
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Definition 4.3.2 (pseudopolar Fourier transform). The pseudopolar Fourier trans-
form ÎΩ j

pp
( j = 1, 2) is a linear transformation that is defined for k = −n, . . . ,n and

l = −n/2, . . . ,n/2 as

ÎΩ1
pp

(k, l) = Î
(
− 2l

n
k, k

)
, ÎΩ2

pp
(k, l) = Î

(
k,−2l

n
k
)

(4.17)

on the set S where Î is given by (4.8). Equivalently, the more compact notation
ÎΩpp (s, k, l) � ÎΩs

pp
(k, l), where s = 0, 1, k = −n, . . . ,n, and l = −n/2, . . . ,n/2, is

used.

Using operator notation, we denote the pseudopolar Fourier transform of an
image I as FppI , where

(
FppI

)
(s, k, l) � ÎΩs

pp
(k, l), (4.18)

s = 0, 1, k = −n, . . . ,n, l = −n/2, . . . ,n/2, and ÎΩs
pp

is given by (4.17). This notation
is used whenever operator notation is more convenient.

4.3.2. Fast forward transform

In this section, we present a fast algorithm that efficiently computes the pseudopo-
lar Fourier transform of an image I . The idea behind the algorithm is to evaluate
Î , given by (4.8), on a Cartesian grid, by using the 2D FFT algorithm, and then,
resampling the Cartesian frequency grid to the pseudopolar grid. The operator
behind this algorithm is the fractional Fourier transform.

Definition 4.3.3 (fractional Fourier transform). Let c ∈ Cn+1 be a vector of length
n + 1, c = (c(u), u = −n/2, . . . ,n/2), and let α ∈ R. The fractional Fourier trans-
form, denoted by (Fα

n+1c)(k), is given by

(
Fα
n+1c

)
(k) =

n/2∑
u=−n/2

c(u)e−2πıαku/(n+1), k = −n
2

, . . . ,
n

2
. (4.19)

An important property of the fractional Fourier transform is that given a vec-
tor c of length n+ 1, the sequence (Fα

n+1c)(k), k = −n/2, . . . ,n/2, can be computed
using O(n logn) operations for any α ∈ R (see [21]).

Definition 4.3.3 is usually referred to as the unaliased fractional Fourier trans-
form. It differs from the usual definition of the fractional Fourier transform given
in [21]. According to the definition in [21], for a vector c = (c(u), u = 0, . . . ,n)
and an arbitrary α ∈ R, the fractional Fourier transform is defined as

(
Fα
nc
)
(k) =

n−1∑
u=0

c(u)e−2πıαku, k = 0, . . . ,n− 1. (4.20)
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The algorithm that computes the unaliased fractional Fourier transform (Defini-
tion 4.3.3) is very similar to the algorithm in [21], and is therefore omitted.

The algorithm that computes the pseudopolar Fourier transform uses the fol-
lowing notation.

(i) E: padding operator. E(I ,m,n) accepts an image I of size n×n and sym-
metrically zero-pads it to size m× n.

(ii) F−1
1 : 1D inverse DFT.

(iii) F̃α
m: fractional Fourier transform with factor α. The operator accepts a

sequence of length n, symmetrically pads it to length m = 2n+1, applies
to it the fractional Fourier transform with factor α, and returns the n+ 1
central elements.

(iv) F2: 2D DFT.
(v) Gk,n: resampling operator given by

Gk,n = F̃α
m ◦ F−1

1 , α = 2k
n
. (4.21)

Using this notation, the algorithm that computes the pseudopolar Fourier trans-
form of an image I is given by Algorithms 4.1 and 4.2.

In words, Algorithm 4.1 computes Res1 as follows.
(i) Zero-pad both ends of the y-direction of the image I (to size m) and

compute the 2D DFT of the padded image. The result is stored in Îd.
(ii) Apply the 1D inverse Fourier transform on each row of Îd.

(iii) Resample each row k in the resulting array using the 1D fractional
Fourier transform with α = 2k/n.

(iv) Flip each row around its center.
The next theorem proves that Algorithms 4.1 and 4.2 indeed compute the

pseudopolar Fourier transform.

Theorem 4.3.4 (correctness of Algorithms 4.1 and 4.2 [5]). Upon termination of
Algorithms 4.1 and 4.2, the following hold:

Res1(k, l) = ÎΩ1
pp

(k, l),

Res2(k, l) = ÎΩ2
pp

(k, l),
(4.22)

where k = −n, . . . ,n, l = −n/2, . . . ,n/2, and ÎΩ1
pp

and ÎΩ2
pp

are given by (4.17).

Next, we analyze the complexity of Algorithm 4.1. Step (2) can be executed in
O(n2 logn) operations by using successive applications of 1D FFT. Each call to Gk,n

in step (5) involves the application of 1D inverse Fourier transform (O(n logn) op-
erations) followed by the computation of the fractional Fourier transform
(O(n logn) operations). Thus, the computation of Gk,n requires O(n logn) oper-
ations. Step (5) computes Gk,n for each row k (2n + 1 rows), and thus, step (5)
requires a total of O(n2 logn) operations. Step (6) involves flipping 2n + 1 vectors
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Input: image I of size n× n

Output: array Res1 with n + 1 rows and m = 2n + 1 columns that contains the samples of ÎΩ1
pp

(1) m← 2n + 1
(2) Îd ← F2(E(I ,m,n))
(3) for k = −n, . . . ,n do
(4) q ← Îd(·, k)
(5) wk ← Gk,nq, wk ∈ Cn+1

(6) Res1(k, l)← wk(−l)
(7) end for

Algorithm 4.1. Computing the pseudopolar Fourier transform ÎΩ1
pp

(4.17).

Input: image I of size n× n

Output: array Res2 with n + 1 rows and m = 2n + 1 columns that contains the samples of ÎΩ2
pp

(1) m← 2n + 1
(2) Îd ← F2(E(I ,n,m))
(3) for k = −n, . . . ,n do
(4) z ← Îd(k, ·)
(5) wk ← Gk,nz, wk ∈ Cn+1

(6) Res2(k, l)← wk(−l)
(7) end for

Algorithm 4.2. Computing the pseudopolar Fourier transform ÎΩ2
pp

(4.17).

of length n + 1. Flipping a single vector requires O(n) operations. This gives a to-
tal of O(n2) operations for flipping all 2n + 1 vectors. Thus, the total complexity
of Algorithm 4.1 is O(n2 logn) operations. The complexity of Algorithm 4.2 is the
same. Thus, given an image I of size n× n, its pseudopolar Fourier transform can
be computed in O(n2 logn) operations.

4.3.3. Invertibility

The 2D pseudopolar Fourier transform is invertible; see [5, 18].

4.3.3.1. Iterative inverse algorithm

We want to solve

Fppx = y, (4.23)

where Fpp is the 2D pseudopolar Fourier transform, given by (4.18). Since y is not
necessarily in the range of the pseudopolar Fourier transform, due to, for example,
roundoff errors, we would like to solve

min
x∈R(Fpp)

∥∥Fppx − y
∥∥

2 (4.24)
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instead of (4.23), where R(Fpp) is the range of the pseudopolar Fourier transform.
Solving (4.24) is equivalent to solving the normal equations

Fpp
∗Fppx = Fpp

∗y, (4.25)

where F ∗
pp is the adjoint pseudopolar Fourier transform. Since Fpp

∗Fpp is sym-
metric and positive definite, we can use the conjugate-gradient method [31] to
solve (4.25). When using the conjugate-gradient method, we never explicitly form
the matrices that correspond to Fpp and Fpp

∗ (which are huge), since only the
application of the pseudopolar Fourier transform and its adjoint are required.

The number of iterations required by the conjugate-gradient method depends
on the condition number of the transform. To accelerate the convergence, we con-
struct a preconditioner M and solve

Fpp
∗MFppx =MFpp

∗y. (4.26)

M is usually designed such that the condition number of the operator Fpp
∗MFpp

is much smaller than the condition number of Fpp
∗Fpp, or, such that the eigen-

values of Fpp
∗MFpp are well clustered. We define the preconditioner M to be

M(k, l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
m2

, k = 0,

2(n + 1)|k|
nm

otherwise,

(4.27)

where k = −n, . . . ,n, l = −n/2, . . . ,n/2 and m = 2n + 1. The preconditioner is
applied to each of the pseudopolar sectors, where each pseudopolar sector is of
size m × (n + 1). The efficiency of the preconditioner M (4.27) is demonstrated
in Figure 4.3. Each graph presents the residual error as a function of the iteration
number. In Figure 4.3(a), the original image is a 2D Gaussian of size 512×512 with
μx = μy = 0 and σx = σy = 512/6. In Figure 4.3(b), the original image is a ran-
dom image of size 512× 512, where the entries are uniformly distributed between
0 and 1. In Figure 4.3(d), the original image is Barbara of size 512 × 512, shown
in Figure 4.3(c). As we can see from Figures 4.3(a)–4.3(d), the suggested precon-
ditioner significantly accelerates the convergence. Without the preconditioner, the
conjugate-gradient algorithm converges slowly. With the preconditioner, only a
few iterations are required, and the number of iterations weakly depends on the
reconstructed image.

As we can see from the tables in [5], very few iterations are required to invert
the pseudopolar Fourier transform with high accuracy. The total complexity of
the algorithm that inverts the pseudopolar Fourier transform is O(ρ(ε)n2 logn),
where ρ(ε) is the number of iterations required to achieve accuracy ε. The value of
ρ(ε) depends very weakly on the size of the reconstructed image, and in any case
ρ(10−7) ≤ 10.
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With preconditioner
No preconditioner

(a) Reconstruction of a random
image 512× 512
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1e − 15

1e − 10
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1e + 15

With preconditioner
No preconditioner

(b) Reconstruction of a Gaussian
image 512× 512

(c) Barbara 512× 512 5 10 15 20 25 30 35 40 45 50
1e − 15

1e − 10

1e − 05

1e + 00

1e + 05

1e + 10

1e + 15

1e + 20

1e + 25

1e + 30

With preconditioner
No preconditioner

(d) Reconstruction of Barbara
512× 512

Figure 4.3. The effect of using the preconditioner in (4.27).

4.3.3.2. Direct inverse algorithm

In this section, we describe a direct inversion algorithm for the pseudopolar
Fourier transform. The algorithm consists of two phases. The first phase resam-
ples the pseudopolar Fourier transform into a Cartesian frequency grid. The sec-
ond phase recovers the image from these Cartesian frequency samples. Resampling
from the pseudopolar to a Cartesian frequency grid is based on an “onion-peeling”
procedure, which recovers a single row/column of the Cartesian grid in each itera-
tion, from the outermost row/column to the origin. Recovering each row/column
is based on a fast algorithm that resamples trigonometric polynomials from one
set on frequencies to another set of frequencies (for more detail see [5, 18]).
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Table 4.1. Inverting the pseudopolar Fourier transform of a Gaussian image with ε = 10−7. The
first column corresponds to n, where n × n is the size of the original image. The second and third
columns correspond to the E2 and E∞ reconstruction errors, respectively. The fourth column, denoted
by tF , corresponds to the time (in seconds) required to compute the forward pseudopolar Fourier
transform. The fifth column, denoted by tI , corresponds to the time (in seconds) required to invert the
pseudopolar Fourier transform using the proposed algorithm.

n E2 E∞ tF tI

8 8.85306e-16 7.75742e-16 1.68498e-01 3.53113e-01

16 6.33498e-16 7.78284e-16 9.19520e-02 9.89350e-02

32 1.07588e-15 1.42958e-15 1.67678e-01 1.74619e-01

64 8.62082e-15 6.83852e-15 3.32671e-01 5.65795e-01

128 1.15638e-14 7.68190e-15 9.46146e-01 2.62962e+00

256 6.81762e-15 4.07823e-15 2.68635e+00 1.86460e+01

512 3.83615e-14 2.52678e-14 1.02859e+01 1.33362e+02

4.3.3.3. Numerical results

The algorithm was implemented in Matlab and was applied to two test images
of various sizes. The first image is a Gaussian image of size n × n with mean
μx = μy = 0 and standard deviation σx = σy = n/6. The second test image is
a random image whose entries are uniformly distributed in [0, 1]. In all tests we
choose ε = 10−7. For each test image we compute its pseudopolar Fourier trans-
form followed by the application of the inverse pseudopolar Fourier transform.
The reconstructed image is then compared to the original image. The results are
summarized in Tables 4.1 and 4.2. Table 4.1 presents the results of inverting the
pseudopolar Fourier transform of a Gaussian image. Table 4.2 presents the results
of inverting the pseudopolar Fourier transform of a random image whose entries
are uniformly distributed in [0, 1].

As we can see from Tables 4.1 and 4.2, the inversion algorithm achieves very
high accuracy for both types of images, while its execution time is comparable with
the execution time of the optimized pseudopolar Fourier transform. The obtained
accuracy is higher than the prescribed accuracy ε.

4.4. 2D discrete Radon transform

The importance of reconstruction of a cross section of an object from several im-
ages of its projections was explained in Section 4.1.1. A projection is a shadowgram
obtained by illuminating an object with a penetrating radiation. Figure 4.1(a)
shows a typical method for obtaining projections. Each horizontal line in
Figure 4.1(a) is a one-dimensional projection of a horizontal slice of the object.
Each pixel of the projected image represents the total absorption of X-ray along
the ray’s path from the source to the detector. By rotating the source-detector as-
sembly around the object, projections for different angles are obtained. The goal
of image reconstruction from projections is to obtain an image of a cross section of
the object from these projections. Imaging systems that generate such slice views
are called CT (computerized tomography) scanners.
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Table 4.2. Inverting the pseudopolar Fourier transform of a random image with ε = 10−7. The first
column corresponds to n, where n× n is the size of the original image. The second and third columns
correspond to the E2 and E∞ reconstruction errors, respectively. The fourth column, denoted by tF ,
corresponds to the time (in seconds) required to compute the forward pseudopolar Fourier transform.
The fifth column, denoted by tI , corresponds to the time (in seconds) required to invert the pseudopo-
lar Fourier transform using the proposed algorithm.

n E2 E∞ tF tI

8 1.12371e-15 1.40236e-15 3.03960e-02 4.83120e-02

16 1.54226e-15 1.98263e-15 6.56960e-02 8.04270e-02

32 4.68305e-15 8.27006e-15 1.50652e-01 1.85239e-01

64 1.56620e-14 2.50608e-14 3.19637e-01 5.45564e-01

128 3.56283e-14 6.96984e-14 9.66602e-01 2.57069e+00

256 7.45050e-14 1.59613e-13 2.78531e+00 1.69190e+01

512 3.15213e-13 6.38815e-13 9.19018e+00 1.30085e+02

The Radon transform is the underlying mathematical tool used for CT scan-
ning, as well as for a wide range of other disciplines, including radar imaging,
geophysical imaging, nondestructive testing, and medical imaging [1].

For the 2D case, the Radon transform of a function f (x, y), denoted as
� f (θ, s), is defined as the line integral of f along a line L inclined at an angle
θ and at distance s from the origin (see Figure 4.1(b)). Formally, it is described
by (4.1) and it is illustrated in Figure 4.1(c). There is a fundamental relationship
between the 2D Fourier transform of a function and the 1D Fourier transform of
its Radon transform. The result is summarized in Theorem 4.6.1.

For modern applications it is important to have a discrete analog of � f for
2D digital images I = (I(u, v) : u, v = −n/2, . . . ,n/2− 1). The proposed notion of
digital Radon transform satisfies the requirements in Section 4.1.2.

4.4.1. Definition

The discrete Radon transform is defined by summing the samples of I(u, v), u, v =
−n/2, . . . ,n/2−1, along lines. The two key issues of the construction are the follow-
ing. How to process lines of the discrete transform when they do not pass through
grid points? How to choose the set of lines which we sum, in order to achieve
geometric fidelity, rapid computation, and invertibility?

The discrete Radon transform is defined by summing the discrete samples
of the image I(u, v) along lines with absolute slope less than 1. For lines of the
form y = sx + t (|s| ≤ 1), we traverse each line by unit horizontal steps x =
−n/2, . . . ,n/2 − 1, and for each x, we interpolate the image sample at position
(x, y) by using trigonometric interpolation along the corresponding image col-
umn. For lines of the form y = sx + t (|s| ≥ 1), we rephrase the line equation
as x = s′y + t′ (|s′| ≤ 1). In this case, we traverse the line by unit vertical steps,
and for each integer y, we interpolate the value at the x coordinate x = s′y + t′ by
using trigonometric interpolation along the corresponding row. The requirement
for slopes less than 1 induces two families of lines.
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(i) Basically horizontal line is a line of the form y = sx + t, where |s| ≤ 1.
(ii) Basically vertical line is a line of the form x = sy + t, where |s| ≤ 1.

Using these line families we define the 2D Radon transform for discrete images as
the following.

Definition 4.4.1 (2D Radon transform for discrete images). Let I(u, v), u, v = −n/
2, . . . ,n/2 − 1, be an n × n array. Let s be a slope such that |s| ≤ 1, and let t be an
intercept such that t = −n, . . . ,n. Then,

Radon
({y = sx + t}, I) = n/2−1∑

u=−n/2
Ĩ

1
(u, su + t),

Radon
({x = sy + t}, I) = n/2−1∑

v=−n/2
Ĩ

2
(sv + t, v),

(4.28)

where

Ĩ
1
(u, y) =

n/2−1∑
v=−n/2

I(u, v)Dm(y − v), u = −n
2

, . . . ,
n

2− 1
, y ∈ R,

Ĩ
2
(x, v) =

n/2−1∑
u=−n/2

I(u, v)Dm(x − u), v = −n
2

, . . . ,
n

2− 1
, x ∈ R,

(4.29)

Dm(t) = sin(πt)
m sin (πt/m)

, m = 2n + 1. (4.30)

Moreover, for an arbitrary line l with slope s and intercept t, such that |s| ≤ 1 and
t = −n, . . . ,n, the Radon transform is given by

(RI)(s, t) =
⎧⎨⎩Radon

({y = sx + t}, I), l is a basically horizontal line,

Radon
({x = sy + t}, I), l is a basically vertical line.

(4.31)

Ĩ
1

and Ĩ
2

in (4.29) are column-wise and row-wise interpolated versions of I ,
respectively, using the Dirichlet kernel Dm with m = 2n + 1.

The selection of the parameters s and t in Definition 4.4.1 is explained in [6].

4.4.2. Representation of lines using angle

In order to derive the 2D Radon transform (Definition 4.4.1) in a more natural
way, we rephrase it using angles instead of slopes. For a basically horizontal line
y = sx+t with |s| ≤ 1, we express s as s = tan θ with θ ∈ [−π/4,π/4], where θ is the
angle between the line and the positive direction of the x-axis. Using this notation,
a basically horizontal line has the form y = (tan θ)x + t with θ ∈ [−π/4,π/4].
Given a basically vertical line x = sy + t with |s| ≤ 1, we express s as s = cot θ
with θ ∈ [π/4, 3π/4], where θ is again the angle between the line and the positive
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direction of the x-axis. Hence, a basically vertical line has the form x = (cot θ)y +
tθ ∈ [π/4, 3π/4].

Using this parametric representation we rephrase the definition of the Radon
transform (Definition 4.4.1) as the following.

Definition 4.4.2. Let I(u, v), u, v = −n/2, . . . ,n/2 − 1, be a n × n array. Let θ ∈
[−π/4, 3π/4], and let t be an intercept such that t = −n, . . . ,n. Then,

(RI)(θ, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Radon

({
y = (tan θ)x + t

}
, I
)
, θ ∈

[−π
4

,
π

4

]
,

Radon
({
x = (cot θ)y + t

}
, I
)
, θ ∈

[
π

4
,

3π
4

]
,

(4.32)

where

Radon
({y = sx + t}, I) = n/2−1∑

u=−n/2
Ĩ

1
(u, su + t),

Radon
({x = sy + t}, I) = n/2−1∑

v=−n/2
Ĩ

2
(sv + t, v),

(4.33)

and Ĩ
1
, Ĩ

2
, and Dm are given by (4.29), (4.30), respectively.

The Radon transform in Definition 4.4.2 operates on discrete images I(u, v)
while θ is continuous. We have to discretize the parameter θ in order to have a
“discrete Radon transform” that satisfies properties in Section 4.1.2.

4.4.3. Fourier slice theorem

The Fourier slice theorem for the 2D continuous Radon transform defines a rela-
tion between the continuous Radon transform � f of a function f (x, y) and the
2D Fourier transform of f along some radial line:

�̂ f (θ, ξ) = f̂ (ξ cos θ, ξ sin θ), (4.34)

where �̂ f is the 1D Fourier transform of � f (4.2). Equation (4.34) allows us
to evaluate the continuous Radon transform using the 2D Fourier transform of
the function f . We are looking for a similar relation between the discrete Radon
transform and the discrete Fourier transform of the image. We then use such a
relation to compute the discrete Radon transform.

To construct such a relation we define some auxiliary operators which enable
us to rephrase the definition of the discrete Radon transform (Definition 4.4.2)
in a more convenient way. Throughout this section we denote by Cm the set of
complex-valued vectors of length m, indexed from −�m/2� to �(m − 1)/2�. Also,
we denote by Ck×l the set of 2D complex-valued images of dimensions k × l. Each
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image I ∈ Ck×l is indexed as I(u, v), where u = −�k/2�, . . . , �(k − 1)/2� and v =
−�l/2�, . . . , �(l − 1)/2�. k is along the x-axis and l is along the y-axis.

Definition 4.4.3 (translation operator). Let α ∈ Cm and τ ∈ R. The translation
operator Tτ : Cm → Cm is given by

(
Tτα

)
u =

n∑
i=−n

αiDm(u− i− τ), m = 2n + 1, (4.35)

where u = −n, . . . ,n and Dm is given by (4.30).

The translation operator Tτ takes a vector of length m and translates it by τ
by using trigonometric interpolation .

Lemma 4.4.4 (see [6]). Let Tτ be the translation operator given by Definition 4.4.3.
Then,

adjTτ = T−τ . (4.36)

An important property of the translation operator Tτ is that the translation of
exponentials is algebraically exact. In other words, translating a vector of samples
of the exponential e2πıkx/m is the same as resampling the exponential at the trans-
lated points. This observation is of great importance for proving the Fourier slice
theorem.

Lemma 4.4.5 (see [6]). Let m = 2n + 1, ϕ(x) = e2πıkx/m. Define the vector φ ∈ Cm

as φ = (ϕ(t) : t = −n, . . . ,n). Then, for arbitrary τ ∈ R,

(
Tτφ

)
t = ϕ(t − τ), t = −n, . . . ,n. (4.37)

Definition 4.4.6. The extension operators E1 : Cn×n → Cn×m and E2 : Cn×n →
Cm×n are given by

EiI(u, v) =
⎧⎪⎨⎪⎩I(u, v), u, v = −n

2
, . . . ,

n

2− 1
,

0 otherwise,
(4.38)

where i = 1, 2, and m = 2n + 1.

E1 is an operator that takes an array of size n×n and produces an array of size
(2n+ 1)×n (2n+ 1 rows and n columns) by adding n/2 + 1 zero rows at the top of
the array and n/2 zero rows at the bottom of the array (see Figure 4.4). Similarly,
E2 corresponds to padding the array I with n+ 1 zero columns, n/2 + 1 at the right
and n/2 at the left.
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n/2 + 1
zeros

I(u, v)

n/2
zeros

y

x

Figure 4.4. Applying the padding operator E1 to an array of size n× n.

Definition 4.4.7. The truncation operators U1 : Cn×m → Cn×n and U2 : Cm×n →
Cn×n are given by

UiI(u, v) = I(u, v), u, v = −n
2

, . . . ,
n

2− 1
, (4.39)

where i = 1, 2 and m = 2n + 1.

The operator U1 removes n/2 + 1 rows from the top of the array and n/2 rows
from the bottom of the array, recovering an n × n image. Similarly, U2 removes
n/2 + 1 columns from the right and n/2 columns from the left of the array.

Lemma 4.4.8 (see [6]). Let E1 and U1 be the extension and truncation operators,
given by Definitions 4.4.6 and 4.4.7, respectively. Then,

adjE1 = U1. (4.40)

In an exactly analogous way we show that U2 = adjE2.

Definition 4.4.9. Let I(u, v), u, v = −n/2, . . . ,n/2 − 1, be an n × n image. The
shearing operators S1 : Cn×m → Cn×m and S2 : Cm×n → Cm×n, m = 2n + 1, are
given by

(
S1
θI
)
(u, v) = (

T−u tan θI(u, ·))v, θ ∈
[−π

4
,
π

4

]
,

(
S2
θI
)
(u, v) = (

T−v cot θI(·, v)
)
u, θ ∈

[
π

4
,

3π
4

]
.

(4.41)
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Lemma 4.4.10 (see [6]). For t = −n, . . . ,n,

RI(θ, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n/2−1∑
u=−n/2

(
S1
θ

(
E1I

))
(u, t), θ ∈

[−π
4

,
π

4

]
,

n/2−1∑
v=−n/2

(
S2
θ

(
E2I

))
(t, v), θ ∈

[
π

4
,

3π
4

]
.

(4.42)

Definition 4.4.11. Let ψ ∈ Cm and m = 2n + 1. The backprojection operators
B1
θ : Cm → Cn×m and B2

θ : Cm → Cm×n are given by

(
B1
θψ

)
(u, ·) = Tu tan θψ, θ ∈

[−π
4

,
π

4

]
,

(
B2
θψ

)
(·, v) = Tv cot θψ, θ ∈

[
π

4
,

3π
4

]
.

(4.43)

Lemma 4.4.12 (see [6]).

adjB1
θ =

∑
u

S1
θ ,

adjB2
θ =

∑
v

S2
θ.

(4.44)

We can now give an explicit formula for the adjoint Radon transform.

Theorem 4.4.13 (see [6]). The adjoint Radon transform adjRθ : Cm → Cn×n is
given by

adjRθ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U1 ◦ B1

θ , θ ∈
[−π

4
,
π

4

]
,

U2 ◦ B2
θ , θ ∈

[
π

4
,

3π
4

]
,

(4.45)

where Ui, i = 1, 2, is given by Definition 4.4.7 and Bi
θ , i = 1, 2, is given by Definition

4.4.11.

We next examine how the adjoint Radon transform operates on the vector
φ(k) = (ϕ(k)(t) : t = −n, . . . ,n), where ϕ(k)(t) = e(2πı/m)kt. For θ ∈ [−π/4,π/4] and
u, v = −n/2, . . . ,n/2− 1.

Theorem 4.4.14 (Fourier slice theorem). Let I(u, v) be an n× n image, u, v = −n/
2, . . . ,n/2− 1, and let m = 2n + 1. Then,

(
R̂θI

)
(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Î
(− s1k, k

)
, s1 = tan θ, θ ∈

[−π
4

,
π

4

]
,

Î
(
k,−s2k

)
, s2 = cot θ, θ ∈

[
π

4
,

3π
4

]
,

(4.46)
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where R̂θI(k) is the 1D DFT of the discrete Radon transform, given by Definition
4.4.2, with respect to the parameter t, k = −n, . . . ,n, and Î is the trigonometric poly-
nomial

Î
(
ξ1, ξ2

) = n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

I(u, v)e−(2πı/m)(ξ1u+ξ2v). (4.47)

4.4.4. Discretization and fast algorithms

The Radon transform, given by Definition 4.4.2, and the Fourier slice theorem,
given by Theorem 4.4.14, were defined for discrete images and a continuous set of
lines. Specifically, RθI(t) operates on any angle in the range [−π/4, 3π/4]. For our
transform to be fully discrete, we must discretize the set of angles. We denote such
a discrete set of angles by Θ. By using the discrete set of intercepts

T � {−n, . . . ,n}, (4.48)

we define the discrete Radon transform as

RI = {
RθI(t) | θ ∈ Θ, t ∈ T

}
. (4.49)

We define Θ to be the set of angles induced by lines with equally spaced slopes.
Specifically, we define two sets of angles:

Θ2 =
{

arctan
(

2l
n

)
| l = −n

2
, . . . ,

n

2

}
, (4.50)

Θ1 =
{
π

2
− arctan

(
2l
n

)
| l = −n

2
, . . . ,

n

2

}
. (4.51)

If we take an arbitrary element from Θ2, that is, θl2 = arctan (2l/n), then, the
slope of the line corresponding to θl2 is s = tan θl2 = 2l/n. By inspecting two ele-
ments θl2 and θl+1

2 we can see that the difference between the slopes that correspond
to the two angles is

s2 − s1 = tan θl+1
2 − tan θl2 =

2(l + 1)
n

− 2l
n
= 2

n
, (4.52)

which means that our angles define a set of equally spaced slopes (see Figures
4.2(a) and 4.2(b)). Figure 4.2(a) is the slopes that correspond to angles inΘ2 (4.50)
and Figure 4.2(c) is the slopes that correspond to angles in Θ1 (4.51).

We define the set of angles Θ to be

Θ � Θ1 ∪Θ2, (4.53)

where Θ1 and Θ2 are given by (4.51) and (4.50), respectively. Using the set Θ we
define the discrete Radon transform for discrete images and a discrete set of pa-
rameters.
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Definition 4.4.15 (2D discrete Radon transform). Let θ ∈ Θ, t ∈ T , where Θ and
T are given by (4.53) and (4.48), respectively. Then,

RθI(t) �
⎧⎨⎩Radon

(
y = (tan θ)x + t

)
, θ ∈ Θ2,

Radon
(
x = (cot θ)y + t

)
, θ ∈ Θ1.

(4.54)

Definition 4.4.15 defines a transform that takes an image I of size n × n into
an array (θ, t) of size 2× (2n + 1)× (n + 1).

The Fourier slice theorem (Theorem 4.4.14) holds also for the discrete set Θ.
For θ ∈ Θ2 (4.50) we have from Theorem 4.4.14 that R̂θI(k) = Î(−s1k, k), where
s1 = tan θ. Since θ ∈ Θ2 has the form θ = arctan (2l/n), it follows that s1 =
tan (arctan (2l/n)) = 2l/n and

R̂θI(k) = Î
(
− 2l

n
k, k

)
, k = −n, . . . ,n. (4.55)

For θ ∈ Θ1 (4.51), we have from Theorem 4.4.14 that R̂θI(k) = Î(k,−s2k), where
s2 = cot θ. Since θ ∈ Θ1 has the form θ = π/2 − arctan (2l/n), it follows that
s2 = cot (π/2− arctan (2l/n)) = tan (arctan (2l/n)) = 2l/n and

R̂θI(k) = Î
(
k,−2l

n
k
)

, k = −n, . . . ,n. (4.56)

Equations (4.55) and (4.56) show that RθI is obtained by resampling the
trigonometric polynomial Î , given by (4.8), on the pseudopolar grid Ωpp, defined
in Section 4.3.1. Specifically,

R̂θI(k) = ÎΩ1
pp

(k, l), θ ∈ Θ2,

R̂θI(k) = ÎΩ2
pp

(k, l), θ ∈ Θ1,
(4.57)

where ÎΩ1
pp

and ÎΩ2
pp

are given by (4.17). From (4.57) we derive the relation

RθI = F−1
k ◦ ÎΩ1

pp
, θ ∈ Θ2,

RθI = F−1
k ◦ ÎΩ2

pp
, θ ∈ Θ1,

(4.58)

where F−1
k is the 1D inverse Fourier transform along each row of the array ÎΩs

pp
,

s = 1, 2 (along the parameter k).
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168 Irregular sampling for multidimensional transforms

We denote by RI the array that corresponds to the discrete Radon transform
of an image I of size n× n. By using (4.58), we define RI as

RI = {
RθI | θ ∈ Θ

}
, (4.59)

where Θ is given by (4.53). The fast algorithm that computes the pseudopolar
Fourier transform, given in Section 4.3.2, immediately gives an algorithm for com-
puting the discrete Radon transform. To see this, consider a row in RI , which cor-
responds to a constant θ. The values of the discrete Radon transform that corre-
spond to θ are computed by applying F−1

k to a row of ÎΩs
pp

, s = 1, 2. Thus, the

computation of RI requires applying F−1
k to all rows of ÎΩs

pp
, s = 1, 2 (2n+ 2 rows).

Since each application of F−1
k operates on a vector of length 2n + 1 (a row of ÎΩ1

pp

or ÎΩ2
pp

), it requires O(n logn) operations for a single application, and a total of

O(n2 logn) operations for the required 2n+ 2 calls to F−1
k . Thus, once we compute

the arrays ÎΩs
pp

, s = 1, 2, it requires O(n2 logn) operations to compute RI . Since

computing ÎΩs
pp

, s = 1, 2, requires O(n2 logn) operations, the total complexity of
computing the values of RI , given by (4.59), is O(n2 logn) operations.

Table 4.3 presents numerical results for the computation of the 2D discrete
Radon transform.

Invertibility of the 2D discrete Radon transform RI (4.59) also follows from
(4.58). F−1

k is invertible and can be rapidly inverted by using the inverse fast Fourier
transform. ÎΩpp , which is the union of ÎΩ1

pp
and ÎΩ2

pp
(4.17), is invertible (Section

4.3.3) and can be rapidly inverted as described in Sections 4.3.3.1 and 4.3.3.2.
Thus, the discrete Radon transform is invertible, and can be inverted by applying
the inverse FFT on each row of RI (O(n2 logn) operations), followed by an inver-
sion of ÎΩpp (O(n2 logn) operations). Hence, inverting the discrete Radon trans-
form requires O(n2 logn) operations.

4.4.4.1. Convergence

The discrete Radon transform converges to the continuous Radon transform as
the number of samples in the discretization goes to infinity (see [6, 18, 19]).

4.5. 3D discrete Radon transform

Following the 2D construction of the discrete Radon transform, we give a defi-
nition for the 3D discrete Radon transform that satisfies, as in the 2D case, the
properties in Section 4.1.2. This construction can generalize the construction and
the properties of the 2D discrete Radon transform to 3D. Throughout the rest of
the paper we refer to “3D image/array” as a 3D discrete volume of size n × n × n.
This section is based on [8].

We first define a 3D Radon transform that is defined on discrete 3D arrays
and on all planes in R3. Then we show that there exists a discrete set of planes for
which the 3D discrete Radon transform is invertible and rapidly computable.
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Table 4.3. Numerical results for the discrete Radon transform. Each test matrix is a random matrix
with uniformly distributed elements in the range [0, 1]. The timings are given in seconds. Column
1 corresponds to n. Column 2 corresponds to the time required to compute the 2D discrete Radon
transform of an n × n image using the Fourier slice theorem. Column 3 presents the time required
to compute the 2D discrete Radon transform directly according to its definition (Definition 4.4.15).
Column 4 presents the relative L2 error between the output from the fast algorithm and the direct
computation.

n Tfast Tdirect error

8 0.047 0.734 2.4922e-016

16 0.063 10.3 3.1364e-016

32 0.094 165 3.6785e-016

64 0.282 2.7e+003 4.5775e-016

128 1.91 3.9e+004 5.7779e-016

256 2.62 — —

512 10.3 — —

1024 43.5 — —

2048 261 — —

4.5.1. Definition of the 3D Radon transform

Inspired by the definition of the 2D discrete Radon transform, the 3D discrete
Radon transform is defined by summing the interpolated samples of a discrete
array I(u, v,w) that lie on planes which satisfy certain constraints.

We define three types of planes, namely, “x-planes,” “y-planes,” and “z-planes.”

Definition 4.5.1. (i) A plane of the form

x = s1y + s2z + t, (4.60)

where ∣∣s1
∣∣ ≤ 1,

∣∣s2
∣∣ ≤ 1, (4.61)

is called an x-plane.
(ii) A plane of the form

y = s1x + s2z + t, (4.62)

where ∣∣s1
∣∣ ≤ 1,

∣∣s2
∣∣ ≤ 1, (4.63)

is called a y-plane.
(iii) A plane of the form

z = s1x + s2y + t, (4.64)
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where

∣∣s1
∣∣ ≤ 1,

∣∣s2
∣∣ ≤ 1, (4.65)

is called a z-plane.

Lemma 4.5.2. Each plane p in R3 can be expressed as one of the plane types from
Definition 4.5.1 (x-plane, y-plane, or z-plane).

We define three summation operators, one for each type of plane (x-plane,
y-plane, z-plane defined in Definition 4.5.1). Each summation operator takes a
plane and an image I and calculates the sum of the interpolated samples of I on
the plane.

Definition 4.5.3 (summation operators). Let I be a discrete image of size n×n×n.
(i) For x-plane,

Radon
({
x = s1y + s2z + t

}
, I
) = n/2−1∑

v=−n/2

n/2−1∑
w=−n/2

Ĩ
1(
s1v + s2w + t, v,w

)
, (4.66)

where

Ĩ
1
(x, v,w) =

n/2−1∑
u=−n/2

I(u, v,w)Dm(x − u), v,w ∈
{−n

2
, . . . ,

n

2− 1

}
, x ∈ R.

(4.67)

(ii) For y-plane,

Radon
({
y = s1x + s2z + t

}
, I
) = n/2−1∑

u=−n/2

n/2−1∑
w=−n/2

Ĩ
2(
u, s1u + s2w + t,w

)
, (4.68)

where

Ĩ
2
(u, y,w) =

n/2−1∑
v=−n/2

I(u, v,w)Dm(y − v), u,w ∈
{−n

2
, . . . ,

n

2− 1

}
, y ∈ R.

(4.69)

(iii) For z-plane,

Radon
({
z = s1x + s2y + t

}
, I
) = n/2−1∑

u=−n/2

n/2−1∑
v=−n/2

Ĩ
3(
u, v, s1u + s2v + t

)
, (4.70)
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where

Ĩ
3
(u, v, z) =

n/2−1∑
w=−n/2

I(u, v,w)Dm(z −w), u, v ∈
{−n

2
, . . . ,

n

2− 1

}
, z ∈ R.

(4.71)

In (4.66)–(4.70), t satisfies t ∈ Z, −3n/2 ≤ t ≤ 3n/2 and Dm is defined by

Dm(t) = sin(πt)
m sin (πt/m)

, m = 3n + 1. (4.72)

The selection of t and m is critical and explained in [8].
Using the summation operators given in (4.66)–(4.70), we define three oper-

ators RiI (i = 1, 2, 3) for a 3D image (volume) I as follows.
(i) For x-plane x = s1y + s2z + t define

R1I
(
s1, s2, t

)
� Radon

(
x = s1y + s2z + t, I

)
. (4.73)

(ii) For y-plane y = s1x + s2z + t define

R2I
(
s1, s2, t

)
� Radon

(
y = s1x + s2z + t, I

)
. (4.74)

(iii) For z-plane z = s1x + s2y + t define

R3I
(
s1, s2, t

)
� Radon

(
z = s1x + s2y + t, I

)
. (4.75)

For a given plane p we can classify it by Lemma 4.5.2 as either an x-plane,
y-plane, or z-plane with slopes s1 and s2. We define the “canonization transform”
that takes an arbitrary plane p and transforms it into one of the plane types that
were defined in Definition 4.5.1.

Definition 4.5.4 (canonization transform). Given a plane p whose equation is
given by

p : αx + βy + γz + t = 0 (4.76)

we denote by P the set of all planes p in R3. Let C : P → R4 be the transformation
that takes a plane p ∈ P and transforms it into one of the plane types: x-plane,
y-plane, or z-plane. For p ∈ P,

C(p) �
(
q, s1, s2, t′

)
, (4.77)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


172 Irregular sampling for multidimensional transforms

where
(i) q = 1 if C(p) is an x-plane x = s1y + s2z + t′ with −1 ≤ s1, s2 ≤ 1,

(ii) q = 2 if C(p) is a y-plane y = s1x + s2z + t′ with −1 ≤ s1, s2 ≤ 1,
(iii) q = 3 if C(p) is a z-plane z = s1x + s2y + t′ with −1 ≤ s1, s2 ≤ 1.

Definition 4.5.5 (3D Radon transform). Assume that I is a discrete image of size
n × n × n and the plane p is determined by C(p) from Definition 4.5.4. Then the
3D Radon transform of I on p is defined by

RI(p, I) = RI
(
s1, s2, t

)
�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R1I

(
s1, s2, t

)
, q = 1,

R2I
(
s1, s2, t

)
, q = 2,

R3I
(
s1, s2, t

)
, q = 3,

(4.78)

where R1, R2, and R3 were defined in (4.73)–(4.75) and q, s1, s2, and t are deter-
mined from C(p) according to Definition 4.5.4.

4.5.2. Traditional (φ, θ) representation of planes

The definition of the 3D Radon transform uses slopes and intercepts to designate
a specific plane. The notation of a plane using slopes is less common and should
be further explained. Usually, a plane in R3 is defined using a unit normal vector
�n and the distance of the plane from the origin. Formally, 〈�n, (x, y, z)〉 = t where
�n can be represented using the angles (φ, θ) as

�n = (cosφ sin θ, sinφ sin θ, cos θ). (4.79)

We would like to find a correlation between the (φ, θ, t) representation of a
plane and the explicit plane representation (using slopes).

We start by inspecting the explicit equation of a z-plane z = s1x+s2y+t where
|s1| ≤ 1 and |s2| ≤ 1. This can be rewritten as

〈(− s1,−s2, 1
)
, (x, y, z)

〉 = t. (4.80)

We define

s = ∥∥(− s1,−s2, 1
)∥∥ = √

s2
1 + s2

2 + 1 (4.81)

and by normalizing the normal vector, we obtain

〈(
− s1

s
,− s2

s
,

1
s

)
, (x, y, z)

?
= t

s
, (4.82)

where �n = (−s1/s,−s2/s, 1/s) is the unit normal vector to the plane.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


A. Averbuch et al. 173

By expressing (φ, θ) of the vector �n using s1 and s2 we obtain

tanφ = −s2/s

−s1/s
= s2

s1
,

tan θ = ±
√
s2

1/s2 + s2
2/s2

1/s
= ±

√
s2

1 + s2
2.

(4.83)

The range of (φ, θ), which corresponds to z-planes, is

tanφ = s2

s1
, tan θ = ±

√
s2

1 + s2
2, (4.84)

where |s1| ≤ 1 and |s2| ≤ 1.
Resolving for s1 and s2, we obtain

s2
1 =

tan2 θ

1 + tan2 φ
,

s2
2 =

tan2 θ tan2 φ

1 + tan2 φ
.

(4.85)

Since |s1| ≤ 1 and |s2| ≤ 1, it follows that

tan2 θ

1 + tan2 φ
≤ 1,

tan2 θ tan2 φ

1 + tan2 φ
≤ 1.

(4.86)

We conclude that the range of (φ, θ), which defines all z-planes, satisfies (4.86).
Equation (4.86) does not define a domain that is simple to describe and therefore it
is less convenient than the slopes notation used to define our notion of 3D Radon
transform (Definition 4.5.5).

Inspecting the relations between x-planes and y-planes and the (φ, θ) nota-
tion yields similar results and will not be detailed here.

Equations (4.85) and (4.86) allow us to compute the 3D Radon transform
given a pair of angles (φ, θ) by using transformation to explicit plane representa-
tion with s1 and s2.

4.5.3. 3D discrete Fourier slice theorem

Similar to the 2D case, we can derive a Fourier slice theorem for the 3D case. The
3D Fourier slice theorem associates the 1D discrete Fourier transform of the 3D
discrete Radon transform with the discrete Fourier transform of the image I . The
3D Fourier slice theorem is summarized in Theorem 4.5.6.
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Theorem 4.5.6 (3D Fourier slice theorem). Given a 3D image I ∈ In×n×n and a
plane p with C(p) = (q, s1, s2, t), |s1| ≤ 1, |s2| ≤ 1, t ∈ {−3n/2, . . . , 3n/2} (defined
in Definition 4.5.4),

R̂I
(
s1, s2, k

) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
Î
(
k,−s1k,−s2k

)
, q = 1,

Î
(− s1k, k,−s2k

)
, q = 2,

Î
(− s1k,−s2k, k

)
, q = 3,

(4.87)

where R̂I is the 1D Fourier of I along the parameter t,

R̂I
(
s1, s2, k

) = 3n/2∑
t=−3n/2

RI
(
s1, s2, t

)
e−2πıkt/m, k ∈ Z,

−3n
2
≤ k ≤ 3n

2
, (4.88)

Î
(
ξ1, ξ2, ξ3

) = n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e(−2πı/m)(ξ1u+ξ2v+ξ3w). (4.89)

See [8] for the construction and proof of Theorem 4.5.6.

4.5.4. 3D pseudopolar grid

As for now, we defined RI for continuous slopes (s1, s2) in [−1, 1]× [−1, 1] while
I is discrete. We would like to discretize s1 and s2 while satisfying the properties in
Section 4.1.2.

We define three sets

S1 �
{

l

(n/2)
| l = −n

2
, . . . ,

n

2

}
,

S2 �
{

j

(n/2)
| j = −n

2
, . . . ,

n

2

}
,

T �
{
t ∈ Z | −3n

2
≤ t ≤ 3n

2

}
.

(4.90)

The 3D discrete Radon transform will be defined as the restriction of RI
(Definition 4.5.5) to the discrete set of slopes (s1, s2) ∈ S1 × S2 with t ∈ T .

Definition 4.5.7 (3D discrete Radon transform). Given a plane p. Let C(p) = (q,
s1, s2, t) be the canonized form of p with slopes (s1, s2) ∈ S1 × S2, t ∈ T , then,

RI
(
s1, s2, t

)
�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R1I

(
s1, s2, t

)
, q = 1,

R2I
(
s1, s2, t

)
, q = 2,

R3I
(
s1, s2, t

)
, q = 3,

(4.91)

where R1I , R2I , and R3I are defined in Definition 4.5.5.
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RI is not defined for every plane p, but only for planes p such that for C(p) =
(q, s1, s2, t) it holds that (s1, s2) ∈ S1 × S2 and t ∈ T . The difference between Def-
initions 4.5.5 and 4.5.7 is in the discrete set of slopes S1 × S2, which replaces the
continuous set of slopes [−1, 1] × [−1, 1]. Definition 4.5.7 describes a transform
that takes an image I of size n3 into an array of size 3× (3n + 1)× (n + 1)2.

The Fourier slice theorem (Theorem 4.5.6) holds also for the discrete set of
slopes S1 × S2 for each of the plane types.

(i) For an x-plane,

R̂I
(

2l
n

,
2 j
n

, k
)
= Î

(
k,−2l

n
k,−2 j

n
k
)
. (4.92)

(ii) For a y-plane,

R̂I
(

2l
n

,
2 j
n

, k
)
= Î

(
− 2l

n
k, k,−2 j

n
k
)
. (4.93)

(iii) For a z-plane,

R̂I
(

2l
n

,
2 j
n

, k
)
= Î

(
− 2l

n
k,−2 j

n
k, k

)
, (4.94)

where l, j ∈ {−n/2, . . . ,n/2}, k ∈ {−3n/2, . . . , 3n/2} and Î is the trigonometric
polynomial given by (4.89).

Next we describe how the samples of Î in (4.92)–(4.94) are scattered in R3. In
order to obtain R̂I over all x-planes, by (4.92) we sample Î at

P1 �
{(

k,−2l
n
k,−2 j

n
k
)
| l, j ∈

{−n
2

, . . . ,
n

2

}
, k ∈

{−3n
2

, . . . ,
3n
2

}}
. (4.95)

Similarly, to obtain R̂I over all y-planes, by (4.93) we sample Î at

P2 �
{(
− 2l

n
k, k,−2 j

n
k
)
| l, j ∈

{−n
2

, . . . ,
n

2

}
, k ∈

{−3n
2

, . . . ,
3n
2

}}
(4.96)

and finally, to obtain R̂I over all z-planes, by (4.94) we sample Î at

P3 �
{(
− 2l

n
k,−2 j

n
k, k

)
| l, j ∈

{−n
2

, . . . ,
n

2

}
, k ∈

{−3n
2

, . . . ,
3n
2

}}
.

(4.97)

The set

P � P1 ∪ P2 ∪ P3 (4.98)

is called the pseudopolar grid.
See Figures 4.5(a)–4.5(c) for illustrations of the sets P1, P2, and P3.
The pseudopolar Fourier transform is defined by sampling the trigonometric

polynomial Î on the pseudopolar grid P.
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176 Irregular sampling for multidimensional transforms

(a) The sector P1 (b) The sector P2 (c) The sector P3

Figure 4.5. The pseudopolar grid.

Definition 4.5.8 (pseudopolar Fourier transform). The pseudopolar Fourier trans-
form PPi (i = 1, 2, 3) is a linear transformation from 3D images I ∈ In×n×n defined
by

PP1I(k, l, j) = Î
(
k,−2l

n
k,−2 j

n
k
)

,

PP2I(k, l, j) = Î
(
− 2l

n
k, k,−2 j

n
k
)

,

PP3I(k, l, j) = Î
(
− 2l

n
k,−2 j

n
k, k

)
,

(4.99)

where

l, j ∈
{−n

2
, . . . ,

n

2

}
, k ∈

{−3n
2

, . . . ,
3n
2

}
, m = 3n + 1,

Î
(
ξ1, ξ2, ξ3

) = n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e(−2πı/m)(ξ1u+ξ2v+ξ3w).

(4.100)

Using the pseudopolar Fourier transform we can express RI as

RiI = F−1 ◦ PPiI (i = 1, 2, 3), (4.101)

where F−1 is the inverse Fourier transform.
We can regard s1 and s2 as “pseudoangles” and k as a “pseudoradius.” This

corresponds to the (r,φ, θ) representation of the polar grid.

4.5.5. Rapid computation of the 3D discrete Radon transform

We sketch an O(n3 logn) algorithm for the computation of the 3D discrete Radon
transform.

Equation (4.101) states that we can compute RiI by calling the 1D inverse
Fourier transform (n + 1)2 times for each PPiI . Each vector in PPiI corresponds
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to fixed slopes l, j. Hence, all applications of F−1 take O(n3 logn) operations. It
remains to show that the 3D pseudopolar Fourier transform PPiI (i = 1, 2, 3) can
be computed using O(n3 logn) operations.

From Definition 4.5.8 it follows that given an image I ∈ In×n×n, the pseu-
dopolar Fourier transform of I is defined by

PPI(s, k, l, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Î
(
k,−2l

n
k,−2 j

n
k
)

, s = 1,

Î
(
− 2l

n
k, k,−2 j

n
k
)

, s = 2,

Î
(
− 2l

n
k,−2 j

n
k, k

)
, s = 3,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PP1I(k, l, j),

PP2I(k, l, j),

PP3I(k, l, j),

(4.102)

where

l, j ∈
{−n

2
, . . . ,

n

2

}
, k ∈

{−3n
2

, . . . ,
3n
2

}
, m = 3n + 1,

Î
(
ξ1, ξ2, ξ3

) = n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e(−2πı/m)(ξ1u+ξ2v+ξ3w).

(4.103)

The main idea of the algorithm is to use the samples of the equally spaced
3D DFT (which can be computed in O(n3 logn)), and resample them rapidly on
the pseudopolar grid points, using the fractional Fourier transform (defined in
Definition 4.3.3).

4.5.5.1. Algorithm description for the rapid computation of the 3D
pseudopolar Fourier transform (pseudocode)

Throughout this section we will use the following notation.

Notation 4.5.9.

(i) F−1
n : 1D inverse DFT.

(ii) Fα
m: fractional Fourier transform with factor α. The operator accepts a

sequence of length n, pads it symmetrically to length m = 3n+1, applies
to it the fractional Fourier transform with factor α, and returns the n+ 1
central elements.

(iii) F3: 3D DFT.
(iv) Gk,n: consecutive application of F−1

n followed by F2k/n
m :

Gk,n = F2k/n
m ◦ F−1

n . (4.104)

We illustrate the operations of Algorithm 4.3 on Res1.
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178 Irregular sampling for multidimensional transforms

Input: image I of size n× n× n.
Output: three arrays: Res1, Res2, Res3 of size m× (n + 1)× (n + 1).
Working arrays: six auxiliary arrays T1, T2, T3, T′1, T′2, T′3:

(i) T1 is of size m× n× (n + 1),
(ii) T2 is of size (n + 1)×m× n,

(iii) T3 is of size n× (n + 1)×m,
(iv) T′1, T′2, T′3 are of size m× (n + 1)× (n + 1).

Process: Res1 computation.

(1) Pad I symmetrically along the x-axis to length 3n + 1. Denote the result Ĩ 1.
(2) Îd ← F3(Ĩ 1).
(3) For each k and l,

T1(k, l, ·) = Gk,n
(
Îd(k, l, ·)). (4.105)

(4) For each k and j,

T′1(k, ·, j) = Gk,n
(
T1(k, ·, j)). (4.106)

(5) For each k, l, j,

Res1(k, l, j) = T′1(k,−l,− j). (4.107)

Res2 computation.

(6) Pad I symmetrically along the y-axis to length 3n + 1. Denote the result Ĩ 2.
(7) Îd ← F3(Ĩ 2).
(8) For each k and l,

T2(·, k, j) = Gk,n
(
Îd(·, k, j)

)
. (4.108)

(9) For each k and j,

T′2(k, l, ·) = Gk,n
(
T2(l, k, ·)). (4.109)

(10) For each k, l, j,

Res2(k, l, j) = T′2(k,−l,− j). (4.110)

Res3 computation.

(11) Pad I symmetrically along the z-axis to length 3n + 1. Denote the result Ĩ 3.
(12) Îd ← F3(Ĩ 3).
(13) For each k and l,

T3(l, ·, k) = Gk,n
(
Îd(l, ·, k)

)
. (4.111)

(14) For each k and j,

T′3(k, ·, j) = Gk,n
(
T3(·, j, k)

)
. (4.112)

(15) For each k, l, j,

Res3(k, l, j) = T′3(k,−l,− j). (4.113)

Algorithm 4.3
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(1) Both ends of the x-direction of the image I are zero-padded. The 3D
DFT of the padded image is computed. The results are placed in Îd.

(2) Each vector from Îd, which corresponds to fixed x and y, is taken. Apply
on it the 1D inverse DFT and resample it using 1D fractional Fourier
transform where α = 2x/n. The result 3D array is denoted by T1.

(3) Each vector from T1, which corresponds to fixed x and z, is taken. Ap-
ply on it 1D inverse DFT and resample it using 1D fractional Fourier
transform where α = 2x/n. The result array is T′1.

(4) Flip T′1 along the y- and z-axes.

Theorem 4.5.10 (algorithm correctness of Algorithm 4.3).
(i) Res1(k, l, j) = PPI(1, k, l, j).

(ii) Res2(k, l, j) = PPI(2, k, l, j).
(iii) Res3(k, l, j) = PPI(3, k, l, j).

See [8] for a proof of Theorem 4.5.10 and a complexity analysis of Algorithm
4.3.

4.5.6. Complexity

We first compute the complexity of calculating Res1. Each application of Gk,n in-
volves the application of a 1D inverse Fourier transform followed by the compu-
tation of the fractional Fourier transform. Both the computation of the 1D in-
verse Fourier transform and the computation of the fractional Fourier transform
require O(n logn) operations. Thus, the computation of Gk,n requires O(n logn)
operations. The complexity of steps (2) and (3) in Algorithm 4.3 is of (3n+ 1)× n
and (3n + 1) × (n + 1) applications of Gk,n, respectively. Since each application
costs O(n logn) operations, this gives a total of O(n3 logn) operations for each of
steps (2) and (3). The complexity of the 3D DFT in step (1) is O(n3 logn) and the
complexity of step (4) (flipping T′1) is O(n3). This gives a total of O(n3 logn) for
the computation of Res1. The complexity of calculating Res2 and Res3 is identi-
cal to the complexity of calculating Res1, and therefore the total complexity of the
algorithm is 3 ·O(n3 logn), namely, O(n3 logn) operations.

4.5.7. Invertibility of the 3D discrete Radon transform

We show that our definition of the 3D discrete Radon transform is invertible.
Given the 3D discrete Radon transform RI , we show that it is possible to uniquely
recover I from RI .

From (4.101)

RiI = F−1 ◦ PPiI (i = 1, 2, 3), (4.114)

where F−1 (the 1D inverse Fourier transform) is invertible, and therefore left to
show that I can be recovered from PPiI , i = 1, 2, 3.
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180 Irregular sampling for multidimensional transforms

Given the values of PPI (4.102), we take a vector of samples from PP1I , which
corresponds to some k0 �= 0. From Definition 4.5.8,

PP1I
(
k0, l, j

) = Î
(
k0,−2lk0

n
,−2 jk0

n

)
, l, j ∈

{−n
2

, . . . ,
n

2

}
. (4.115)

By expanding Î using (4.89) at (k0,−2lk0/n,−2 jk0/n), we have

Î
(
k0,−2lk0

n
,−2 jk0

n

)

=
n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πık0u/me−2πı(−2lk0/n)v/me−2πı(−2 jk0/n)w/m.

(4.116)

Rewriting (4.116), we have

Î
(
k0,−2lk0

n
,−2 jk0

n

)

=
n/2−1∑
w=−n/2

( n/2−1∑
v=−n/2

n/2−1∑
u=−n/2

I(u, v,w)e−2πık0u/me−2πı(−2lk0/n)v/m

)
e−2πı(−2 jk0/n)w/m

=
n/2−1∑
w=−n/2

ck0,l(w)e−2πı(−2 jk0/n)w/m,

(4.117)

where

ck0,l(w)

=
n/2−1∑
v=−n/2

n/2−1∑
u=−n/2

I(u, v,w)e−2πık0u/me−2πı(−2lk0/n)v/m, w ∈
{−n

2
, . . . ,

n

2− 1

}
.

(4.118)

For fixed k0, l and variable j denote

Tk0,l

(−2 jk0

n

)
� Î

(
k0,
−2lk0

n
,
−2 jk0

n

)
. (4.119)

Then, from (4.117) we have

Tk0,l

(−2 jk0

n

)
=

n/2−1∑
w=−n/2

ck0,l(w)e−2πı(−2 jk0/n)w/m. (4.120)
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In other words, Tk0,l(−2 jk0/n), j ∈ Z, −n/2 ≤ j ≤ n/2, are the values of the
polynomial

Tk0,l(x) =
n/2−1∑
w=−n/2

ck0,l(w)e−2πıxw/m (4.121)

at {−2 jk0/n}. Since we have the values of Tk0,l(x) at n+1 distinct points {−2 jk0/n}
(and thus we required k0 �= 0), we can uniquely determine {ck0,l(w)} and Tk0,l(x),
and therefore we can compute Tk0,l(x) for any x.

By computing Tk0,l(x) at integer points we can recover

Tk0,l( j) =
n/2−1∑
w=−n/2

ck0,l(w)e−2πı jw/m (4.122)

for every k0, l. Substituting ck0,l(w) (4.118) in (4.122) we obtain

Hk0, j0

(−2lk0

n

)
� Tk0,l

(
j0
)

=
n/2−1∑
w=−n/2

( n/2−1∑
v=−n/2

n/2−1∑
u=−n/2

I(u, v,w)e−2πık0u/me−2πı(−2lk0/n)v/m

)
e−2πı j0w/m

=
n/2−1∑
v=−n/2

( n/2−1∑
u=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πık0u/me−2πı j0w/m

)
e−2πı(−2lk0/n)v/m

=
n/2−1∑
v=−n/2

c′k0, j0 (v)e−2πı(−2lk0/n)v/m,

(4.123)

where

c′k0, j0 (v) =
n/2−1∑
u=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πık0u/me−2πı j0w/m, v ∈
{−n

2
, . . . ,

n

2− 1

}
.

(4.124)

From (4.123),

Hk0, j0

(−2lk0

n

)
=

n/2−1∑
v=−n/2

c′k0, j0 (v)e−2πı(−2lk0/n)v/m (4.125)

and we have that Hk0, j0 (−2lk0/n) are the samples of the trigonometric polynomial

Hk0, j0 (x) =
n/2−1∑
v=−n/2

c′k0, j0 (v)e−2πıxv/m (4.126)
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182 Irregular sampling for multidimensional transforms

at {−2lk0/n}. Again, since we have the values Hk0, j0 (x) at n + 1 distinct points (for
n+1 distinct values of l), we can uniquely determine {c′k0, j0 (v)} and the underlying
trigonometric polynomial Hk0, j0 (x) given by (4.126).

Evaluating Hk0, j0 (x) for integer points, we obtain using (4.124)

Hk0, j0 (l) =
n/2−1∑
v=−n/2

c′k0, j0 (v)e−2πılv/m

=
n/2−1∑
v=−n/2

n/2−1∑
u=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πık0u/me−2πı j0w/me−2πılv/m

= Î
(
k0, l, j0

)
.

(4.127)

Equation (4.127) states that we have recovered Î at integer grid points for every
k0 �= 0 (the entire discrete grid except the plane ξ1 = 0). Remains to evaluate Î on
the plane ξ1 = 0, or, in other words, the values Î(0, l, j).

As before, by taking a sequence of samples from PP2I , which corresponds to
some k0 �= 0, we have from Definition 4.5.8

PP2I
(
k0, l, j

) = Î
(
− 2lk0

n
, k0,−2 jk0

n

)
. (4.128)

By repeating exactly the same arguments as above we have using (4.89)

T′k0,l

(−2 jk0

n

)
� Î

(
− 2lk0

n
, k0,−2 jk0

n

)

=
n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πı(−2lk0/n)u/me−2πık0v/me−2πı(−2 jk0/n)w/m

=
n/2−1∑
w=−n/2

( n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

I(u, v,w)e−2πı(−2lk0/n)u/me−2πık0v/m

)
e−2πı(−2 jk0/n)w/m

=
n/2−1∑
w=−n/2

ck0,l(w)e−2πı(−2 jk0/n)w/m,

(4.129)
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where

ck0,l(w)

=
n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

I(u, v,w)e−2πı(−2lk0/n)u/me−2πık0v/m, w ∈
{−n

2
, . . . ,

n

2− 1

}
.

(4.130)

Using n+1 distinct samples {T′k0,l(−2 jk0/n)} at n+1 distinct points {−2 jk0/n},
j = −n/2, . . . ,n/2, we can compute {ck0,l(w)} and the trigonometric polynomial

T′k0,l(x) =
n/2−1∑
w=−n/2

ck0,l(w)e−2πıxw/m. (4.131)

For every l, we evaluate T′k0,l(x) at integer points and by using (4.130) we obtain

H′k0, j0

(−2lk0

n

)
� T′k0,l

(
j0
)

=
n/2−1∑
w=−n/2

ck0,l(w)e−2πı j0w/m

=
n/2−1∑
w=−n/2

n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

I(u, v,w)e−2πı(−2lk0/n)u/me−2πık0v/me−2πı j0w/m

=
n/2−1∑
u=−n/2

( n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πık0v/me−2πı j0w/m

)
e−2πı(−2lk0/n)u/m

=
n/2−1∑
u=−n/2

c′k0, j0 (u)e−2πı(−2lk0/n)u/m,

(4.132)

where

c′k0, j0 (u) =
n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πık0v/me−2πı j0w/m, u ∈
{−n

2
, . . . ,

n

2− 1

}
.

(4.133)

Using n + 1 distinct samples {H′k0, j0 (−2lk0/n)} from (4.132) at n + 1 distinct
points (n + 1 distinct values of l), {c′k0, j0 (u)} is uniquely determined and

H′k0, j0 (x) =
n/2−1∑
u=−n/2

c′k0, j0 (u)e−2πıxu/m. (4.134)
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Evaluating H′k0, j0 (x) at integer points and using (4.133), we obtain

H′k0, j0 (l) =
n/2−1∑
u=−n/2

c′k0, j0 (u)e−2πılu/m

=
n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πılu/me−2πık0v/me−2πı j0w/m

= Î
(
l, k0, j0

)
.

(4.135)

We evaluated Î(l, k0, j) at grid points where k0 �= 0. Specifically, we computed
Î(0, k0, j).

Finally, we have to compute Î on the line ξ1 = 0, ξ2 = 0. By using exactly the
same arguments on PP3I as above, we evaluate Î on all grid points except ξ3 = 0.
Thus, we have the values of Î on all grid points except the origin Î(0, 0, 0). Since
PP1I(0, 0, 0) = Î(0, 0, 0), we have the values of Î on the entire grid.

Since we can recover Î (the 3D DFT of I) from PPI , and trivially recover I

from Î , it follows that we can recover I from PPI , and thus PP in invertible.

4.6. 3D discrete X-ray transform

The X-ray transform is an important practical tool in many scientific and indus-
trial areas. An example of such area is computerized tomography (CT) scanning
where the X-ray transform plays a major role in the derivation and implementa-
tion of various tomographic methods (see [4]). The work presented here is based
on [10] and it is a continuation of the works in [5, 6, 8].

4.6.1. The continuous X-ray transform

The continuous X-ray transform of a 3D function f (x, y, z), denoted by P f , is
defined by the set of all line integrals of f . For a line L, defined by a unit vector θ
and a point x on L, we express L as

L(t) = x + tθ, t ∈ R. (4.136)

The X-ray transform of f on L is defined as

P f (L) �
∫∞
−∞

f (x + tθ)dt. (4.137)

The X-ray transform maps each line L in R3 to a real value that represents the pro-
jection of the function f along the line L. For convenience, (4.137) is sometimes
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written with the notation

Pθ f (x) � P f (L), (4.138)

where L is given by (4.136).
The X-ray transform is closely related to the Radon transform. However, while

the 3D X-ray transform is defined using line integrals of a function f , we define
the 3D Radon transform as integrals of f over all planes in R3. Note that in the 2D
case, the X-ray transform coincides with the Radon transform [1–3].

The Fourier slice theorem connects the continuous X-ray transform, defined
by (4.137), with the Fourier transform. For a given 3D function f , it defines the
relation between the 2D Fourier transform of the X-ray transform of f and the 3D
Fourier transform of f . The Fourier slice theorem is summarized in the following
theorem.

Theorem 4.6.1. For a function f (x, y, z) and a family of lines in R3, whose direction
is given by the unit vector θ, it holds that

APθ f (ξ) = f̂ (ξ), (4.139)

where ξ ∈ θ⊥ and θ⊥ is the subspace perpendicular to θ.

4.6.2. Discretization guidelines

We define a 3D n× n× n image as the set

I =
{
I(u, v,w) :

−n
2
≤ u, v,w ≤ n

2− 1

}
. (4.140)

Note that we define I in (4.140) as a cube of voxels with an even side of length n.
We refer to the image I as a cube of size n × n × n to simplify the formulation of
the discrete transform. The entire formulation can be repeated for an image I with
arbitrary dimensions n1 × n2 × n3.

We present here a discrete definition of the 3D X-ray transform for discrete
images, which satisfies the properties in Section 4.1.2. We prove the Fourier slice
theorem that relates our definition of the X-ray transform with the Fourier trans-
form of the image I and develop a rapid computational algorithm, which is based
on the Fourier slice theorem. We also show that our discrete X-ray transform is
invertible.

The present work is based on [5, 6, 8]. However, there are important differ-
ences between them and the present work. References [6, 8] establish a framework
for surface integrals decomposition of discrete objects. The present work derives
a framework for line integrals decomposition of discrete objects. The two frame-
works coincide for the 2D case, but for higher dimensions there are some fun-
damental differences between them. Although both frameworks follow the same
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guidelines and use the same building blocks, they require different discretizations
of the continuous space because of the difference between the underlying continu-
ous transforms. This results in a different frequency domain geometry, a different
relation between the space domain and the frequency domain, and a different nu-
merical computation algorithm.

4.6.3. Semidiscrete transform definition

We parameterize a line in R3 as the intersection of two planes. Using this param-
eterization, we define three families of lines, which we call x-lines, y-lines, and
z-lines. Formally, an x-line is defined as

lx
(
α,β, c1, c2

) =
⎧⎪⎨⎪⎩
y = αx + c1,

z = βx + c2,
|α| ≤ 1, |β| ≤ 1, c1, c2 ∈ {−n, . . . ,n}.

(4.141)

Figure 4.6 is a 3D illustration of the family of x-lines that corresponds to c1=c2= 0,
together with its projections on different axes. Similarly, a y-line and a z-line are
defined as

ly
(
α,β, c1, c2

) =
⎧⎪⎨⎪⎩
x = αy + c1,

z = βy + c2,
|α| ≤ 1, |β| ≤ 1, c1, c2 ∈ {−n, . . . ,n},

lz
(
α,β, c1, c2

) =
⎧⎪⎨⎪⎩
x = αz + c1,

y = βz + c2,
|α| ≤ 1, |β| ≤ 1, c1, c2 ∈ {−n, . . . ,n}.

(4.142)

We denote the sets of all x-lines, y-lines, and z-lines in R3 by Lx, Ly , and
Lz, respectively. Also, we denote the family of lines that corresponds to a fixed
direction (α,β) and variable intercepts (c1, c2), by lx(α,β), ly(α,β), and lz(α,β) for a
family of x-lines, y-lines, and z-lines, respectively. See Figure 4.7 for an illustration
of the different families of lines for c1 = c2 = 0.

Each line in R3 can be expressed as either an x-line, y-line, or z-line. In other
words, each line in R3 belongs to Lx, Ly , or Lz. Note that the sets Lx, Ly , and
Lz are not disjoint.

For a discrete image I of size n× n× n we define three continuous extensions
of I , which we denote by Ix, Iy , and Iz. Each of the extensions Ix, Iy and Iz is a
continuous function in the directions perpendicular to its index. This means, for
example, that Ix is a continuous function in the y- and z-directions. Formally, we
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define these three extensions by

Ix(u, y, z) =
n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)Dm(y − v)Dm(z −w),

u ∈
{−n

2
, . . . ,

n

2− 1

}
, y, z ∈ R,

(4.143)

Iy(x, v, z) =
n/2−1∑
u=−n/2

n/2−1∑
w=−n/2

I(u, v,w)Dm(x − u)Dm(z −w),

v ∈
{−n

2
, . . . ,

n

2− 1

}
, x, z ∈ R,

(4.144)

Iz(x, y,w) =
n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

I(u, v,w)Dm(x − u)Dm(y − v),

w ∈
{−n

2
, . . . ,

n

2− 1

}
, x, y ∈ R,

(4.145)

where Dm is the Dirichlet kernel of length m = 2n + 1 given by

Dm(t) = sinπt

m sin (πt/m)
. (4.146)

Next, we use Ix, Iy , and Iz to define the discrete X-ray transform. For an x-
line lx(α,β, c1, c2) ∈ Lx, given by (4.141), we define the discrete X-ray transform
PxI(α,β, c1, c2) as

PxI
(
α,β, c1, c2

)
=

n/2−1∑
u=−n/2

Ix
(
u,αu + c1,βu + c2

)
, |α| ≤ 1, |β| ≤ 1, c1, c2 ∈ {−n, . . . ,n},

(4.147)

where Ix is given by (4.143). The transformation Px : Lx → R is obtained by
traversing the line lx with unit steps in the x-direction, and for each integer u the
value of the image I at the point (u,αu + c1,βu + c2) is summed.
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Figure 4.6. The set of x-lines Lx .

Similarly to (4.147), we define the discrete X-ray transform PyI(α,β, c1, c2) for
the y-line ly(α,β, c1, c2) ∈ Ly as

PyI
(
α,β, c1, c2

) = n/2−1∑
v=−n/2

Iy
(
αv + c1, v,βv + c2

)
, (4.148)

where Iy is given by (4.144). Finally, we define the discrete X-ray transform PzI(α,
β, c1, c2) for a z-line lz(α,β, c1, c2) ∈ Lz as

PzI
(
α,β, c1, c2

) = n/2−1∑
w=−n/2

Iz
(
αw + c1,βw + c2,w

)
, (4.149)

where Iz is given by (4.145).
Equations (4.147)–(4.149) define the X-ray transform for x-lines, y-lines, and

z-lines, respectively. Since each line in R3 can be expressed as either an x-line, y-
line, or z-line, then, given a line l, we express it as either an x-line, y-line, or z-line
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Figure 4.7. The line families Lx , Ly , and Lz .

and apply on it our definition of the X-ray transform. Hence, for a given image
I and a line l, we define the discrete X-ray transform of I for the line l as the
following.

Definition 4.6.2.

PI(l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PxI(l), l ∈ Lx,

PyI(l), l ∈ Ly ,

PzI(l), l ∈ Lz.

(4.150)

There is a subtle difference between the continuous X-ray transform, given
in (4.137), and the discrete X-ray transform, given in (4.150). The continuous X-
ray transform assigns to each line the integral of the object along the line, where
the value of the integral is independent of the parameterization of the line. The
discrete X-ray transform assigns a value to a specific parameterization of the line.
This means that if the same line is written in two different ways in (4.150), then,
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it may receive two different values. This problem occurs only for lines that have
an angle of 45◦ in some direction. We can eliminate this problem by using a more
subtle construction in (4.150). However, since this issue does not pose any com-
putational problems, we simply ignore it.

The X-ray transform, given by Definition 4.6.2, is defined for a set of lines in
R3 with a discrete set of intercepts (c1, c2) and a continuous set of slopes (α,β).
Therefore, Definition 4.6.2 is what we call “semidiscrete,” since it is discrete with
respect to the image I and the set of intercepts (c1, c2), but it uses a continuous set
of slopes (α,β). In Section 4.6.5 we show how to discretize the set (α,β) to have a
fully discrete definition of the X-ray transform, which is rapidly computable and
invertible.

4.6.4. Discrete Fourier slice theorem for the discrete X-ray transform

As we showed in (4.139), the continuous X-ray transform satisfies the Fourier slice
theorem, which associates the continuous X-ray transform of a function f with the
Fourier transform of f . This relation is very useful for both the computation and
analysis of the continuous X-ray transform. We will therefore derive a similar rela-
tion for the discrete X-ray transform, and we will later utilize it to rapidly compute
the discrete X-ray transform.

For a 2D array X of size m×m (m = 2n+1), the 2D discrete Fourier transform
(DFT) of X , denoted by X̂ , is defined by

X̂(k, l) =
n∑

u=−n

n∑
v=−n

X(u, v)e−2πıku/me−2πılv/m, k, l = −n, . . . ,n. (4.151)

The 2D inverse discrete Fourier transform is given by

X(u, v) =
n∑

k=−n

n∑
l=−n

X̂(k, l)e2πıku/me2πılv/m, u, v = −n, . . . ,n. (4.152)

Given a family of x-lines lx(α,β), we denote the X-ray transform of the image
I for this family of lines by Px(α,β)I . Formally,

Px(α,β)I � PxI
(
α,β, c1, c2

)
, c1, c2 = −n, . . . ,n, (4.153)

or for specific c1 and c2,

Px(α,β)I
(
c1, c2

)
� PxI

(
α,β, c1, c2

)
, (4.154)

where PxI(α,β, c1, c2) is given by (4.147). Px(α,β)I is the 2D array generated by ap-
plying the X-ray transform to a family of x-lines with a fixed direction (α,β).
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Theorem 4.6.3 (x-lines Fourier slice theorem [10]). For a given family of x-lines
lx(α,β) with fixed slopes (α,β) and variable intercepts (c1, c2), take the 2D array of
projections Px(α,β)I . Then,

P̂x(α,β)I(k, l) = Î(−αk − βl, k, l), (4.155)

where Î is given by

Î
(
ξ1, ξ2, ξ3

) = n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πıξ1u/me−2πıξ2v/me−2πıξ3w/m

(4.156)

and P̂x(α,β)I(k, l) is the 2D DFT of the array Px(α,β)I .

Similar theorems hold for y-lines and z-lines.
Geometrically, Theorem 4.6.3 states that the 2D DFT of the discrete X-ray

transform over a family of x-lines with fixed slopes (α,β) is equal to the samples of
the trigonometric polynomial Î on the plane defined by the points (−αk−βl, k, l).
Explicitly, we need to sample Î on the plane given by the equation x = −αy − βz.
Figure 4.8 depicts these x-planes for various values of α and β. Theorem 4.6.3 is
very important for the rapid computation of the discrete X-ray transform, as it
relates the discrete X-ray transform of the image I to the 3D DFT of I .

4.6.5. Discretization of the X-ray transform

Definition 4.6.2 defines the X-ray transform over the continuous line sets Lx, Ly ,
and Lz. These line sets are comprised from lines that have discrete intercepts and
continuous slopes. In this section, we define the discrete X-ray transform for a
discrete set of lines, which are discrete in both their slopes and intercepts.

Consider the set defined by

S =
{

2p
n

}
, p = −n

2
, . . . ,

n

2
. (4.157)

We define the discrete X-ray transform as the restriction of Definition 4.6.2 to the
set of slopes S× S. Formally, we define three discrete sets of lines:

(i) discrete x-lines

Ld
x =

{
lx
(
α,β, c1, c2

) ∈ Lx | α ∈ S, β ∈ S
}

; (4.158)

(ii) discrete y-lines

Ld
y =

{
ly
(
α,β, c1, c2

) ∈ Ly | α ∈ S, β ∈ S
}

; (4.159)
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Figure 4.8. x-planes for various values of α and β.

(iii) discrete z-lines

Ld
z =

{
lz
(
α,β, c1, c2

) ∈ Lz | α ∈ S, β ∈ S
}
. (4.160)

The set Ld is defined by

Ld = Ld
x ∪Ld

y ∪Ld
z . (4.161)

By using the lines in Ld we define the discrete X-ray transform for discrete images
as the following.

Definition 4.6.4. For an image I and a line l(α,β, c1, c2) ∈ Ld, the discrete X-ray
transform is given by

PI(l) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
PxI(l), l ∈ Ld

x ,

PyI(l), l ∈ Ld
y ,

PzI(l), l ∈ Ld
z ,

(4.162)

where Px, Py , and Pz are defined by (4.147)–(4.149), respectively.
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Definition 4.6.4 defines the discrete X-ray transform for discrete images by
using a discrete set of lines. This transform is not defined for all lines in R3, but
only for lines in Ld. We will show in Section 4.6.6 that for the set of lines Ld the
discrete X-ray transform can be computed using a fast algorithm. Moreover, we
will show in Section 4.5.7 that the discrete X-ray transform is invertible.

Since the Fourier slice theorem (Theorem 4.6.3) holds for continuous slopes
(α,β), it holds in particular for the discrete set of slopes defined by (4.157). Sub-
stituting the discrete set of slopes, given by (4.157), into Theorem 4.6.3 gives the
discrete Fourier slice theorem, which is defined for both discrete images and a dis-
crete set of directions.

Corollary 4.6.5 (discrete Fourier slice theorem). Let S be the set given in (4.157)
and let Î be the trigonometric polynomial defined by

Î
(
ξ1, ξ2, ξ3

) = n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πıξ1u/me−2πıξ2v/me−2πıξ3w/m.

(4.163)

Then,
(i) for a given family of x-lines lx(α,β), α = 2p/n ∈ S1, β = 2q/n ∈ S2,

P̂x(2p/n,2q/n)I(k, l) = Î
(−2pk

n
− 2ql

n
, k, l

)
, (4.164)

(ii) for a given family of y-lines ly(α,β), α = 2p/n ∈ S1, β = 2q/n ∈ S2,

P̂y(2p/n,2q/n)I(k, l) = Î
(
k,
−2pk
n

− 2ql
n

, l
)

, (4.165)

(iii) for a given family of z-lines lz(α,β), α = 2p/n ∈ S1, β = 2q/n ∈ S2,

P̂z(2p/n,2q/n)I(k, l) = Î
(
k, l,
−2pk
n

− 2ql
n

)
. (4.166)

4.6.6. Computing the discrete X-ray transform

Equation (4.162) shows that direct computation of the discrete X-ray transform
according to its definition requires O(n7) operations. As we will shortly see, by
utilizing the frequency domain relations between the samples of the discrete X-ray
transform, it is possible to compute it in O(n4 logn) operations without sacrificing
the accuracy. This is quite a remarkable result if we consider the fact that the lower
bound for such a computation is Ω(n4) operations, since there are four indepen-
dent parameters (α,β, c1, c2) to consider.

We consider only the computation of the discrete X-ray transform for Ld
x ,

given by (4.158). The algorithm for computing the discrete X-ray transform for
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Ld
y and Ld

z is similar. The discrete Fourier slice theorem for an x-line lx (4.164) is
given by

P̂x(2p/n,2q/n)I(k, l) = Î
(−2pk

n
− 2ql

n
, k, l

)
, p, q ∈

{
n

2
, . . . ,

n

2

}
. (4.167)

If we can rapidly sample the trigonometric polynomial Î , given by Î(ξ1, ξ2, ξ3) =∑n/2−1
u=−n/2

∑n/2−1
v=−n/2

∑n/2−1
w=−n/2 I(u,v,w)e−2πıξ1u/me−2πıξ2v/me−2πıξ3w/m, at the points (−2pk/

n− 2ql/n, k, l) for some fixed p and q, then, by the 2D inverse DFT we can recover
the values of Px(2p/n,2q/n)I(c1, c2) for fixed p and q. Hence, once we compute the

samples P̂x(2p/n,2q/n)I(k, l) for all possible values of p, q, k and l, it requires (n+ 1)2

applications of the 2D inverse DFT (one for each pair of p and q) to recover PxI
for all x-lines lx ∈ Ld

x . This results in a total of O(n4 logn) operations to recover
PxI from P̂xI . Therefore, it remains to show that we can compute P̂x(2p/n,2q/n)I(k, l)
for all p, q, k, and l using O(n4 logn) operations.

We take some fixed slope α = 2p/n ∈ S and denote

Îp(q, k, l) = Î
(−2pk

n
− 2ql

n
, k, l

)
. (4.168)

By expanding (4.168) we obtain

Îp(q, k, l) = Î
(−2pk

n
− 2ql

n
, k, l

)
(4.169)

=
n/2−1∑

u,v,w=−n/2
I(u, v,w)e−2πıu(−2pk/n−2ql/n)/me−2πıkv/me−2πılw/m. (4.170)

Denote

Îyz(u, k, l) =
n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

I(u, v,w)e−2πıkv/me−2πılw/m. (4.171)

By substituting (4.171) into (4.170) we obtain

Îp(q, k, l) =
n/2−1∑
u=−n/2

Îyz(u, k, l)e−2πıu(−2pk/n−2ql/n)/m (4.172)

or

Îp(q, k, l) =
n/2−1∑
u=−n/2

Îyz(u, k, l)e−2πıuωq , (4.173)
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where

Δω = −2l
(nm)

,

ω0 = −2pk
(nm)

,

ωq = ω0 + qΔω.

(4.174)

If we compute Îp(q, k, l), given in (4.173), for all values of q, k, and l, then, by

(4.167) and (4.168) we can compute P̂x(2p/n,2q/n)I(k, l) for a fixed direction p. Re-

peating the process for all possible values of p produces the values of P̂x(2p/n,2q/n)I(k,
l) for all possible p, q, k, and l. Hence, rapid evaluation of (4.173) enables rapid
computation of the discrete X-ray transform.

Equations (4.173) and (4.174) reveal a special relation between the samples
of Îp(q, k, l). As we will see in Section 4.6.6.1, we can utilize this relation to rapidly

compute the values of Îp(q, k, l) by using the chirp Z-transform. We first introduce
the chirp Z-transform, and later show how to use it to rapidly compute the discrete
X-ray transform.

4.6.6.1. The chirp Z-transform

Given a sequence x( j), j = −n/2, . . . ,n/2− 1, its Z-transform is defined by

X(z) =
n/2−1∑
j=−n/2

x( j)z− j . (4.175)

The chirp Z-transform, first discussed in [28], rapidly computes X(zk) for points
zk = AW−k, where A,W ∈ C. Specifically, the chirp Z-transform allows to com-
pute X(zk) along contours of the form

zk = e2πıwk , ωk = ω0 + kΔω, k = −n
2

, . . . ,
n

2
, (4.176)

where ω0 is an arbitrary starting frequency and Δω is an arbitrary frequency in-
crement. For the contour defined by (4.176), the chirp Z-transform has the form

X
(
e2πıωk

) = n/2−1∑
j=−n/2

x( j)e−2πı jωk , k = −n
2

, . . . ,
n

2
. (4.177)

For the case where ω0 = 0 and Δω = 1/n, the chirp Z-transform in (4.177) com-
putes the discrete Fourier transform of the sequence x( j).

The algorithm described in [29, 30] computes the chirp Z-transform of a se-
quence x( j) of length n and arbitrary ω0 and Δω using O(n logn) operations.
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Equations (4.173) and (4.174) state that for fixed k and l, Îp(q, k, l) can be
rapidly computed by setting

x( j) = Îyz( j, k, l),

ω0 = −2pk
(nm)

,

Δω = −2l
(nm)

(4.178)

and using the chirp Z-transform. These settings are used in the next section for
the rapid computation of the discrete X-ray transform.

4.6.7. Fast algorithm for the computation of the discrete X-ray transform

We will use the chirp Z-transform algorithm from Section 4.6.6.1 to rapidly com-
pute P̂I(l) for all l ∈ Ld, where Ld is defined in (4.161). The algorithm consists
of three phases, which compute P̂xI , P̂yI , and P̂zI for lines in Ld

x , Ld
y , and Ld

z , re-

spectively. We present only the algorithm for computing P̂xI . The algorithms for
P̂yI and P̂zI are similar.

We use the following notation in the description of the algorithm.
(i) Ey , Ez—Extension operators, which symmetrically zero-pad the image I

to length 2n + 1 along the y- and z-directions, respectively.
(ii) Fy , Fz—1D discrete Fourier transform (FFT) along the specified direc-

tion. For example, FyI takes all the vectors I(x, ·, z) and applies on them
the 1D FFT.

(iii) CZT(x,ω0,Δω)—the chirp Z-transform, defined in Section 4.6.6.1,
with parameters ω0 and Δω. Specifically, CZT(x,ω0,Δω) is defined by

CZT
(
x,ω0,Δω

)
k =

n/2−1∑
j=−n/2

x( j)e−2πı jωk , ωk = ω0 + kΔω, k = −n
2

, . . . ,
n

2
.

(4.179)

4.6.7.1. Algorithm description

Algorithm 4.4 is applied. The output of Algorithm 4.4 is stored in the array Resx
of size (n + 1)× (n + 1)×m×m, (m = 2n + 1).

4.6.7.2. Correctness of Algorithm 4.4

Theorem 4.6.6. Upon termination of Algorithm 4.4 the following holds:

Resx(p, q, k, l) = P̂x(2p/n,2q/n)I(k, l). (4.180)
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• Computing P̂xI :

(1) İ = EyEzI

(2) Ĩ = FyFzİ

(3) foreach p in −n/2, . . . ,n/2

(4) foreach k, l in −n, . . . ,n

(5) xk,l ← Ĩ (·, k, l) (xk,l is a sequence of length n)

(6) ω0 ← −2pk/(nm), Δω ← −2l/(nm)

(7) Resx(p, ·, k, l) = CZT(xk,l ,ω0,Δω)

(8) endfor

(9) endfor

Algorithm 4.4

4.6.7.3. Complexity of computing the discrete X-ray transform
(Algorithm 4.4)

The complexity of computing P̂xI (Algorithm 4.4) is analyzed. The complexity of
computing P̂yI and P̂zI is the same.

Step (1) of Algorithm 4.4 requires O(n3) operations as it doubles the size of
a 3D image of size n3 by zero-padding each direction. Step (2) requires the appli-
cation of O(n2) 1D FFTs along the z-direction and O(n2) 1D FFTs along the y-
direction. Since each FFT application requires O(n logn) operations, this accounts
to a total of O(n3 logn) operations.

Next, for fixed k, l, and p, steps (5)–(7) require O(n logn) operations, since
the most expensive operation is to compute the CZT (chirp Z-transform) in step
(7), which requires O(n logn) operations. This accounts to a total of O(n4 logn)
operations for the processing of all values of k, l, and p. Hence, computing P̂xI
requires O(n4 logn) operations.

Note that Algorithm 4.4 computes P̂xI for all directions p and q. If for some
application not all directions are needed, they can be discarded from the compu-
tation, reducing the complexity of Algorithm 4.4.

4.7. Summary

As a summary, we want to mention some more algorithms and applications that
we believe are important but were omitted because of space limitation. These algo-
rithms and papers are based on the irregular sampling for multidimensional polar
processing of integral transforms that is introduced in this chapter.

In the discrete diffraction transform paper [11, 19], a discrete analogue of the
continuous diffracted projection is defined. It defines a discrete diffracted trans-
form (DDT) as a collection of the discrete diffracted projections taken at specific
set of angles along specific set of lines. The “discrete diffracted projection” is de-
fined to be a discrete transform that is similar in its properties to the continuous
diffracted projection. The paper proves that when the DDT is applied on a set
of samples of a continuous object, it approximates a set of continuous vertical

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


198 Irregular sampling for multidimensional transforms

diffracted projections of a horizontally sheared object and a set of continuous hor-
izontal diffracted projections of a vertically sheared object. A similar statement,
where diffracted projections are replaced by the X-ray projections, holds in the
case of the discrete 2D Radon transform (DRT). Thus, the discrete diffraction
transform is rapidly computable and invertible. Some of the underlying ideas came
from the definition of DRT.

In [13], a fast high accuracy Polar FFT was developed. For a given two-dimen-
sional signal of size N × N , the proposed algorithm’s complexity is O(N2 logN),
just like in a Cartesian 2D-FFT. A special feature of our approach is that it involves
only 1D equispaced FFT’s and 1D interpolations. A central tool in our approach is
the pseudopolar FFT, an FFT where the evaluation frequencies lie in an oversam-
pled set of nonangularly equispaced points. The pseudopolar FFT plays the role of
a halfway point, a nearly polar system from which conversion to polar coordinates
uses processes relying purely on 1D FFTs and interpolation operations.

Two algorithms for the reconstruction of a 2D object from its continuous pro-
jections are proposed. The first algorithm operates on parallel projection data,
while the second uses the more practical model of fan-beam projections. Both
algorithms are based on the discrete Radon transform [5], which extends the con-
tinuous Radon transform to discrete data. The discrete Radon transform and its
inverse can be computed in a complexity comparable with the 2D FFT, and are
shown to accurately model the continuum as the number of samples increases.
Numerical results demonstrate high quality reconstructions for both parallel and
fan-beam acquisition geometries. This is a work in progress [20]. This method is
now being considered to be extended to 3D fan-beam and to discrete spiral Fourier
transform.

Here is a short list of applications: image registration [14, 15], volume reg-
istration [16], 3D registration, 2D symmetry detection [17]. This list is far from
being exhaustive.
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5
Space-variant and adaptive transform
domain image restoration methods

L. Yaroslavsky

A family of space-time variant local adaptive transform domain methods for sig-
nal, image, and video processing (denoising, deblurring, enhancement) is de-
scribed. The methods work in a space-time moving window in the domain of
an orthogonal transform, and in each position of the window, nonlinearly mod-
ify the signal transform coefficients to obtain an estimate of the window central
pixel. For the design of the transform coefficient nonlinear processing algorithm,
minimum RMS restoration error approach is applied. This leads to transform-
domain adaptive empirical Wiener filtering in form of the coefficient “soft” or
“hard” thresholding. It is shown that among different possible transforms, dis-
crete cosine transform proved to be the primer candidate for using in image and
video processing. Very good edge-preserving noise-suppression capability of slid-
ing window DCT domain (SWDCT) image denoising algorithms was confirmed
experimentally on test and real-life images and was compared to that of the local
“ideal” Wiener filtering, which they approximate. Applications of the algorithms
for image denoising, deblurring, and enhancement are illustrated by numerous
examples.

Theoretically, sliding window transform-domain filtering methods can be
treated as an implementation of image subband decomposition and nonlinear
pointwise transformation of the subband components. Being considered in this
way, they parallel wavelet denoising methods that exploit multiresolution property
of wavelet transforms for enabling local adaptivity of the filtering. Image denoising
capabilities of both families of image denoising methods are compared in experi-
ments with test and real-life images and 1D signals, which revealed the superiority
of the SWDCT filtering in this respect. As a way to efficiently implement parallel
SWDCT processing in windows of different sizes and to solve in this way the prob-
lem of selecting appropriate window size in SWDCT filtering, combining wavelet
image multiresolution decomposition and SWDCT filtering in a hybrid processing
is considered, and further improvement of filtering performance is demonstrated
in extensive simulation experiments.
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202 Adaptive transform domain image restoration methods

5.1. Introduction

Image and video restoration (denoising and deblurring) is a fundamental image
processing task. Its successful solution is critical in many applications and espe-
cially when images are to be analyzed by a human operator. In spite of many ef-
forts, this task is still challenging researchers. The fundamental difficulty is space/
time nonstationarity of images and videos that requires local space/time adaptivity
of the restoration algorithms.

In this chapter, we describe a family of easy-to-use sliding window transform-
domain image and video restoration algorithms capable of local adaptivity. The
algorithms work in a sliding window in the domain of an orthogonal transform,
and in each position of the window, nonlinearly modify the signal transform coef-
ficients to obtain an estimate of the window central pixel. Being initially designed
as DFT-domain filters (see [1]), they implement the old idea of space (time)-
frequency signal representation (see [2, 3]) and were soon extended to the use
of other transforms, and, first of all, of DCT (see [4–6]) and to multicomponent
image processing (see [7, 8]).

More recently, another family of transform-domain denoising methods ca-
pable of spatial adaptivity emerged, which are known, after Donoho, as wavelet
shrinkage methods (see [9–11]). Basis functions of wavelet transforms (wavelets)
are formed by means of a combination of two basic methods of building transform
basis functions, shifting, and scaling ones. Thanks to this, wavelets combine local
sensitivity of shift basis functions and global properties of “scaled” basis functions
and feature such attractive properties as multiresolution and good localization in
both signal and transform domains.

Both running window transform domain and wavelet processing are differ-
ent implementations of linear filtering in transform domain. This motivates an
attempt to suggest their unified interpretation that would provide an insight into
their similarities and dissimilarities. This issue is also addressed in the chapter. It
is shown that both filter families can be treated as special cases of signal subband
decomposition and empirical Wiener filtering of the subbands. We also compare
noise suppression capability of these methods and introduce a hybrid method that
combines advantages of both methods.

The chapter is arranged as follows. In Section 5.2, principles of empirical
Wiener scalar linear filtering in transform domain and its application to signal
and image restoration are described. In Section 5.3, local adaptive sliding window
filtering is introduced, substantiated both in terms of signal restoration capabil-
ity and computational complexity, and its efficiency in signal, image, and video
denoising, deblurring, and enhancement is demonstrated. Then, in Section 5.4,
wavelet signal denoising methods are briefly reviewed, in Section 5.4.1, sliding
window and wavelet methods are compared in terms of their signal restoration
capability and hybrid wavelet/sliding window filters are introduced that combine
advantages of both methods. In Section 5.5, an approach is suggested to a uni-
fied representation and treatment of sliding window, wavelet, and hybrid filter-
ing methods as implementations of signal subband decomposition processing. In
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conclusion, the results are summarized and possible new developments are briefly
discussed.

5.2. MSE optimal scalar linear filters for signal restoration

5.2.1. A theoretical framework

In this section, we remember basic principles of mean-square-error (MSE-) opti-
mal scalar linear filtering in transform domain (see [12, 13]). For the generality,
we will assume that signals to be processed are multicomponent and are repre-
sented by their sampled components (such as, e.g., R, G, and B components of
color images or successive frames of video sequences).

Let a = {a(m)
k } be component vectors of samples of a “true” signal, estimation

of which is the processing goal, and â = {â(m)
k } are their estimates obtained in the

result of processing, {k} and {m} are image sample and component indices, M
is the number of image components. Note that for the sake of simplicity, we use
1D denotation for image sample indices. Let us assume also that signal processing
quality is evaluated in terms of mean square restoration error (MSE) computed as

squared difference between true signal a = {a(m)
k } and its estimation â = {â(m)

k }
averaged over the set of N signal samples and over random factors involved in the
task such as for instance, random signals and noise:

MSE = AV

{ M∑
m=1

N−1∑
k=0

∣∣a(m)
k − â(m)

k

∣∣2
}

, (5.1)

where AV is the averaging operator. In this assumption, the processing is aimed at
minimization of the MSE:

{
â(m)
k

} = arg min
{b(m)

k }⇒{a(m)
k }

AV

{ M∑
m=1

N−1∑
k=0

∣∣a(m)
k − â(m)

k

∣∣2
}

(5.2)

by means of appropriate selection of observation-to-estimation mappings {b(m)
k }⇒

{â(m)
k }, where {b(m)

k } are samples of signal under processing.
To make the design of the processing constructive, one should parameterize

the observation-to-estimation mapping. To this goal, we will make two additional
assumptions. First, we restrict ourselves with the processing implemented as signal
linear filtering:

â = Hb, (5.3)

where H is a linear filter matrix and b is a vector of samples of the input signal. For
a signal with N samples, the filter design requires, in general, specification of N2

elements of matrix H. The filter matrix specification is much simplified if the filter
matrix is a diagonal one that requires specification of only N diagonal elements.
We will call such an implementation of signal linear filtering scalar filtering.
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Using scalar filters, one can approximate a general filter matrix H by a diago-
nal matrix Hd in the following way:

H ≈ T−1HdT, (5.4)

where T and T−1 are direct and inverse matrices of an orthogonal transform that
approximates the transform that diagonalizes matrix H. Such an approximation
means that the filtering is carried out in the domain of the transform T. This is
the second assumption that we accept. This assumption not only lowers computa-
tional complexity of the filter design, but also simplifies incorporating in the filter
design a priori knowledge regarding signals under processing. While formulation
of this information in the signal domain is frequently problematic, it is much sim-
plified in the domain of orthogonal transforms since signal spectra in the trans-
form domain exhibit statistically much more regular behavior than that of the
proper signal provided that the transform is appropriately selected (recall, e.g., the
behavior of image DFT or DCT spectra that are known to more or less rapidly
decay with the rise of the frequency index).

For scalar filtering, filter matrix is specified by its diagonal elements:

H = {
ηr,μ

}
, (5.5)

where r and μ are indices in the transform domain that correspond to signal sam-
ple indices {k} and {m}. Thus, we will assume in what follows scalar filtering and
will design filters that operate in the following 3 steps:

(1) computing spectral coefficients {βr,μ} of the observed signal b over the
chosen orthogonal transform T;

(2) multiplication of the obtained transform coefficients {βr,μ} by the filter
coefficients {ηr,μ} to obtain estimates of the processed signal spectral
coefficients {α̂r,μ} as

{
α̂r,μ = ηr,μβr,μ

}
; (5.6)

(3) inverse transformation T−1 of the output signal spectral coefficients

{α̂r,μ} to obtain estimated samples {â(m)
k } = T−1{α̂r,μ} of the signal.

With this approach, the synthesis of filters is reduced to the determination of
N ×M filter coefficients {ηr,μ}. For the MSE-optimal filter design in the domain
of an orthogonal transform, one can, by virtue of Parceval’s relation, reformulate
the criterion of (5.2) in terms of signal transform coefficients:

MSE = AV

{ M∑
m=1

N−1∑
k=0

∣∣αr,μ − ηr,μβr,μ
∣∣2
}
. (5.7)

By minimizing the MSE with respect to {ηr,μ}, one can immediately find that the
optimal values of the coefficients of the filter that minimize mean square filtering
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error (5.7) are defined by the following equation:

ηr,μ =
AV

{
αr,μβ∗r,μ

}
AV

{∣∣βr,μ
∣∣2} (5.8)

with asterisk ∗ denoting complex conjugate. The design of the filter of (5.8) is
therefore reduced to an estimation of power spectrum of the input signal
AV{|βr,μ|2} and its mutual spectrum AV{αr,μβ∗r,μ} with the true signal.

5.2.2. Adaptive filters for signal restoration with empirical
estimation of filter parameters

Assume that signal distortions can be modeled by the equation

b = La + n, (5.9)

where L is a linear operator of the imaging system and n is a random zero-mean
signal independent random vector that models imaging system’s noise. Assume
also that the imaging system operator L is such that the distorted signal can be
described, in the domain of the chosen orthogonal transform, by the following
relationship:

βr,μ = λr,μαr,μ + νr,μ, (5.10)

where {λr,μ} are representation coefficients of the linear operator L in the domain
of the orthogonal transform and {νr,μ} are zero-mean spectral coefficients of the
realization of the noise interference. Then one can obtain from (5.8) that optimal
restoration filter coefficients are defined as

ηr,μ = 1
λr,μ

∣∣λr,μ
∣∣2

AV
{∣∣αr,μ

∣∣2}
AV

{∣∣βr,μ
∣∣2} = 1

λr,μ

∣∣λr,μ
∣∣2

AV
{∣∣αr,μ

∣∣2}∣∣λr,μ
∣∣2

AV
{∣∣αr,μ

∣∣2}
+ AV

{∣∣νr,μ
∣∣2} .

(5.11)

Filter of (5.11) is referred to as the Wiener scalar filter. Its design assumes
knowledge of statistical average (in terms of the averaging operator AV) power
spectra AV{|αr,μ|2} and AV{|νr,μ|2} of image and noise.

Noise power spectrum AV{|νr,μ|2} can either be known from the imaging sys-
tem design specification or it can be estimated from observed noisy images (see
[4, 12, 13]). For evaluation of the true signal power spectrum AV{|αr,μ|2}, there
are two similar options: (i) it can be evaluated in advance from either an a pri-
ori image statistical model or from an image database and (ii) one can attempt to
estimate it directly from the observed signal/image. The first option constitutes a
conventional approach to signal restoration that dates back to classical works by N.
Wiener. The second option leads to adaptive filters that provide the best restora-
tion result for a particular image and particular realization of noise.
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Such an empirical spectrum estimation can be carried out using the relation-
ship

∣∣λr,μ
∣∣2

AV
{∣∣αr,μ

∣∣2} = AV
{∣∣βr,μ

∣∣2}− AV
{∣∣νr,μ

∣∣2}
(5.12)

that follows from the image and noise model of (5.10). In this relationship,
AV{|βr,μ|2} is the estimate of the observed image power spectrum, for which one
can use one or another known procedure of spectra estimation by means of
smoothing spectrum of the signal being processed.

As a zero-order approximation, the observed power signal/image spectrum
{|βr,μ|2} can be used as an estimate of the averaged one AV{|βr,μ|2}. In this way,
we arrive at the following implementation of filters for signal denoising and de-
blurring (see [6–8, 12, 13]):

ηr,μ
∼= max

{
0,

1
λr,μ

{∣∣βr,μ
∣∣2}− AV

{|νr,μ
∣∣2}{∣∣βr,μ

∣∣2}
}

, (5.13)

where zero values are to be taken wherever difference between image and noise
power spectra gets negative, due to spectra estimation errors. We will refer to this
filter as the empirical Wiener filter.

The two following modifications of this filter are of the most practical interest:

(i) “rejective” filter.

ηr,μ
∼=

⎧⎪⎪⎨⎪⎪⎩
1
λr,μ

if
∣∣βr,μ

∣∣2
> THRr,μ, λr,μ �= 0,

0 otherwise,
(5.14)

where the values of THRr,μ are preassigned and are associated with power spec-
trum AV{|νr,μ|2} of the additive noise;

(ii) “fractional spectrum filter”.

ηr,μ
∼=

⎧⎪⎪⎨⎪⎪⎩
g

1
λr,μ

∣∣βr,μ
∣∣P−1

if
∣∣βr,μ

∣∣2
> THRr,μ, λr,μ �= 0,

0 otherwise,
(5.15)

with P ≤ 1 as a spectrum enhancement parameter and g as a normalization pa-
rameter. When P = 1, the filter is equivalent to that of (5.14). Selection of P < 1
results in redistribution of signal energy in favor of less intensive (most frequently,
higher frequency) spectrum components. The latter modification is useful for im-
age blind deblurring and image enhancement.

An important feature of filters defined by (5.13)–(5.15) is their adaptivity,
which is implied by the fact that filter parameters are defined by individual real-
izations of signals.
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5.3. Sliding window local adaptive filters

5.3.1. “Local” versus “global” processing

Described filers can be used in two fashions: filtering can either be carried out
over the entire set of available signal samples such as image frames (globally) or
fragmentwise (locally).

At least for image processing, there are quite a number of arguments in favor
of “local” processing versus “global” one.

(i) “Global” processing assumes signal spatial “stationarity” or homogene-
ity. One hardly can regard such signals as images “stationary.” Figures 5.1(a) and
5.1(b) illustrate “global” and “local” approaches. One can easily see how much in-
dividual fragments of the test image differ one from another and how relatively
simply organized are most of the blocks of which it consists.

(ii) Adaptive filter design assumes empirical evaluation of signal spectra. In
global image spectra, spectra variations due to image nonstationarity are hidden
and are difficult if not impossible to detect. This can be clearly seen in Figure 5.2
that illustrates variability DCT spectra of blocks of the test image of Figure 5.1
compared to its global spectrum. Therefore in global spectrum analysis, local im-
age information will be neglected in favor of global one, which usually contradicts
processing goals.

(iii) It is well known that when viewing image, human eye’s optical axis per-
manently hops chaotically over the field of view and that the human visual acuity
is very nonuniform over the field of view. The field of view of a man is about 30◦.
Resolving power of man’s vision is about 1′. However such a relatively high resolv-
ing power is concentrated only within a small fraction of the field of view that has
size of about 2◦ (see [14]). Therefore, area of the acute vision is about 1/15th of
the field of view. For images of 512 pixels, this means window of roughly 30 pixels.

(iv) Visual objects to be recognizable have to contain sufficiently large number
of resolution cells (pixels). As an immediate illustration of this fact, one can recall
that, for the representation of printed characters, one needs a matrix of at least
8× 8 pixels. Even the smallest one-pixel-size object needs a neighborhood of 3× 3
pixels to be detectable if not recognizable. The same and even to a greater degree
holds for “texture” images. Texture identification is also possible only if texture
area contains sufficiently large numbers of pixels. This means that image can be
regarded as a composition of object domains with the linear size from several to
several tens of resolution cells.

The most straightforward way to implement local filtering is to do it in a hop-
ping window. This is exactly the way of processing implemented in most popu-
lar audio and image coding methods such as JPEG and MPEG. “Hopping win-
dow” processing being very attractive from the computational complexity point
of view suffers however from “blocking effects”—artificial discontinuities at the
edges of the hopping window. This motivated appearance of “lapped” transforms
(see [15]) that avoid, though not completely, blocking effects by window hop-
ping with overlap of half the window size. Obviously, the ultimate solution of the
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(a) (b)

Figure 5.1. (a) A test 256× 256 pixel image and (b) the same image divided into 32× 32 pixel blocks
shown by the grid.

(a) (b)

Figure 5.2. (a) Global and (b) blockwise DCT spectra of the test image of Figure 5.1.

“blocking effects” problem would be sample-by-sample processing in sliding win-
dow.

According to the above outlined principle of scalar filtering, in sliding window
processing, one should, for each position of the filter window, compute transform
of the signal vector within window, form on this base a filter, modify accordingly
transform coefficients, and then compute inverse transform. With sliding window,
inverse transform need not, in principle, be computed for all signal vectors within
window since only central sample of the window has to be determined in order to
form, pixel by pixel, the output signal. Figure 5.3 illustrates the described process.

Sliding window adaptive filtering can be theoretically justified if one admits
that processing quality is evaluated by “local criteria” (see [12, 13]). According to
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Figure 5.3. Flow diagram of sliding window processing in transform domain.

the local criteria, signal/image processing quality is evaluated for each individual
image pixel by averaging of the “loss function,” which measures deviations of the
pixel estimates from desired ones, over a set of pixels that forms a neighborhood
of the given pixel.

Within the MSE approach defined by (5.1), the local criterion determines
MSE for the central sample (pixel) ak of the sliding window in each of its kth
position over the given set of signal samples (image pixels) as

MSE(k) = AV

{ M∑
m=1

∑
n∈Window(k)

∣∣a(m)
n − â(m)

n

∣∣2
}

, (5.16)

where Window(k) is a set of pixels in the window. Therefore, in the local pro-
cessing, MSE-optimal filters generate estimates of the window central pixel taking
the corresponding sample from estimates of the window samples that minimize
mean-squared restoration error within the scope of the window. Being optimized
individually for every particular window position, such local filters are space/time
variant and locally adaptive.

5.3.2. Selection of transforms

Selection of orthogonal transforms for the implementation of the filters is gov-
erned by

(i) the admissible accuracy of approximation of the general linear filtering
with scalar filtering;

(ii) the convenience of formulating a priori knowledge regarding image
spectra in the chosen base;
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(iii) the easiness of spectrum estimation from the observed data that is re-
quired for the filter design;

(iv) the computational complexity of the filter implementation.
By the present time, quite a number of orthogonal transforms have been sug-

gested and have found their applications, mainly for signal and image compres-
sions (see [16, 17]). Among these transforms, discrete cosine transform proved to
be one of the most appropriate transforms for sliding window transform domain
filtering. Arguments in favor of DCT are the following.

(i) DCT exhibits a very good energy compaction capability, which is a key fea-
ture for empirical spectra estimation and the efficiency of filters of (5.13)–(5.15).

(ii) Being advantageous to DFT in terms of energy compaction capability,
DCT can also be regarded as a good substitute for DFT in image restoration tasks
where imaging systems are specified in terms of their frequency responses. (for
signal convolution in DCT domain, see Chapter 3, Section A.1.2).

(iii) DCT is suitable for multicomponent signal/image processing and video
processing, in which cases 3D transform over spatial 2D coordinates and compo-
nentwise/temporal coordinate should be considered.

(iv) Computing DCT in a sliding window (for 2D and 3D signals, a rectangu-
lar window) is possible with the use of recursive algorithms described in Chapter
3, Section A.1.2. Generally, computational complexity of DCT spectral analysis in
sliding window is proportional to the window size. In sliding window filtering, it
is most natural to select window dimensions to be odd number to secure window
symmetry for its central pixel. As it is shown in the appendix, when window size is
an odd number, for computing filtering output for the window central pixel by in-
verse DCT of the modified signal spectral coefficients, only coefficients with even
indices are involved and therefore should be computed. This results in further al-
most 2, 4, or 8 times reduction of the computational complexity for 1D, 2D, and
3D signals, correspondingly. Note also that DCT spectral components with zero
indices (local dc-components) can be recursively computed even faster with the
complexity that does not depend on the window size (see [12, 13]).

Although DCT looks advantageous in many respects, other transforms can
also be used for local adaptive filtering in transform domain. The closest candi-
dates are transforms with binary basis functions such as Walsh-Hadamard and
Haar transforms that are computationwisely the simplest ones and, in principle,
allow recursive computation in sliding window (see [18]). For moderate window
sizes, basis functions of DCT and Walsh-Hadamard transforms are quite similar as
one can see from Figure 5.4. Yet another option is using signal/image polynomial
expansion in sliding window considered in Chapter 6.

5.3.3. Selection of the window size and shape

Important parameters of the transform domain sliding window filtering are size
and shape of the window. Obviously, the larger the window size, the higher is the
noise suppression capability of the filtering in image “flat” areas is, where no sig-
nificant signal changes occur. From the other side, filtering with a large window
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(a) (b) (c)

Figure 5.4. Basis functions of 2D 8× 8 DCT (a), Walsh (b), and Haar (c) transforms.

size in the “nonflat” areas may cause either image blur or insufficient noise sup-
pression due to poor separation of signal and noise spectra in the spectrum of the
noisy signal.

In what follows, we assume that images are represented by their samples over
a rectangular sampling grid. In this geometry, recursive computing of the window
transform coefficients is possible for rectangular windows aligned with the direc-
tion, in which filer window scans images: rowwise/columnwise, or diagonalwise.
In the latter case, filter window is a rectangle rotated 45◦ with respect to image
rows/columns. In what follows, we assume rowwise/columnwise image pixel-by-
pixel filtering with a sliding rectangular window.

The least computationally expensive solution is filtering with a fixed window
size. In this case, selection of the window size should be made as a compromise
between noise suppression and image-preserving capabilities of the filtering. One
can say that the size of the window is, roughly speaking, commensurable with the
minimal size of signal/image details that have to be preserved and differentiated
from noise in course of the filtering.

Obviously, image restoration capability of sliding window transform-domain
filtering will be higher, if window size is selected adaptively in each window po-
sition. To this goal, filtering should be carried out in windows of multiple sizes,
and in each window position, the best filtering result should be taken as the signal
estimate in this position using methods of statistical tests such as, for instance, in-
tersection of confidence intervals method described in Chapter 6. Another option
in the multiple-window processing is combining, in a certain way, filtering results
obtained for different windows. All this, however, increases correspondingly the
computational complexity of the filtering, which may become prohibitive, espe-
cially in video processing.

5.3.4. DCT filtering in sliding window 3× 3: thresholding
the directional Laplacians

As it was stated above, in sliding window transform-domain filtering, filter win-
dow size should be commensurable with the size of signal (image) details. The
smallest detail size is one sample (pixel), which corresponds to the smallest 1D
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window size of three samples for 1D signal and 3× 3 pixels for 2D images. Let us
analyze the shape of the basis functions in local 2D DCT spectral analysis in the
window 3× 3. From nine basis functions⎡⎢⎢⎣

DCT00 DCT10 DCT20
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(5.17)

only functions DCT00, DCT20, DCT02, and DCT22 generate spectral coefficients
with even indices that are involved in the computation of the window central pixel.
As one can easily verify, these functions are

DCT00 =
⎡⎢⎣1 1 1

1 1 1
1 1 1

⎤⎥⎦ ,

DCT20 =
⎡⎢⎣1 −2 1

1 −2 1
1 −2 1

⎤⎥⎦ ,

DCT02 =
⎡⎢⎣ 1 1 1
−2 −2 −2

1 1 1

⎤⎥⎦ ,

DCT22 =
⎡⎢⎣ 1 −2 1
−2 4 −2

1 −2 1

⎤⎥⎦ .

(5.18)

Being applied in a sliding window, these functions generate image local mean
(function DCT00) and image horizontal (function DCT02), vertical (function
DCT20), and “isotropic” (function DCT22) Laplacians. As one can easily see, the
latter can be decomposed into a sum of diagonal Laplacians taken at angles ±45◦:

DCT22 = −(DCT220 + DCT221), (5.19)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


L. Yaroslavsky 213

where

DCT220 =

⎡⎢⎢⎣
−2 1 1

1 −2 1

1 1 −2

⎤⎥⎥⎦ , DCT221 =

⎡⎢⎢⎣
1 1 −2

1 −2 1

−2 1 1

⎤⎥⎥⎦ . (5.20)

This casts a new light at the filter denoising capability and leads to different
possible modifications of the filter. One of the possible modifications is an imple-
mentation of the rejective filter of (5.14) through a direct image five-channel con-
volution with window functions DCT00, DCT20, DCT02, DCT220, and DCT221,
thresholding the convolution results and recombining them into the output im-
age. Second possible modification is a “softened thresholding” of the convolution
results. By “softened thresholding” we mean the following operation:

OUTPUT =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
INPUT if |INPUT > THR|,

THR ·sign(INPUT)
∣∣∣∣ INPUT

THR

∣∣∣∣P otherwise,
(5.21)

where THR is the same threshold parameter as in that in (5.14) and P is a pa-
rameter that defines the degree of approximation of the “hard thresholding” of
(5.14) (the “hard thresholding” is achieved when P → ∞). The “softened thresh-
olding” may help to reduce the loss of low-contrast image details in case of the
hard thresholding.

5.3.5. Overlap-and-add filtering

In the described sliding window transform-domain filtering, only the window cen-
tral pixel value was supposed to be estimated in each position of the window as it is
shown in flow diagram of Figure 5.3. A modification of this method was suggested
(see [19]) in which every pixel in a window is estimated in each window position
and final estimate of the filter output is obtained, for every pixel, by averaging the
corresponding outputs of all windows that contain the given sample (pixel).

Because of the need to perform inverse transform of the entire window in
order to obtain estimates of all samples (pixels) within window, “overlap-and-
add” filtering cannot benefit from the recursive computation of window spectra.
Thus, per-pixel computational complexity of such a filtering, provided that it uses
fast transforms, increases by additional O(WindowSize log WindowSize) operations
with respect to that of the filtering with the evaluation of only the central pixel.
However, experimental experience shows that overlap-and-add filtering produces
less artifacts and demonstrates a bit better denoising capability. Some comparative
quantitative figures are presented below.
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5.3.6. Performance and potentials of local adaptive
filtering: experimental verification

Image restoration and enhancement capability of the described sliding window
DCT domain filtering (SWDCT) were expensively tested both on simulated test
and real-life images and video. Some illustrative examples of image and video de-
noising, deblurring, and enhancement are given in Figures 5.5–5.12.

Figure 5.5(c) shows a result of denoising, by means of rejecting filtering in
DCT domain in sliding window of 7× 7 pixels of a 256× 256 pixel test piecewise
constant image (Figure 5.5(b)), corrupted by additive white noise with uniform
distribution in the range ± 25 gray levels (image dynamic range is 256 gray lev-
els). Original noiseless image is shown, as a reference, in Figure 5.5(a). Image in
Figure 5.5(d) shows a rejective filter local “transparentness map” computed, for
each processed pixel, as a fraction, from zero to one, of transform coefficients in
the window that pass the thresholding. White in this figure corresponds to filter
full “transparentness” (all transform coefficients pass the threshold), black cor-
responds to filter full “opaqueness” (none of coefficients, except dc-component,
pass). One can clearly see on this image that within image flat areas, where no sub-
stantial changes of gray levels occur, the rejecting filter tends to replace pixels by
local mean (local dc-component) over the window, while in vicinities of edges it
passes practically all image local transform coefficients without modification, and
therefore, preserves the input image content and does not blur edges, though does
not filter out noise in these areas either. This “edge preserving” property of the
described local adaptive filters can be even more explicitly seen on graphs of noisy
and denoised image rows as the ones shown in Figure 5.5(e), for a row highlighted
in Figure 5.5(c). Curiously enough, human visual system is also substantially less
sensitive to noise in the vicinity of image edges than in “flat” areas.

Figure 5.6 represents an example of a blind restoration of a high-resolution
satellite image by sliding window DCT 3 × 3 filtering described in Section 5.3.4.
For image deblurring, it was first subjected to “aperture correction” by applying
a filer inverse to the image sensor’s aperture function. As inverse filtering tends
to amplify sensor’s noise, deblurred image was denoised by means of direct 5-
channel convolution with window functions DCT00, DCT20, DCT02, DCT220,
and DCT221, soft thresholding the convolution results according to (5.21) and
recombining them into the output image.

Figures 5.7(a)–5.7(c) illustrate denoising and Figures 5.7(d)–5.7(f) illustrate
“blind” deblurring of color images using spatial sliding window processing in 3D
transform domain (two spatial dimensions and color component dimension). For
“blind” deblurring, “fractional spectrum filter” of (5.15) was used with window
size 7 × 7 × 3, {λr,μ = 1}, P = 0.75, and filtering threshold found experimentally
on the base of visual evaluation of the restored image quality.

Figures 5.8 and 5.9 illustrate denoising and “blind” deblurring of test (Figure
5.8) and real life (Figure 5.9) video sequences using 5 × 5 × 5 sliding window
DCT domain processing in two spatial dimensions and in time dimension of video
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Figure 5.5. Local adaptive filtering for denoising a piecewise constant test image. (a) Original 256 ×
256 pixel test image; (b) its noisy copy; (c) filtered image (rejective filtering); (d) a map of local filter
“transparence” (white for “transparent,” dark for “opaque”); (e) plots of 32th row (indicated by white
line in image (c)) of noisy (normal line) and filtered (bold line) images.
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(a)

(c)

(d)

(b)

(e)

(f)

Figure 5.6. Denoising and deblurring a high-resolution satellite image by means of sliding window
DCT domain filtering in window of 3×3 pixels (implemented as the five-channel filtering direct convo-
lution): (a) initial image; (b) enhanced image; (c), (d) and (e), (f) corresponding magnified fragments
of the above two images marked by white arrows.

frames. For enhancing resolution in real-life video illustrated in Figure 5.9, an “in-
verse” rejective filter was used with {λr,μ} specified by parameters of the thermal
video camera used.

Figure 5.10 illustrates application of sliding spatial window DCT transform-
domain filtering for denoising speckles in optical interferograms. The speckled
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(a) (d)

(b) (e)

(c) (f)

Figure 5.7. Denoising and blind deblurring of color images. Left column: left halves of the images
represent noisy images and right halves are results of denoising. Right column: original blurred image
(left) and deblurred image (right). Corresponding individual color image components are shown: R—
in boxes (a) and (d); G— in boxes (b) and (e); B— in boxes (c) and (f).

interferogram was processed with filtering threshold proportional to the value of
the window dc-component.

Figure 5.11 illustrates image enhancement using sliding window DCT domain
“fractional spectrum” filter of (5.15). Window size in this filtering was 11×11 pix-
els, filter parameters P, g were, correspondingly, 0.75 and 2.5. Noise suppression
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 5.8. Local adaptive 2D and 3D sliding window DCT domain filtering for denoising video
sequences. Top row—examples of frames of initial test video sequence. Middle row—result of 2D
sliding 5 × 5 pixel spatial window filtering. Bottom row—examples of frames of restored video ob-
tained using 3D sliding 5 × 5 × 5 spatial/temporal window filtering. Full video can be found at
http://www.eng.tau.ac.il/∼yaro/Shtainman/shtainman.htm.
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(a) (b)

(c) (d)

Figure 5.9. Examples of frames of initial (a) and restored (b) thermal real-life video sequence and
corresponding magnified fragments of the images (c) and (d). Note enhanced sharpness of the restored
image. Entire movie can be found at http://www.eng.tau.ac.il/∼yaro/Shtainman/shtainman.htm.

threshold THR was 3 quantization intervals for all transform coefficients (for im-
age dynamic range 0–255), which roughly corresponds to an estimate of standard
deviation of the image noise component that was set to be cleaned out. Dimen-
sions of images in Figure 5.11 are 512× 512 pixels (a), (b); 256× 256 (c), (d); and
330× 440 (e), (f).

Figure 5.12 illustrates 1D filtering in Haar transform domain for denoising of
a real-life ECG signal in sliding window of 16 pixels. Second and third (from top)
images in the figure illustrate time-“frequency” (Haar transform spectral index)
representation of the ECG signal before and after thresholding, correspondingly.

Quantitative data of experimental verification of additive noise suppression
capability of three modifications of sliding window local adaptive filters are pro-
vided in Table 5.1 for rejective filter of (5.14), empirical Wiener filter of (5.13),
and overlap-and-add filter described in Section 5.4.1.1 (see [19, 20]). As a filter
denoising capability benchmark, an “ideal” Wiener filter was used. By the “ideal”
Wiener filter we mean the filter of (5.11) built for the exactly known signal and
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(c)

Figure 5.10. Application of local adaptive sliding window filtering in DCT domain for denoising
speckled interferogram: (a) noisy interferogram, (b) SWDCT-filtered interferogram, (c) plots of a sam-
ple row of images (a) and (b).

noise transform domain power spectra. Such a filter is MSE optimal for each spe-
cific individual realization of signal and noise. While this filter cannot be realized
in practice, one can implement it in computer simulation when true signal spec-
trum and noise realizations are exactly known. The comparison results were ob-
tained for three test images, optimized, for each image, window size, and threshold
values of empirical Wiener and rejective filters.

One can summarize these experimental results as follows.
(i) The tested filters do provide a substantial noise reduction and exhibit

quite good “edge” preserving capability.
(ii) Overlap-and-add filtering improves noise suppression capability of the

filtering though not very substantially.
(iii) Filter noise suppression capability is not too far from that of the “ideal”

Wiener filter. However, there is a room for further improvement that can
be reached with better local spectra estimation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11. Image enhancement using sliding window DCT domain “fractional spectrum” filter:
(a), (c), (e) initial images, (b), (d), (f) enhanced images. (Images (a) and (c) are adopted from
http://www.solarsystem.nasa.gov/ planets/; image (e) is adopted from [32].)
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Figure 5.12. Denoising of a 1D electrocardiogram signal by local adaptive rejective filtering in the
Haar Transform domain (window size is 16 samples). From top to bottom: input noisy signal, its time-
Haar transform index representation, the same after thresholding and filtered signal.

5.4. Wavelet transforms and wavelet denoising methods

Wavelet transforms represent yet another family of transforms for transform-do-
main signal restoration. The notion of wavelet transforms refers to signal trans-
form with transform kernels (basis functions) that are formed from a certain
“mother” function by its both shift and scaling. For a continuous signal a(x), its
wavelet transform α(s, ξ) is defined as

α(s, ξ) = 1√
s

∫∞
−∞

a(x)ϕ
(
x − ξ

s

)
dx, (5.22)

where ϕ(·) is the transform “mother” function, and s is a scale parameter. If the
mother function has finite support, wavelet transform allows multiresolution sig-
nal representation and analysis. It is this property that defines the attractiveness of
wavelet transforms.

Equation (5.22) is, for every scale s, a convolution integral. Therefore, wavelet
transforms can be treated as signal “subband” decompositions by signal filtering
using filters with frequency responses equal to Fourier transform of the mother
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Table 5.1. Noise suppression capability data for four sliding window DCT domain filtering meth-
ods: standard deviation of restoration error for different test images, different input noise levels, and
different filtering methods.

Test image Filter type
Noise level

15 30 60

Air photo1

Rejecting filter 6.1 8.1 10.8

Empirical Wiener filter 6 8.1 10.8

Overlap/add rejecting filter 5 7.1 10.4

“Ideal” Wiener filter 3.6 5.6 9.2

Air photo2

Rejecting filter 5.6 6.4 10

Empirical Wiener filter 5.6 6.4 10.4

Overlap/add rejecting filter 5 6 8.2

“Ideal” Wiener filter 3.3 5 8.2

Lena image

Rejecting filter 10.4 15 21

Empirical Wiener filter 9.3 14.1 19

Overlap/add rejecting filter 8 11.9 17.5

“Ideal” Wiener filter 5.8 8.4 13

function on the corresponding scale:

Hs( f ) =
∫∞
−∞

ϕ
(
x

s

)
exp(i2π f x)dx. (5.23)

This interpretation suggests a very constructive and widely used way to implement
wavelet transforms as iterative signal decomposition to lowpass and highpass com-
ponents as it is illustrated in Figure 5.13. In such an implementation, direct and
inverse wavelet transforms are defined by lowpass filters, interpolation filters, sub-
sampling procedures, and by summation/subtraction units. Subsampling provides
wavelet scaling while discrete lowpass filtering implements shifts. Subsampling is
usually performed as a two-time decimation, which results in scales that are pow-
ers of two. By means of modifying lowpass filtering and interpolation procedures,
one can implement different types of wavelet expansion for processing optimiza-
tion.

Primarily, wavelet transforms were developed mostly as a tool for data com-
pression (see [21, 22]). Donoho and Johnstone, see [9–11], pioneered their ap-
plication to signal denoising. Wavelet denoising has obtained a nickname “wavelet
shrinkage” with “hard” and “soft” thresholdings and operates basically in the same
three steps introduced in Section 5.2.1, where T is now a wavelet transform. A
direct analogy exists between wavelet shrinkage and sliding window transform-
domain filtering as it is shown in Table 5.2 in denotations of Section 5.2.2. Wavelet
shrinkage methods apply the “soft” and “hard” thresholdings to subbands-decom-
posed image components as it is shown in the block diagram in Figure 5.14.
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Figure 5.13. Direct and inverse wavelet transforms implemented as signal subband decompositions.

Table 5.2. Wavelet shrinkage and empirical Wiener filtering formulas for filter coefficients.

Wavelet shrinkage: “soft thresholding” ηr = max
(∣∣βr∣∣− THR, 0

)∣∣βr∣∣
Empirical Wiener scalar filtering ηr = max

(∣∣βr∣∣2 − |ν|2, 0
)∣∣βr∣∣2

Wavelet shrinkage: “hard thresholding” ηr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if

∣∣βr∣∣ > THR

0 otherwise

“Rejecting” filtering ηr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if

∣∣βr∣∣ > THR

0 otherwise

It was found in experiments that wavelet shrinkage may suffer from artifacts
in the form of undershoots and overshoots to the denoised signal that are asso-
ciated with boundary effects. In order to compensate this drawback, translation-
invariant wavelet denoising was suggested (see [23]). In the translation-invariant
denoising, multiple copies of the signal obtained by its cyclic shift are denoised
by the above procedure and the output signal is found as an average over filtering
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Figure 5.14. Flow diagram of wavelet denoising methods.

results for all the copies. Note also that wavelet transforms can be used in sliding
window transform-domain processing as well.

5.4.1. Sliding window transform-domain filtering versus
wavelet filtering: hybrid algorithms

5.4.1.1. Comparison of signal/image denoising capabilities of
sliding window and wavelet filtering methods

The results of extensive experimental comparison of denoising capability of slid-
ing window transform domain and wavelet filtering were reported in [19, 20, 24].
Compared were the following wavelet and sliding window filter modifications:
Haar wavelet (WL-Haar) and Duabechis-4 wavelet (WL-Db4), their translation-
invariant (TI) versions, sliding window DCT (SWDCT) and Haar (SWHaar) fil-
ters and sliding window Daubechis-4 (SWDb-4) filter, and their overlap-and-add
versions ASWDCT, ASWHaar, ASWDb-4, correspondingly.

Two 1D test (ECG and piecewise constant) signals and 5 test images, Lena,
piecewise (PW) constant image, two air photographs, and NMR image, were used
in experiments. White Gaussian noise with standard deviation 0.1 was added to
one-dimensional signals resulting in maximal absolute error 0.08. Noisy images
were obtained for denoising experiments by adding white Gaussian noise with
standard deviation 25 gray levels (of 255), which corresponds to PSNR = 10.
For 1D signals, residual root mean square (RMSE) and maximal absolute (MAE)
restoration errors were evaluated. Quality of image denoising was evaluated in
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Table 5.3

Transforms

Noisy signals, MAE = 0.08 Noisy images, PSNR = 10

ECG signal
Piecewise

constant signal
Lena

PW-

constant

Air

photo1

Air

photo2
NMR

RMSE MAE RMSE MAE PSNR PSNR PSNR PSNR PSNR

WL-Haar 0.06 0.042 0.042 0.024 26.7 30 26.9 32.3 30.9

WL-Db4 0.052 0.038 0.052 0.035 27.2 27.8 27.6 33.3 31.5

SWHaar 0.052 0.033 0.037 0.022 27.4 29.5 28.1 34.2 31.8

SWDCT 0.04 0.028 0.055 0.038 27.8 28 29 34.6 32.7

Table 5.4

Transforms

Noisy signals, MAE = 0.08 Noisy images, PSNR = 10

ECG signal
Piecewise

constant signal
Lena

PW-

constant

Air

photo1

Air

photo2
NMR

RMSE MAE RMSE MAE PSNR PSNR PSNR PSNR PSNR

TI-WL-Haar 0.038 0.027 0.022 0.014 29.8 32.5 30 34.9 33.7

TI-WL-Db-4 0.035 0.026 0.035 0.023 30.1 30.8 30.4 35.2 34.2

ASWHaar 0.043 0.031 0.022 0.014 29.6 33.5 29.8 35.1 33.5

ASWDCT 0.034 0.024 0.044 0.03 30.5 31 30.8 35.7 34.6

ASWDb-4 0.035 0.025 0.039 0.028 29.9 31.8 30.2 35.3 33.8

terms of the ratio of image dynamic range to standard deviation of the residual
noise (PSNR).

In each experiment, optimal parameters of filters such as threshold values, and
for sliding window filters, window size, were optimized to obtain the lowest sig-
nal restoration error. The results are summarized in Table 5.3 for proper wavelet
and sliding window filters and in Table 5.4 for their corresponding translation-
invariant and overlap-and-add modifications. The best results are shown in bold-
face font. As one can see in both tables, SWDCT filtering outperforms other meth-
ods in most of the experiments with real-life signals and images. For test piecewise
constant signals, SWHaar and WL-Haar showed better results.

5.4.1.2. Hybrid wavelet/SWTD filtering

While the SWDCT filtering was demonstrated to have certain superiority to the
wavelet shrinkage in terms of noise suppression capability and local adaptivity
provided appropriate selection of the window size for each particular image, its
drawback is the need to manually select window size.

As it was already mentioned, one way to overcome this drawback of the mov-
ing window filtering is parallel filtering in multiple moving windows of different
sizes selected, for obtaining the best signal estimation at every particular position,
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of the window. A less computationally expensive alternative is combing multi-
resolution property of wavelets with better local adaptivity of SWDCT filtering in
a hybrid wavelet-SWDCT processing method (see [25]). According to this method
(Figure 5.15), image is first represented in multiple scales by its subband decom-
position as in the wavelet shrinkage. Each subband component obtained is then
subjected, instead of the wavelet shrinkage, to DCT moving window filtering with
size of the window being kept the same for all scales. As one can see, in the hybrid
method simple “soft” or “hard” thresholding of the signal in all scales is substi-
tuted by their DCT filtering in moving window. This substitution imitates parallel
filtering of the initial image with a set of windows according to the scales selected.

Consider the following example. For high-resolution images, DCT filtering in
moving window requires window size 3 × 3, otherwise the filtering may result in
the loss of tiny image details. This requirement limits noise suppression capability
of the filtering that is proportional to the window size. In hybrid filtering, when
window 3× 3 in the first scale is used, in the scale 2, effective window size is 6× 6,
in the scale 3 it is 12× 12 and so on. This potentially may add to the filtering noise
suppression capability. As it was already mentioned, second and third functions of
DCT in 3 × 3 window represent vertical and horizontal Laplacian operators and
the last function can be decomposed into a sum of diagonal Laplacians. Therefore,
DCT filtering in 3 × 3-window can be replaced by filtering in the domain of four
directional Laplacians. Experimental experience proves that for high-resolution
images, such an implementation is advantageous to simple DCT since it produces
less filtering artifacts. Its use in hybrid filtering promises additional advantages
because it is equivalent to the corresponding increase of the number of effective
basis functions. Examples of the effective set, for the input image plane, of these
directional Laplacians in four scales are shown in Figure 5.16.

Described implementation was used in the experiments reported in (see [25]).
For testing the method, modeled images and a number of real-life images were
used. For all images, Gaussian white noise was added to produce noisy images
for the filter input. Three types of filters were tested: moving window DCT filter,
wavelet shrinkage filter, and the suggested hybrid filter.

In the wavelet shrinkage filter, a code of image pyramid from University of
Pennsylvania package [26] was used. For all filters, optimal parameters that min-
imize RMS difference between initial noise-free image and the filtered one were
experimentally found. For DCT moving window filtering, window size and filter
threshold were optimized. For wavelet shrinkage and hybrid filtering, filter param-
eters were optimized and the best of the following types of wavelets was chosen:
Haar wavelet (“haar”), binomial coefficient filters (“binom3,” “binom9,” and “bi-
nom13”), Daubechies wavelets (“daub2” and “daub4”), and symmetric quadra-
ture mirror filters (“qmf5,” “qmf9,” and “qmf13”).

Table 5.5 summarizes results (in terms of the standard deviation of resid-
ual noise) obtained for four of twelve test images of 256 × 256 pixels with 256
quantization levels and standard deviation of additive Gaussian noise equal to 13
(PSNR = 20): a test piecewise constant image, “Lena” image, an MRI image, and
an air photograph. For DCT moving window filtering, optimal window size is
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Figure 5.15. Flow diagram of hybrid wavelet/SWTD processing.
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Scale 3
Scale 4

Figure 5.16. Basis functions of hybrid wavelet/sliding window processing with 4 directional Lapla-
cians.

shown in brackets. For wavelet shrinkage, the best wavelet filter kernel is indicated
in brackets. Figure 5.17 presents denoising results for visual comparison, which
also confirms higher resulting image quality for the hybrid filtering.

5.5. Sliding window transform domain, wavelet and hybrid wavelet/SWTD
filtering as versions of signal subband decomposition

In this section, we will show that a unified treatment of sliding window transform
domain (SWTD), wavelet and hybrid wavelet/SWTD filtering is possible in terms
of signal subband decomposition. For transform basis functions {τn(r)}, direct
and inverse transforms of a signal {al} of N samples in sliding window of width
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Table 5.5. Standard deviation of residual noise for different denoising methods and different test im-
ages. For wavelet shrinkage, type of the wavelet that provided the best result is indicated in brackets.

Filter
PW const.

image
“Lena” image MRI Air photo

SWDCT
Hard thresholding 8.1 (3× 3) 9.4 (3× 3) 6.7 (5× 5) 8.2 (3× 3)

Soft thresholding 7.5 (3× 3) 8.6 (5× 5) 6.3 (7× 7) 7.7 (3× 3)

WL

Shrinkage
Hard thresholding 8.6 (binom5) 10.1 (binom5) 8.5 (binom5) 9.3 (binom5)

Soft thresholding 8.4 (binom5) 9.0 (qmf13) 7.8 (binom5) 8.1 (binom5)

Hybrid

WL/SWDCT
Hard thresholding 8.7 (binom5) 9.4 (binom5) 6.6 (binom5) 8.2 (binom5)

Soft thresholding 7.9 (binom5) 8.6 (binom5) 6.2 (binom5) 7.5 (binom5)

Nw centered at kth signal sample are

α(k)
r =

Nw−1∑
n=0

ak+n−fix(Nw/2)τn(r),

ak+n−fix(Nw/2) =
Nw−1∑
r=0

α(k)
r τ̃r(n),

(5.24)

where {τ̃r(n)} are reciprocal basis functions orthogonal to {τn(r)} and operator
fix(·) denotes number rounding to its integer part.

For the window central sample

ak =
Nw−1∑
r=0

α(k)
r τ̃r

(
fix

Nw

2

)
, (5.25)

{α(k)
r } is “time” (signal domain)—“frequency” (transform domain) signal repre-

sentation.
For fixed r, α(k)

r is a vector of N samples. Compute its DFT over index k:

AT(r)
f =

1√
N

N−1∑
k=0

α(k)
r exp

(
i2π

k f

N

)
= 1√

N

Nw−1∑
n=0

τn(r)
N−1∑
k=0

ak+n−fix(Nw/2) exp
(
i2π

k f

N

)
.

(5.26)

Let

A f = 1√
N

N−1∑
k=0

ak exp
(
i2π

k f

N

)
(5.27)
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Figure 5.17. Comparison of wavelet shrinkage, SWDCT, and hybrid WL/SWDCT filtering for image
denoising. Shown are 64 × 64 pixel fragments of the test piecewise constant (a) and “Lena” (b) im-
ages: originals (orig), corresponding fragments of the noisy images (noise), sliding window DCT filter
outputs with hard and soft thresholds (DCT-h, DCT-s), wavelet shrinkage filtering outputs with hard
and soft thresholds (WL-h, WL-s), and hybrid filtering outputs with hard and soft thresholds (Hyb-h,
Hyb-s).

be DFT spectrum of signal {ak}. By virtue of DFT shift theorem,

1√
N

N−1∑
k=0

ak+n−fix(Nw/2) exp
(
i2π

k f

N

)
= A f exp

(
−i2π n− fix

(
Nw/2

)
N

f

)
. (5.28)

Then we obtain

AT(r)
f = A f

Nw−1∑
n=0

τn(r) exp

(
−i2π n− fix

(
Nw/2

)
N

f

)

= A f

N−1∑
n=0

rect
(

n

Nw − 1

)
τn(r) exp

(
−i2π n− fix

(
Nw/2

)
N

f

)
,

(5.29)
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where

rect(x) =
⎧⎪⎨⎪⎩1 0 ≤ x ≤ 1,

0 otherwise.
(5.30)

From (5.29), it follows that

AT(r)
f ∝ A f · T(r)

f , (5.31)

where

T
( f )
f =

N−1∑
n=0

rect
(

n

Nw − 1

)
τn(r) exp

(
−i2π n f

N

)
(5.32)

is complex conjugate to DFT of rth windowed transform basis function.
Equation (5.31) has a clear interpretation: signal “time-frequency” represen-

tation {α(k)
r } can, for a given index r, be regarded as signal bandpass filtering by

the filter whose frequency response is DFT of the corresponding windowed basis
function (5.32). In this sense, one can treat signal analysis with sliding window in
transform domain as signal subband decomposition with the number of “bands”
equal to the window size, the decomposition being performed by filters defined
by (5.32). Figure 5.18 through 5.20 illustrate effective bandpass filter frequency re-
sponses for sliding window DCT, Walsh and Haar transforms. Figure 5.21 shows
14 subband components of a test image relevant in SWDCT processing for win-
dow size 7× 7 pixels.

As it was already mentioned, wavelet signal transform can also be treated and
implemented as signal subband decomposition with bandpass filters defined, on
each wavelet decomposition scale, by the corresponding wavelet basis function.
Figure 5.22 illustrates arrangement of subbands for binom5 wavelets for 8 scales
of signals of 128 samples used in experiments with hybrid WL/SWDCT filtering
described in Section 5.4.1.2.

One can easily see from comparison of Figures 5.18–5.20 and 5.22 that from
the point of view of signal subband decomposition, the main difference between
sliding window transform domain and wavelet signal analysis is arrangement of
bands in the signal frequency range: while sliding window transform-domain sig-
nal analysis assumes uniform arrangement of subbands in the signal frequency
range, in wavelet analysis subbands are arranged in a logarithmic scale. It is now
obvious that hybrid wavelet/SWDCT signal analysis combines these two types
of subband arrangements: wavelet decomposition provides “coarse” logarithmic
scale subband decomposition which is complemented with “fine” uniform sub-
subbands within each wavelet subband provided by sliding window DCT analysis
of the wavelet subbands. In particular, for hybrid WL/SWDCT filtering using DCT
in the 3 × 3 pixel-window, each of subbands of wavelet decomposition is subdi-
vided into subbands of DCT 3 × 3 shown in Figure 5.23. Resulting 2D subbands
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Figure 5.18. Frequency responses of bandpass filters that correspond to sliding window DCT (window
size 8).

are illustrated in Figure 5.24. Shown are subbands for three last binom5 subbands
(see Figure 5.22). One can see in the figure how these subbands are subdivided
into 4 subbands that correspond to DCT 3× 3 subbands.

Curiously enough, this “logarithmic coarse-uniform fine” band arrangement
resembles very much the arrangements of tones and semitones in music. In Bach’s
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Figure 5.19. Frequency responses of bandpass filters that correspond to sliding window Walsh trans-
form (window size 8).

equal-tempered scale, octaves are arranged in a logarithmic scale and 12 semitones
are equally spaced within octaves (see [27]).
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Figure 5.20. Frequency responses of bandpass filters that correspond to sliding window Haar trans-
form (window size 8).

5.6. Conclusion

We have described a family of local adaptive image and video restoration filters
that work in transform domain in sliding window, implement transform-domain
scalar empirical Wiener filtering and are, in this way, optimized in terms of mean-
square restoration error for each particular window position. We suggested dis-
crete cosine transform (DCT) as the most appropriate transform for implemen-
tation of the filters, demonstrated application of the filters for image restoration
(denoising and deblurring), and provided experimental data that confirm their
high image denoising capability.

We also compared sliding window DCT domain filtering (SWDCT) with yet
another existing transform-domain denoising method, wavelet shrinkage ones,
and have shown that both methods can be treated in a unified way as hard/soft
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Figure 5.21. Subbands of Lena image for sliding window DCT domain image representation in 7× 7
pixel-window. Only 16 bandpass filtered images that correspond to 16 (4× 4) basis functions involved
in the processing (functions with even indices) are shown arranged in lexicographic order from left to
right and from top to bottom.

thresholdings of signal subband decompositions. In sliding window transform-
domain methods, signal subbands are defined by Fourier transform of the trans-
form basis functions involved in the processing and are uniformly arranged in the
signal bandwidth. In wavelet methods, subbands are defined by wavelet basis func-
tions and are arranged within the signal bandwidth in a logarithmic scale. We have
shown experimental data that evidence in favor of SWDCT filtering in terms of the
filter denoising capability, provided that the filter window size is selected appro-
priately. Its additional advantage is its capability of simultaneous image denoising
deblurring and, as it is shown in Chapter 8, resampling in 1D, 2D, and 3D (mul-
ticomponent images and video) processing. As a way to avoid search of the filter
optimal window size, we introduced a hybrid wavelet/sliding window processing
and have shown that hybrid WL/SWDCT processing offers additional improve-
ment of the filtering denoising capability.

What further advances in the development of the described family of filters
are possible? Apparently, there are few options.

First of all, the gap in the denoising capability between empirical Wiener fil-
tering implemented in SW filtering and “ideal” Wiener filtering can be narrowed
by better spectra estimation than a simplistic “zero-order” approximation used in
(5.13). For this, one can consider a recursive spectrum estimation, in which win-
dow spectral coefficients in several window positions adjacent to the current one
are traced and used for spectrum estimation in the current window.

Second, described methods, being working in time(space)-frequency domain,
apply only pointwise operations such as, for instance, shrinkage or zonal quan-
tization, with (practically) no regards to the signal transform representation for
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Figure 5.22. Frequency responses of five bandpass filters that correspond to binom5 wavelets (N =
128) and of two bandpass filters that correspond to DCT in the 3× 3 window.

adjacent samples. Pointwise treatment of time(space)-frequency signal represen-
tation ignores enormous redundancy associated with the time-frequency signal
representation in sliding window (note that in terms of the volume of data, this
redundancy is window size-fold). This redundancy exhibits itself in a form of ap-
pearance in time-frequency domain of highly correlated and, to a certain degree,
regular patterns that are characteristic for different signals and noises. These pat-
terns can be much easier discriminated if they are treated, for 1D signals, as 2D
(for image processing, 4D) ones rather then point-wise. This represents a sub-
stantial potential for improving time(space)-frequency domain signal processing
efficiency (see [28]).

Yet another option is an extension of the overlap-and-add SWDCT filter-
ing and translation-invariant wavelet filtering. One can apply, for restoration of
the same signal, different transform-domain filters, such as SWDCT filters with
different windows or sliding window or wavelet filters with different transforms
or wavelets, and then combine the results using methods of data fusion. In the
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Figure 5.23. Frequency responses of two bandpass filters that correspond to DCT in the 3× 3 window.

Figure 5.24. Last 3 × 4 2D subbands, shown in spatial frequency coordinates, of the hybrid
WL/SWDCT filtering using binom5 wavelets and SWDCT in 3× 3 window.

combining, simple averaging that is used in the overlap/add SWDCT filtering and
translation-invariant wavelet filtering can be replaced by a pixelwise weighted av-
eraging with optimization of weight coefficients to achieve better restoration result
or by pixelwise interchannel rank filtering, such as median filtering, weighted or-
der statistics filtering, or alike.

In 2D and 3D (video) processing, an immediate option is combining denois-
ing/deblurring with simultaneous image resampling, as it is described in Chapter
8. A practical application of this idea to visible light range and thermal range video
data fusion and stabilization of turbulent video was reported in [28, 29].

At last, one can mention recently proposed methods of sliding window
transform-domain processing with adaptive selection of the window shape and
size and shape-selective DCT (see [29]).
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Appendix

A. Inverse DCT for computation of the central sample
of the window of odd size

Let {β(k)
r } be signal spectral coefficients in the window of odd size Nw. Assume

that pixels in the window in its kth position are indexed from k to k + Nw − 1.

Compute inverse DCT transform of this spectrum {β(k)
r } for the window central

pixel {ak+(Nw−1)/2}:

ak+(Nw−1)/2 = β(k)
0 + 2

Nw−1∑
r=1

β(k)
r cos

(
2π

k +
(
Nw − 1

)
/2 + 1/2

Nw
r
)

= β(k)
0 + 2

Nw−1∑
r=1

β(k)
r cos

(
πr

2

)
= β(k)

0 + 2
(Nw−1)/2∑

s=1

β(k)
2s (−1)s.

(A.1)

It follows from (A.1) that computation of inverse DCT for the central sample of
a window of odd size involves only signal spectrum coefficients with even indices.
Therefore, only those spectral coefficients have to be computed in sliding window
DCT domain filtering and the computational complexity of the filtering, where
the use of recursive algorithms is O[(Nw + 1)/2] per output pixel for 1D filtering,
is O[(Nw1 + 1)(Nw2 + 1)/4] operations for 2D filtering in a rectangular window of
Nw1 × Nw2 samples and is O[(Nw1 + 1)(Nw2 + 1)(Nw2 + 1)/8] operations for 3D
filtering in the window having the form of a rectangle parallelepiped of Nw1 ×
Nw2 ×Nw3 samples.
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6
Adaptive varying window methods in
signal and image processing

Vladimir Katkovnik, Karen Egiazarian, and Jaakko Astola

Two new approaches to signal reconstruction are introduced and demonstrated in
this section: local polynomial approximation and adaptive window size selection
based on the intersection of confidence interval rule. Local polynomial approxima-
tion is a technique of linear or nonlinear signal estimation using polynomial data
fit in a sliding window. This technique is complemented with adaptive selection
of the window size. The combined algorithm searches, in each window position,
for a largest local vicinity of the current signal sample where the local polynomial
approximation fit to the data remains to be satisfactory. The data estimates are
found for a set of windows of different sizes and compared. The adaptive window
size is defined as the largest one of the set for which the estimate does not differ
significantly from the estimates for smaller windows, and the estimate obtained
for this window is taken as the final current sample estimate. The considered lo-
cal approximation can be regarded as nonparametric regression technique that
places no a priori limits on the number of unknown parameters to model the sig-
nal. Basic concepts, methodology, and theory of spatially adaptive nonparametric
regression-based signal and image processing are presented and their applications
to various image processing problems are illustrated.

6.1. Introduction

This chapter is devoted to signal and image processing based on two independent
ideas: local approximation for design of linear filters (estimators, transforms) and
adaptation of these filters to a priori unknown smoothness of a signal of interest.
Three key words associated with image analysis arise, to which we will give a more
and more precise meaning:

(i) locality;
(ii) anisotropy;

(iii) adaptivity.
As flexible universal tools we use local polynomial approximation (LPA) for

approximation and intersection of confidence intervals (ICI) for adaptation.
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The LPA is applied for filter design using a polynomial fit in a sliding window.
A size and shape of this window are considered as basic adaptation parameters of
the filter.

The ICI is an adaptation algorithm. It searches for a largest local window size
where LPA assumptions fit well to the observations. It is shown that the ICI adap-
tive LPA is efficient and allows to get a nearly optimal quality of estimation.

The LPA is applied in a sliding window and the adaptive size and shape of this
window are defined for each estimation point. Thus, for each estimation point we
have carefully selected adaptive neighborhoods used for processing.

One can say that the processing includes a pointwise segmentation of the data
and this segmentation is produced with the main intention to optimize the accu-
racy of the result.

This adaptive polynomial fit is implemented as a MATLAB package LASIP (lo-
cal approximation for signal and image processing) free available from the website
http://www.cs.tut.fi/∼lasip.

This package consists of a set of basic procedures implementing LPA and ICI
methods and applied programs developed for particular applications. The main
programs in LASIP are given as demo-procedures. However, these procedures and
all routines are implemented as universal ones applicable for variety problems. It
means that they can be used as routines of a universal MATLAB toolbox.

Pragmatically, we are focused on the ideas and the algorithm. Illustrations
and references to LASIP procedures are aimed to help to realize the strength of the
approach, possible fields of application and to use some of LASIP’s programs.

To readers interesting in mathematical background and theory behind this
approach to adaptive filtering we recommend our recent book [30].

6.2. Local approximation: ideas and algorithms

The idea of local smoothing and local approximation is very natural and appears
in many branches of science. In sixties-seventies of the twentieth century the idea
became a subject of an intensive theoretical study and applications: in statistics
due to Nadaraya [36], Watson [50], Parzen [37], Stone [46], and in engineering
sciences due to Brown [1], Savitzky and Golay [47], Petersen [38], Katkovnik [17–
19], Cleveland [3].

The local polynomial approximation as a tool appears in different modifica-
tions and under different names: moving (sliding, windowed) least-square,
Savitzky-Golay filter, reproducing kernels, moment filters, and so forth. We pre-
fer the term LPA with a reference to publications on nonparametric estimation in
mathematical statistics where the advanced development of this technique can be
seen.

6.2.1. Windowing

The LPA is a universal method applicable for signals of any dimensionality. Nev-
ertheless, in this chapter we prefer to talk about imaging assuming that all signals
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and data are two-dimensional (2D). Imaging allows to give clear and transparent
interpretation of algorithms as well as of results. Generalization to data of higher
dimensionality is straightforward.

Suppose that we are given data (observations) of a signal (image intensity)
y in the form ys = y(Xs), s = 1, . . . ,n. Here Xs stays for a location of the sth
observation. It is assumed in image processing that all signals are defined on a
two-dimensional (2D) rectangular regular grid:

X = {
Xs : s = 1, . . . ,n

}
(6.1)

with pixel’s (grid node’s) coordinates

Xs =
(
x1(s), x2(s)

)
. (6.2)

In this notation, image pixels are numbered by s taking values from 1 through
n. The coordinates of these pixels can be given explicitly by the set

X = {
k1, k2 : k1 = 1, . . . ,n1, k2 = 1, . . . ,n2

}
, n = n1n2, (6.3)

where n is a total number of observations.
Noisy observations with an additive noise can be given in the following stan-

dard model commonly used for image and signal processing:

zs = y
(
Xs
)

+ εs, s = 1, . . . ,n, (6.4)

where the additive noise εs is an error of the sth experiment usually assumed to be
random, zero-mean independent for different s with E{εs} = 0, E{ε2

s } = σ2.
Let x be a “center” (desired or estimation point) and let a set Ux be neighbor-

hood of x used for estimation.
A simplest estimate has a form of the sample mean

ŷ(x) =
∑

s∈Ux
zs∑

s∈Ux

=
∑

s∈Ux
zs

Nx
, (6.5)

where Nx =
∑

s∈Ux
is a number of observations in the neighborhood Ux and the

estimate is calculated as the sum of the observed signal values belonging to Ux

divided by the number of observations.
The neighborhood Ux can be of different forms: square, rectangular, or circle.

It is conventional to define a neighborhood by a special window function w. Then
the neighborhood is a set of Xs from X where this window function is nonzero.

Mathematically it can be formulated as follows:

Ux =
{
Xs : w

(
x − Xs

)
> 0

}
. (6.6)

Note that the window w is shifted by x and in this way define a neighborhood
for any x.
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Introduce a parameter h controlling a size of the neighborhood. It is conve-
nient to do it through the window function using wh(x) = w(x/h).

Then the neighborhood of any size can be expressed through a fixed standard
one. For instance, a disc of the radius h can be defined as

Ux,h =
{
Xs : wh

(
x − Xs

)
> 0

}
, (6.7)

where w(x) = (1 − ‖x‖2)+ = (1 − (x2
1 + x2

2))+. Here (z)+ = z if z > 0 (z)+ = 0 if
z ≤ 0.

In this case, the inequality w(x − Xs) = (1 − ‖x − Xs‖2)+ > 0 defines a disc
neighborhood of the radius 1 with the center x and the inequality wh(x − Xs) =
(1− ‖x − Xs‖2/h2)+ > 0 defines a disc of the radius h.

The index h showing the size of the neighborhood is used also in notation for
the neighborhood as Ux,h.

In windowing, the window function is used not only as an indicator of the
neighborhood as it is in (6.7), but also as weights of observations used for estima-
tion.

The window w is a function conventionally satisfying the following condi-
tions:

w(x) ≥ 0, w(0) = max
x

w(x),
∫

R2
w(x)dx = 1. (6.8)

Thus the weights are nonnegative. The condition w(0) = maxx w(x) means
that the maximum weight is given to the observation with Xs = x. This maximum
could be achieved for a set of x close to x = 0. Then, the same weights are shared
by a number of observations.

The values of w define comparative weights of the observations in the esti-
mate. These weighted mean estimates have a form

ŷh(x) =
∑

s wh
(
x − Xs

)
zs∑

s wh
(
x − Xs

) . (6.9)

Note that in (6.9) we do not need to indicate the neighborhood set Ux,h, and
the summation can be shown as produced over all observations. Indeed, the win-
dow function wh(x−Xs) in (6.9) automatically separates the observations belong-
ing to the corresponding neighborhood.

Note that the index h is introduced also for the estimate ŷh(x).
If the window w is a rectangular function, all observations enter in the esti-

mate with equal weights. Nonrectangular windows, such as triangular, quadratic,
Gaussian, and so on, prescribe higher weights to observations zs with Xs closer to
the reference point x.

Let us mention windows conventional in signal processing: rectangular, trian-
gular, Gaussian, Kaiser, Hamming, Bartlett, Blackman, Chebyshev, and so forth.
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Figure 6.1. Left and right columns show, respectively, symmetric and nonsymmetric left/right win-
dows: (a), (b) rectangular, (c), (d) Gaussian, (e), (f) quadratic.

These 1D windows can be used for derivation of 2D windows. A multiplicative
window

w(x) = w1
(
x1
)
w2

(
x2
)
, (6.10)

where w1(x1) and w2(x2) are functions of scalar arguments, is commonly used for
this purpose.

There is another way how to create nontrivial 2D windows different from the
simple univariate ones (6.10).

Let us replace the argument in a 1D window by the norm ‖x‖, where x is
considered as a 2D vector and the norm is not exclusively Euclidian. Then, after
normalization we obtain two-dimensional window functions satisfying conditions
(6.8).

Examples of the 1D windows are shown in Figure 6.1. They are given in two
versions: symmetric w(x) = w(−x) and nonsymmetric left/right windows. The non-
symmetric windows are obtained from the symmetric ones. Let w(x) be a symmet-
ric window, then for the left window wL(x) = w(x) if x ≤ 0 and wL(x) = 0 if x > 0,
and for the right window wR(x) = w(x) if x ≥ 0 and wR(x) = 0 if x < 0.
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Often the symmetry of the window is assumed by default in signal process-
ing. However, the symmetry is not always a good choice and the nonsymmetry
combined with the adaptive selection of the window size h can enable a serious
improvement in results.

6.2.2. Local polynomial approximation

6.2.2.1. Zero-order approximation

Let us start from the zero-order approximation. It is assumed that the signal y is
well approximated by a constant in some neighborhood of the point of interest x.
We find this constant by the weighted least-square method (WLSM) as follows

Ĉ = arg min
C

Jh(x,C), (6.11)

Jh(x,C) =
∑
s

wh
(
x − Xs

)(
zs − C

)2
. (6.12)

Here Jh(x,C) is a quadratic criterion where the squared residuals (zs − C)2 are
weighted according to values of the window function wh(x − Xs) and the estimate
of C is found by minimizing this criterion.

Elementary calculations show that

∂CJh(x,C) =
∑
s

wh
(
x − Xs

)
∂C
(
zs − C

)2 = −2
∑
s

wh
(
x − Xs

)(
zs − C

) = 0.

(6.13)

This equation gives the estimate for C in the form

Ĉ =
∑

s wh
(
x − Xs

)
zs∑

s wh
(
x − Xs

) . (6.14)

According to the idea of this approach, this Ĉ is an estimate of the function y

at the point x, that is, ŷh(x) = Ĉ.
This proves (6.9) for the weighted sample mean as the estimate minimizing

the weighted squared error.
Let us assume that x ∈ X , then (6.9) is a convolution:

ŷh(x) =
∑
s

gh
(
x − Xs

)
zs, (6.15)

gh(x) = wh(x)∑
x wh(x)

, (6.16)

with the invariant kernel (impulse response) function gh(x) depending in (6.15)
only on the difference of the arguments.
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We will use the standard notation for convolution

ŷh(x) = (
gh � z

)
(x), (6.17)

which says that this convolution is calculated on the regular grid X with x as an
estimation point.

6.2.2.2. High-order approximation

The zero-order estimation is a special case of the general polynomial approxima-
tion.

It is assumed that the signal y is well approximated by a polynomial in some
neighborhood of the point of interest x. We find the coefficients of the polynomial
fit by WLSM and use this approximation in order to calculate the estimate for the
point of interest x called center of the LPA.

Note that the term center does not assume a central position of x with respect
to neighboring observations. This term aims to stress that the LPA is applied in
order to obtain the estimate for this particular point x.

Formally, the LPA estimate is defined as follows. First, introduce the polyno-
mial model of y in the form

ŷ(x) =
M∑
i=0

Ciφi(x), (6.18)

where φi(x) are some polynomial functions of x1 and x2, Ci are unknown param-
eters of the model, and (M + 1) is a total number of polynomials used in the fit.

Let us use a linear model ŷ(x) = C0 +C1x1 +C2x2, then φ0(x) = 1, φ1(x) = x1,
φ2(x) = x2 and overall we have three parameters C0, C1, C2 defining the model.

Of course higher-order polynomials can be used in (6.18). It is convenient to
represent this model in the vector form

ŷ(x) = CTφ(x), (6.19)

where C is (M + 1)-vector of the parameters and φ(x) is (M + 1)-vector function
composed from the polynomials φi.

Similar to (6.11) the criterion and the estimation are represented in the form

C̃h(x) = arg min
C

J̃h(x,C), (6.20)

J̃h(x,C) =
∑
s

wh
(
x − Xs

)(
zs − ŷ

(
Xs
))2

. (6.21)

Minimizing the criterion (6.20), we find the parameters Ĉh(x) defining our
model. The argument x in this estimate is used in order to emphasize that this
estimate is calculated for the estimation point x. According to the idea of the local
approximation, this estimate is used only for this point.
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Finally, the estimate of the function has the following form:

ŷh(x) = C̃T
h (x)φ(x). (6.22)

Usually a different local modeling is used. It is assumed that the estimates for
zs in (6.21) are represented in the form

ŷ
(
x − Xs

) = CTφ
(
x − Xs

)
(6.23)

and then the criterion is

Jh(x,C) =
∑
s

wh
(
x − Xs

)(
zs − ŷ

(
x − Xs

))2
. (6.24)

This shift in the argument of the polynomial function is used in order to em-
phasize the locality of the fit. As a result, the estimate of the function takes a form

ŷh(x) = ĈT
h (x)φ

(
x − Xs

)∣∣
x=Xs

= ĈT
h (x)φ(0),

Ĉh(x) = arg min
C

Jh(x,C).
(6.25)

This form of the estimate emphasizes a nonparametric nature of the estimate,
where the dependence on the argument x exhibits itself through the coefficient
Ĉh(x) of the fit, but not through the argument of the polynomials φ(x) as it is in
the standard LSM.

The estimates (6.22) and (6.25) are identical provided that the set of the poly-
nomials in φ(x) is complete. This completeness means the following. If m1 and m2

are the highest degrees of the polynomials xk1
1 and xk2

2 in the set, then all polyno-
mials of the powers k1 and k2 with all k1 ≤ m1 and k2 ≤ m2 should be included in
the set (in vector φ(x)) as well as all their pairwise combinations.

For instance, if m1 = 1 and m2 = 0, the set of polynomials includes φ0(x) = 1,
φ1(x) = x1. If m1 = 1 and m2 = 1, the set includes φ0(x) = 1, φ1(x) = x1,
φ2(x) = x2, and φ3(x) = x1x2.

The completeness of the polynomial set is always required as it will be dis-
cussed later.

In what follows, we use the LPA model in the difference form (6.23)-(6.24)
with the estimate given by the formula (6.25).

The minimum conditions for Jh(x,C) have a form ∂CJh(x,C) = 0. By calcu-
lating this derivative on the vector-parameter C, we arrive to the normal set of the
equations

ΦhĈ =
∑
s

wh
(
x − Xs

)
φh
(
x − Xs

)
zs,

Φh =
∑
s

wh
(
x − Xs

)
φh
(
x − Xs

)
φT
h

(
x − Xs

)
.

(6.26)
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Provided that the matrix Φh is nonsingular, detΦh �= 0, the solution can be
written as

Ĉ = Φ−1
h

∑
s

wh
(
x − Xs

)
φh
(
x − Xs

)
zs. (6.27)

Inserting Ĉ into (6.25), we find the signal estimate as an output of the linear
shift-invariant filter:

ŷh(x) =
∑
s

gh
(
x − Xs

)
zs, (6.28)

gh
(
x − Xs

) = wh
(
x − Xs

)
φT
h

(
x − Xs

)
Φ−1

h φ(0), (6.29)

where gh(x − Xs) is the impulse response of this filter for a fixed x ∈ X .
For x ∈ X this estimate can be rewritten as the convolution (6.17) with a quite

essential difference that the kernel gh is defined by the high-order LPA:

gh(x) = wh(x)φT
h (x)Φ−1

h φ(0),

Φh =
∑
s

wh(x)φh(x)φT
h (x). (6.30)

We will call these kernels smoothing or filtering kernels because they give the
low-pass filters and are used for smoothing and denoising.

The terms smoothing parameter or bandwidth are used for h as equivalent to
the initially introduced term the window size.

The polynomial approximation gives a natural way to obtain the estimates not
only of the functions but also of their derivatives.

Let the polynomials of the powers k1 ≤ m1 and k2 ≤ m2 be used. Then the
derivatives ∂r1

x1
∂r2
x2

of the orders r1 ≤ m1 and r2 ≤ m2 can be estimated.
In order to derive these differentiation operators let us differentiate both sides

of (6.19) ∂r1
x1
∂r2
x2
ŷ(x) = CT∂r1

x1
∂r2
x2
φ(x).

Using in this model the estimates of C is a natural way to derive the derivative
estimate as follows:

ŷ(r1,r2)
h (x) = C̃T∂r1

x1
∂r2
x2
φ(x), (6.31)

where C̃ is found from (6.20) and the indices of the estimate show the order of the
derivative.

For the difference LPA model (6.23) we arrive to a different form of the deriv-
ative estimate:

ŷ(r1,r2)
h (x) = ĈT∂r1

x1
∂r2
x2
φ(0), (6.32)

where Ĉ is found from (6.25).
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Let x ∈ X , then it can be checked that the estimate (6.32) can be represented
in the convolution form with the shift-invariant kernel

ŷ(r1,r2)
h (x) =

∑
s

g(r1,r2)
h

(
x − Xs

)
zs =

(
g(r1,r2)
h � z

)
(x), (6.33)

g(r1,r2)
h

(
x − Xs

) = wh
(
x − Xs

)
φT
h

(
x − Xs

)
Φ−1

h ∂r1
x1
∂r2
x2
φ(0), (6.34)

where ∂r1
x1
∂r2
x2
φ(0) = ∂r1

x1
∂r2
x2
φ(x)|x=0.

We will call these kernels differentiating kernels because they are used for esti-
mation of derivatives.

6.2.3. Accuracy

The LPA accuracy is characterized by an error defined as a difference between the
true signal value and the estimate:

ey(x,h) = y(x)− ŷh(x). (6.35)

For the observations (6.4), these errors are composed of the systematic (bias)
and random components corresponding to the deterministic y and the random
noise ε, respectively.

The bias of the estimate is a difference between the true signal and the expec-
tation of the estimate:

mŷh(x,h) = y(x)− E
{
ŷh(x)

}
, (6.36)

where E{·}means the mathematical expectation with respect to the random error
ε in (6.4).

Elementary calculations give

E
{
ŷh(x)

} = E
{(
gh � z

)
(x)

} = (
gh � E{z})(x) = (

gh � y
)
(x). (6.37)

Then, the bias of the estimates is

mŷh(x,h) = y(x)− (
gh � y

)
(x). (6.38)

The random estimation errors are

e0
y(x,h) = −(gh � ε

)
(x). (6.39)

Assuming that the random ε are independent and identically distributed
(i.i.d.) with variance σ2, we obtain for the variance of the estimate ŷh(x)

σ2
ŷh

(x,h) = E
{(
e0
y(x,h)

)2} = σ2
∑
k∈Zd

g2
h(k) = σ2

∥∥gh∥∥2
. (6.40)
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The total accuracy defined as the expectation of the squared error is

E
{
e2
y(x,h)

} = m2
ŷh

(x,h) + σ2
ŷh

(x,h). (6.41)

A similar formula is valid for the derivative estimate ŷ(r1,r2)
h (x) with the only

difference that the smoothing kernel gh is replaced by the differentiating kernel

g(r1,r2)
h .

6.2.4. Implementation of kernel design in LASIP

Calculation of the kernels gh (6.30) and g(r1,r2)
h (6.34) is implemented in LASIP in

the program demo CreateLPAKernels.m.
Input parameters of this program are as follows:

(1) the order of LPA m = [m1,m2], where m1 and m2 are the LPA orders on
the variables x1 and x2, respectively;

(2) the window size is defined by two parameters: h1 for length (or the size
in the variable x1) and h2 for width (or the size in the variable x2);

(3) the window function w is defined by the “window type” parameter al-
lowing to select w from a list of the window functions;

(4) the parameter TYPE specifies an indicator function used as a factor of
the window function. TYPE = 00 means that the whole window func-
tion w is used in the kernels. TYPE = 10 means that the window w is
used for x1 ≥ 0 and any x2 and TYPE = 11 means that the window w is
used for x1 ≥ 0 and any x2 ≥ 0.

Let w(x) be a symmetric function, say Gaussian: w(x) ∼ exp(−‖x‖2). With
TYPE = 10 a half of this window function is used with x1 ≥ 0, with TYPE = 11
a quarter of this window function is used with x1, x2 ≥ 0. Only with TYPE =
00 the whole window function is used for all x1 and x2. The parameter TYPE is
used for design of symmetric and nonsymmetric kernels and defines a type of the
nonsymmetry of the kernel.

The program returns the smoothing kernel and the set of the differentiat-
ing kernels corresponding to the given power m = [m1,m2]. The differentiat-

ing kernels g(k1,k2)
h are calculated for all partial derivatives, that is, 0 ≤ k1 ≤ m1,

k2 = 0 and for 0 ≤ k2 ≤ m2, k1 = 0, and for the mixed derivatives such that
k1 + k2 ≤ max(m1,m2).

The zero-order r1 = r2 = 0 of the differentiating kernel g(0,0)
h corresponds to

the smoothing kernel gh.
Thus, the program is universal for design of kernels (filters) for smoothing

and differentiation which could be obtained using the approximation of the power
m = [m1,m2].

The program utility DrawLPAKernels.m produces automatic visualization of

these results. It draws images of all kernels g(k1,k2)
h and their 3D surface curves. It

draws also the amplitude frequency characteristics of the kernels.
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Figure 6.2. The smoothing kernel gh and its amplitude frequency characteristic |Gh|: Gaussian sym-
metric window,m = [2, 2], support size 21×21. The lowpass filter is shown with a peak of the frequency
characteristic at ω = 0.

Let us illustrate the work of these programs. It is convenient to use for demon-
stration the Gaussian window w as it gives smooth good looking surfaces and the
frequency characteristics enabling a clear interpretation.

Assume that m = [2, 2], the size parameters are h1 = h2 = 11 and TYPE = 00.
It gives the symmetric window function of the square support 21 × 21. The size
of the symmetric window support is defined as 2hk − 1, k = 1, 2, while for the
nonsymmetric one it is equal to hk, k = 1, 2. The program calculates a set of the

six kernels g(k1,k2)
h corresponding to k1 = k2 = 0; k1 = 1, k2 = 0; k1 = 2, k2 = 0;

k1 = 0, k2 = 1; k1 = 0, k2 = 2; k1 = 1, k2 = 1. Some of these results can be seen in
Figures 6.2–6.5.

The smoothing kernel gh in Figure 6.2 is a symmetric function with a peak at
x1 = 0, x2 = 0. Its frequency characteristic is typical for the lowpass filter with a
peak at ω1 = 0, ω2 = 0.

The differentiation kernels g(1,0)
h , g(0,1)

h in Figures 6.3 and 6.4 are directional
forming weighted finite-differences in the directions of the estimated derivatives
∂(1,0), ∂(0,1), respectively, for the arguments x1 and x2. The frequency characteristics
have zero values at ω1 = 0, ω2 = 0. These differentiation filters are bandpass filters.
The frequency characteristics are directional with two distinctive peaks.

The differentiation kernel g(1,1)
h for estimation of the cross-derivative ∂(1,1) is

shown in Figure 6.5. Its frequency characteristic has zero value at ω1 = 0, ω2 = 0
and four distinctive peaks.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


Vladimir Katkovnik et al. 253

−10

−5

0

5

10
−10 −5 0 5 10

−2

−1

0

1

2

×10−3

g(1,0)
h,θ m = (2, 2), θ = 0◦

(for ∂1/∂1
x1
∂0
x2

)

2
1
0
−1
−2

×10−3

10
0
−10 −10 −5 0 5 10

−3

−2

−1

0

1

2

3
−2 0 2

0.05

0.1

0.15

|G(1,0)
h,θ |

0.15

0.1
0.05

0
2

0 −2 −2
0

2

Figure 6.3. The differentiating kernel g(1,0)
h and its amplitude frequency characteristic |G(1,0)

h |: Gauss-
ian symmetric window, m = [2, 2], support size 21 × 21. The frequency characteristic is equal to zero
at ω = 0.

Kernels with nonsymmetric quadrant Gaussian windows are shown in Figures
6.6 and 6.7. The supports of the kernels are restricted to the quadrant of the stan-
dard Cartesian coordinate system. The frequency characteristics of these kernels
are quite similar to the frequency characteristics of the corresponding symmetric
window kernels shown in Figures 6.2 and 6.5, respectively.

6.3. Adaptive window size

6.3.1. Motivation

Let us use the smoothing LPA operators with kernels gh for filtering noise from
noisy data. Compare estimators with different window sizes. If h1 = h2 = 1, the
kernel gh(x) " δ(x), and the estimate ŷh(x) " z(x), then there is no filtering at all
and the output signal ŷh(x) is identical to observations. The estimator h1,h2 > 1
smooths the input signal z and it means smoothing for both the noise and the
signal itself.

It is obvious that larger h1, h2 mean stronger smoothing. Thus, we are able
to filter out the noise but at the price of some smoothing of the signal. Always
there is a reasonable compromise between noise attenuation and signal degrada-
tion caused by this filtering and this compromise indicates a reasonable choice for
an adequate value of the smoothing parameters h1, h2.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


254 Adaptive varying window methods

−10

−5

0

5

10
−10 −5 0 5 10

−2

−1

0

1

2

×10−3

g(0,1)
h,θ m = (2, 2), θ = 0◦

(for ∂1/∂0
x1
∂1
x2

)

2
1
0
−1
−2

×10−3

10
0
−10 −10 −5 0 5 10

−3

−2

−1

0

1

2

3
−2 0 2

0.05

0.1

0.15

|G(0,1)
h,θ |

0.15

0.1
0.05

0
2

0 −2 −2
0

2

Figure 6.4. The differentiating kernel g(0,1)
h and its amplitude frequency characteristic |G(0,1)

h |: Gauss-
ian symmetric window, m = [2, 2], support size 21 × 21. The frequency characteristic is equal to zero
at ω = 0.

Images in Figure 6.8 give illustration of this role of the smoothing parameter.
In Figures 6.8(a), 6.8(b) we can see the true and noisy images. This noisy image is
identical to the output signal of the filter with h1 = h2 = 1.

Larger values 3, 5, 7, 11 of h1 = h2 result in obvious noise filtering and image
oversmoothing for larger values of h (Figures 6.8(c)–6.8(g)). The values of RMSE
given for these smoothed images show that the optimal smoothing is achieved
with h = 2, see Figure 6.8(c). Comparing the value of RMSE for different h, we
may note that indeed this optimization results in essential decreasing of the RMSE
value. However, visually improvement with respect to the observed noisy data is
not impressive and the achieved image quality is quite poor.

Much better results can be obtained by selecting a varying window size opti-
mizing the accuracy for each pixel. It results in the optimal window size for each
pixel and in the smoothing parameter depending on the argument x as h = h(x).
These results obtained by the ICI algorithm discussed later in this section are
shown in Figure 6.8(h). The obtained RMSE = 10.14 is much smaller the best
results achieved by the selection of the global invariant window size h = 2 giving
RMSE = 15.77. Visual improvement of filtering is also quite remarkable.

Note that this adaptive filtering is produced using the symmetric kernel shown
in Figure 6.2 with selection of the adaptive window sizes from a given set of the
window sizes H = [1, 2, 3, 5, 7, 11].

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


Vladimir Katkovnik et al. 255

−10

−5

0

5

10
−10 −5 0 5 10

−4

−2

0

2

4

×10−4

g(1,1)
h,θ m = (2, 2), θ = 0◦

(for ∂2/∂1
x1
∂1
x2

)

5

0

−5

×10−4

10
0
−10 −10 −5 0 5 10

−3

−2

−1

0

1

2

3
−2 0 2

0.005

0.01
0.015
0.02
0.025
0.03

|G(1,1)
h,θ |

0.03

0.02

0.01

0
2

0 −2 −2 0
2

Figure 6.5. The differentiating kernel g(1,1)
h and its amplitude frequency characteristic |G(1,1)

h |: Gauss-
ian symmetric window, m = [2, 2], support size 21 × 21. The frequency characteristic is equal to zero
at ω = 0.

Figure 6.9 gives a further illustration of the adaptive varying window sizes
obtained for filtering and demonstrated in Figure 6.8(h). Black and white in this
image correspond to smaller and larger window sizes. The bar in this image shows
the numerical values of the adaptive window sizes. We may note that near the edges
of the image where the image intensity is discontinuous the adaptive window sizes
automatically take the smallest values. Far from this edge, the window sizes are
mainly large with isolated black points showing noise effects resulting in small
window sizes taken by the adaptive algorithm erroneously for the areas where the
large window size would be more appropriate.

The last image in Figure 6.8(i) demonstrates a further remarkable improve-
ment if filtering is achieved using a special nonsymmetric directional filtering pre-
sented later in Section 6.4. This last filtering allows to achieve much better results
with smaller RMSE = 3.71 and much better visual quality of the denoised imaging.

The presented results illustrate our main idea and intention to introduce the
varying window size filtering with a special choice of the smoothing parameter
giving the results close to the best possible.

A selection of a proper window size (smoothing, scale) parameter is a hot
topic both in signal processing and statistics.

Two main groups of techniques are exploited. The first one is based on es-
timation of the bias and the variance with scale calculation using the theoretical
formulas for the optimal window size. This sort of methods is known as “plug-in”
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Figure 6.6. The smoothing kernel gh and its amplitude frequency characteristic |Gh|: Gaussian non-
symmetric quadrant window, m = [2, 2], support size 21× 21. The frequency characteristic is equal to
one at ω = 0.

methods. Overall, these methods give smooth curves with good filtering of ran-
dom errors. However, the estimate bias depends on unknown high-order deriva-
tives of the signal. As a result, the algorithms are quite complex and have a number
of parameters to be tuned, in particular, for estimation of these derivatives.

The second alternative idea has no deal with the bias and the formulas for the
optimal scale selection. This is a group of methods based on quality-of-fit statis-
tics such as cross-validation, generalized cross-validation, Cp, Akaike criteria, and so
forth, which are applied for a model selection or direct optimization of estimation
accuracy.

Most of publications concerning the quality-of-fit approach are related to a
data-based global (constant) scale selection (e.g., [15, 16, 21, 49]).

The problem of varying window size pointwise adaptation has received a pow-
erful impetus in connection with a number of novel ideas that have appeared in
mathematical statistics. Various developments of these ideas and various statistical
rules for adaptation can be seen in [34, 35, 39–42, 44], and so forth.

These methods are from a class of quality-of-fit statistics applied locally in a
pointwise manner.

Methods known under a generic name Lepski’s approach [31–34] are of special
interest for us, as the ICI rule used in this chapter as a main adaptation tool belongs
to this group of methods.
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Figure 6.7. The differentiating kernel g(1,1)
h and its amplitude frequency characteristic |G(1,1)

h |: Gauss-
ian nonsymmetric quadrant window TYPE = 11, m = [2, 2], support size 21 × 21. The frequency
characteristic is equal to zero at ω = 0.

Let us present the idea of Lepski’s approach. In what follows, the kernel of the
estimator depends on a single scalar parameter h. In particular, it can be h1 = h2 =
h.

Introduce a set of possible values of this scalar h:

H = {
h(1) < h(2) < · · · < h(J)

}
(6.42)

starting from a small h(1) and increasing to a maximum h(J), and let ŷhi be the LPA
estimate of y calculated for hi ∈ H .

For small h the estimate ŷh has a small bias and a large standard deviation.
The adaptive scale algorithm compares the estimates of increasing h with the main
intention to find the maximum scale when the estimate’s deviation is not large,
can be explained by random components of the estimates, and provides a nearly
ideal balance between the biasedness and randomness.

The Lepski’s approach defines the pointwise adaptive scale h+(x) according to
the rule

h+(x) = max
i

{
hi :

∣∣ ŷhj (x)− ŷhi(x)
∣∣ ≤ Γ

(
hj ,hi, x

)
,∀hj < hi, i = 1, . . . , J

}
,

(6.43)

where Γ(hj ,hi, x) is a given threshold.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.8. Gaussian filtering “cheese” noisy image: (a) true image; (b) h1 = h2 = 1 (noisy image),
RMSE = 25.71; (c) h1 = h2 = 2, RMSE = 15.77; (d) h1 = h2 = 3, RMSE = 18.31; (e) h1 = h2 = 5,
RMSE = 23.71; (f) h1 = h2 = 7, RMSE = 28.42; (g) h1 = h2 = 11, RMSE = 36.01; (h) adaptive
varying window, RMSE = 10.14; (i) directional adaptive varying window, RMSE = 3.71.
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Figure 6.9. ICI adaptive window sizes: symmetric Gaussian window kernel, m = [0, 0]; “cheese” im-
age. Small window sizes (black) are concentrated near the discontinuity curve. It allows a good sharp-
ness of edges in the filtered image. Far from this curve, the window size is mainly large (white), what
enables a strong noise suppression in this areas. Black isolated points are a result of noise effects. They
appear in pixels where the ICI erroneously takes small window sizes.
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The procedure (6.43) is looking for a largest scale hi in order to obtain the
maximum smoothing effect for the random errors. However, a large hi can result
in a significant bias error.

The estimates ŷhj (x) with the scale hj < hi are compared with the estimate
ŷhi(x) of the scale hi. If all the differences | ŷhj (x)− ŷhi(x)|, hj < hi, can be explained
by the random errors, then the bias is not large and larger hi can be selected.

The adaptive scale h+ is defined as a maximum hi such that all estimates ŷhj (x)
with hj < hi are not too different from ŷhi(x).

The threshold Γ(hj ,hi, x) is a key element of the algorithm as it says when the
difference between the estimates is large or small.

The rule (6.43) enables a multiple pairwise statistical test on the significance
of the systematic error in the differences ŷhj (x)− ŷhi(x).

There are a few versions of this concept which are different mainly by esti-
mates ŷh(x), sets of scalesH , and hypothesis testing rules. The threshold Γ(hj ,hi, x)
in the right-hand side of the inequality in (6.43) is an important parameter of this
hypothesis testing.

Theoretical results given in the papers cited above show that this sort of algo-
rithms has quite exciting properties in terms of the adaptivity over wide classes of
signals, minimax estimation, convergence rates.

These adaptive algorithms work without special estimation of change points
and singularities. The main intention is to estimate the signal with the varying
adaptive scale selection. Near the change points, small scale values are selected
automatically and in this way the accuracy of the local estimation is ensured.

We are concentrated on one particular form of this class of the methods de-
veloped in [13] independently from the main stream of works in this direction.
The term “intersection of confidence intervals” (ICI) for this method appeared in
[22].

It is shown in a number of publications that the ICI-based algorithms are
quite practical and efficient for adaptive signal and image processing with appli-
cation to different problems: median filtering [27], probability density estimation
[25], time-frequency analysis [6, 23], beamforming and direction of arrival esti-
mation [24]. A successful application of the ICI rule to image denoising has been
reported in [26, 28, 30]. A number of interesting modifications of the ICI rule for
regression problems with Gaussian and non-Gaussian noises is developed in [48].

6.3.2. Intersection of confidence interval rule

Let y(x) and ŷh(x) be the signal and its estimate, with the estimate and the stan-
dard deviation σŷh(x,h) defined according to the formulas (6.28) and (6.40), re-
spectively. Then the confidence interval of this estimate is defined as follows:

D j =
{
ŷhj (x)− Γ · σŷh

(
x,hj

)
, ŷhj (x) + Γ · σŷh

(
x,hj

)}
, (6.44)

where Γ > 0 is a parameter defining the width of the confidence interval.
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If the estimate ŷhj (x) is unbiased, the parameter Γ can be interpreted and cal-
culated as follows. Assume that the noise εs is subject to the Gaussian probability
density N (0, σ2). Let χ1−β/2 be (1 − β/2)th quantile of the standard Gaussian dis-
tribution N (0, 1). Then Γ = χ1−β/2 and the true y(x) belongs to the confidence
interval D j with the probability p = 1− β.

Thus, for the unbiased estimate the parameter Γ is the quantile and its value
guarantees some probability that the true y(x) is indeed inside this interval.

In the ICI rule, the confidence intervals are used for both biased and unbi-
ased estimates and in this development Γ is a parameter of the algorithm with its
meaning beyond the standard quantile of the Gaussian distribution.

Now we describe the ICI rule. Let D j be a sequence of the confidence inter-
vals corresponding to hj defined in H . Consider sequential intersections of these
confidence intervals starting from h1. Thus we consider the intersection of two in-
tervals D1 and D2, then go to the intersection of three intervals D1, D2, and D3

and continue up to the moment when the intersection is empty. If it happens for
the intervals D1, D2, . . . , Di+1, the window size h+ = hi is selected as the adaptive
one.

This rule can be formulated in the following way [30]. Consider the intersection
of the intervals D j , 1 ≤ j ≤ i, with increasing i, and let i+ be the largest of those i
for which the intervals D j , 1 ≤ j ≤ i, have a point in common. This i+ defines the
adaptive scale and the adaptive LPA estimate as follows:

ŷ+(x) = ŷh+(x)(x), h+(x) = hi+ . (6.45)

The ICI rule is illustrated in Figure 6.10. Let us use this figure in order to
formulate the idea of the ICI rule once more. We start from the smallest window
size with h1 = 1 assuming that there is no smoothing at all in this estimate. Then
the estimate coincides with the observation and the true y(x) definitely belongs
to the confidence interval D1 with some probability depending on Γ. Considering
the next interval D2, we do not know if the true y(x) belongs to this interval as the
estimate with h2 > h1 may be already biased. However, the intersection of D2 with
D1 gives a chance that the true y(x) belongs also to D2 and probably is located
in the intersection of these intervals. We continue this analysis while there is an
intersection because if there is no intersection there is no chance that the true y(x)
belongs also to the last considered confidence interval. When we arrive at the stage
that there is no intersection, we take the window size corresponding to the last
accepted confidence interval as the adaptive window size of the estimate.

These calculations are performed for each x and give the varying adaptive
h+(x) for each pixel of the image.

The ICI rule is presented here as a sort of reasonable heuristic procedures. In
reality, it is derived from the accuracy analysis of the estimates with the smoothing
parameter h. The adaptive window size given by the ICI rule is close to the optimal
values minimizing the pointwise mean squared error [30].
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D1 ŷh1 L1

D2 ŷh2 L2

D3 ŷh3 L3

D4 ŷh4

h1 h2 h3 = h+ h4

Figure 6.10. The idea of the ICI rule. We start from the smallest window size h1 = 1 which guarantees
that the true y(x) with some probability belongs to the confidence interval D1. There is an intersection
(nonempty common part) of the intervals D1, D2, and D3 and there is no an intersection of the
interval D4 with this common part of the intervals D1, D2, and D3. Therefore, the window size h3 is
selected as the adaptive window size.

lŷh (x,h)

|mŷh (x,h)|2 σ2
ŷh

(x,h)

h∗ h

Figure 6.11. The squared bias |mŷh(x,h)|2 and the variance σ2
ŷh(x,h) are illustrating the bias-variance

trade-off. The “ideal” balance is achieved at h = h∗ minimizing the mean squared loss function
lŷh(x,h).

Figure 6.11 illustrates a typical scenario when the ICI rule is applicable as well
as the meaning of the adaptive values obtained by using it. In this figure we can see
the estimation bias and the variance as functions of the window size h. Typically
the bias and the variance are growing and decreasing functions of h, respectively.
Then, the mean squared error has a minimum with respect to h. This optimal value
provides a special bias-variance balance minimizing the mean squared criterion.

The remarkable property of the ICI is that this rule is able to give the adaptive
window size close to this optimal value.

The structure of the adaptive algorithm using the ICI rule is shown in Figure
6.12. The kernels gh are used in order to calculate a number of estimates and the
ICI rule selects the best estimate for each pixel. It follows from Figure 6.12 that the
algorithm can be interpreted as a multichannel filter bank with switching between
channels.

More details concerning the derivation, justification of the ICI rule, and the
role of the parameter Γ can be found in [30, Chapter 6] where the accuracy analysis
of this rule is given.
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Figure 6.12. A layout of the adaptive scale LPA-ICI algorithm.

6.3.2.1. Intersection of confidence interval rule for differentiation

The ICI algorithm is universally applicable for estimation of both the signal and
the signal derivative. The only difference is in the used estimates and in formulas
for variance.

The inputs of the ICI rule are the signal estimates and their standard devia-
tions given for all h ∈ H . The output is the corresponding adaptive window size
and the adaptive estimate.

In order to use the ICI rule for differentiation, we need to use as inputs the
estimates of the derivatives and their standard deviations calculated for all h ∈
H . Then the output of the ICI rule is the adaptive window size and the adaptive
estimate of the corresponding derivative.

When actually this idea works? Figure 6.11 gives the explicit answer to this
question. If the bias of the derivative estimate is an increasing function of h and
the variance is a decreasing function of h, then the ICI gives the window size close
to the optimal ones minimizing the mean squared error of this estimate. The as-
sumption that the variance is decreasing function of h holds always for the LPA
estimates, and thus the main point is whether the bias is really a growing function
of h.

6.3.3. Implementation of ICI rule in LASIP

The ICI rule is implemented in LASIP in the program function ICI.p. This pro-
gram is used in the following format: [YICI, h opt, std opt] = function ICI(yh,
stdh, gammaICI).

Input variables: “yh” is an array (n1 × n2 × J) of the image estimates yh(x)
calculated for all h ∈ H , “stdh” is a vector (J × 1) of the standard deviations of the
estimates calculated according to (6.40) for all h ∈ H , and “gammaICI” is a value
of the parameter Γ used in the ICI rule.

The program returns the following outputs: “YICI” is an adaptive estimate
(n1 × n2) of the image, “h opt” is an array of the image size (n1 × n2) with the
values of the window sizes used for each pixel of the image, “std opt” is an array of
the size (n1 × n2) with the variances of the adaptive estimates for each pixel.
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This implementation is fast because all calculations are produced as a loop
over the J scales. The complexity and time of calculations depend mainly on the
number of the window sizes J and values of the window sizes hk. Larger hk results
in larger calculation time.

6.4. Anisotropic directional filters

6.4.1. Directional windows and kernels

Intuitively, an anisotropy means that an image intensity y(x) has a different be-
havior in different directions in a neighborhood of the pixel x. Points, lines, edges,
textures are typical elements in images. They are locally defined by position, ori-
entation, size or scale. Often being of small size, these specific features encode a
great portion of information contained in images. All these image elements define
anisotropic areas in the image intensity y.

In order to deal with this sort of anisotropy, the kernel estimates based on the
symmetric window functions are not efficient. Steerable filters [11] and directional
wavelets (rigelets, curvelets) [45] are only examples of tools developed in signal
and image processing to deal with data anisotropy.

Our approach to anisotropy is based on the use of starshaped size/shape adap-
tive neighborhoods built for each image pixel.

Figure 6.13 illustrates this concept and shows sequentially: a local best ideal
estimation neighborhood U∗x (Figure 6.13(a)), a sectorial segmentation of the unit
disc (Figure 6.13(b)), and the sectorial approximation of U∗x using the parameter
h+ = h+(θt) defining the length of the corresponding sectors in the directions
θt, t = 1, . . . ,K , (Figure 6.13(c)). Varying size sectors enable one to get a good
approximation (Figure 6.13(d)) of any neighborhood of the point x provided that
it is a star-shaped body.

This approximation is defined by K sector-size parameters h∗t . Adaptation us-
ing all of these parameters simultaneously is difficult encountering some technical
and principal points. The technical one is obvious as it assumes that vector (of
dimension K) optimization of the estimates should be done and that it always re-
quires intensive computing. This vector optimization can be a difficult multimode
problem.

The adaptation implemented by the ICI rule assumes that the estimates can
be ordered according to their variances. The ICI rule selects the estimate with the
smallest variance (largest area of neighborhood) provided that the bias is of the
order of the variance. In the star-shaped neighborhood there are a lot of sectors of
the equal area and with equal variance of the estimates. Then, ordering the esti-
mates according to their variance and selection of the estimates according to these
variances is not able to indicate a unique neighborhood optimizing the estima-
tion accuracy. It illustrates the principal difficulties of multivariable star-shaped
neighborhood optimization.

To be practical, we use a sequential procedure with independent selection of
the sectorial length for each of K directions.
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U∗x

(a)

S1
θi

(b)

S
h∗(θi)
θi

(c) (d)

Figure 6.13. An optimal neighborhood of the estimation point x: (a) the best estimation set U∗, (b)
the unit ball segmentation, (c) the sectorial approximation of U∗, (d) a set approximating U∗.

For each of the directions, the sector size is characterized by a single parameter
hi and we use the ICI rule in order to find the adaptive h+

t .
In this way for each pixel x we obtain K directional adaptive window sizes and

K adaptive directional estimates.
The final estimates are produced from the directional ones using a special

aggregation (fusing) procedure.
The directional kernels used for estimation in the sectors are obtained by the

window function w which is designed in such a way that its support completely
belongs to a particular sector.

The program demo CreateLPAKernels.m discussed in Section 6.2.4 is used for
calculation of the directional kernels gh,θ(x). Here the angle θ denotes the direction
of the estimate. The parameter directional resolution of this program refers to the
number of sectors K . With K = 4 and the parameter TYPE = 11, we obtain four
directional kernels with supports equal to four quadrants of the standard Cartesian
coordinate system. These kernels for one of the quadrants are shown in Figures 6.6
and 6.7 for smoothing and differentiation, respectively.

For high-resolution imaging, we use eight-sector estimates with θ = θi, θi =
π(i− 1)/4, i = 1, . . . , 8. In order to obtain kernels for these estimates, the sectorial
support window is used in this program. The length and the width of the window
are defined by the parameters h1 and h2. Assuming that h2 = 1 for all h1, linewise
kernels are returned by the program demo CreateLPAKernels.m.

The LPA order of the kernel is defined by the parameter m = [m1,m2] giving
the kernel orders along and across of the radial direction. If the size of the kernel
is not sufficient to fit the desirable order of the LPA approximation, the zero order
is selected automatically.

In particular, for h2 = 1, the order m2 is always reduced to m2 = 0.
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6.4.2. ICI rule for directional estimates

There are some extra features of the ICI rule for the directional estimates. The
program function ICI.p accepts the fourth argument in the format: [YICI,h opt,
std opt]= function ICI(yh,stdh,gammaICI, (2π×i)/directional resolution), where
i = 0, . . . ,K − 1.

In this form the program includes weighted median filtering of the ICI adap-
tive scales. This filtering is directional and is used in order to reduce a level of
randomness in the corresponding adaptive scales.

This filtering results in the essential improvement of the algorithm perfor-
mance.

For instance the results shown in Figure 6.8(i) are obtained by using the ICI
rule with this median directional filtering which gives RMSE = 3.71. Applying the
program without this filtering, we obtain larger RMSE = 4.87. It is necessary to
note that with this filtering we use a smaller value of Γ = 1.05 versus Γ = 1.5 used
in the algorithm with no filtering.

6.4.3. Estimate aggregation

The final estimate is calculated as the weighted mean of the directional adaptive
estimates obtained for K directions:

ŷ(x) =
∑K

t=1 λt ŷh+(x),θt (x)∑K
t=1 λt

,

λt =
σ−2
θ̂t

(x)∑K
t=1 σ

−2
θ̂t

(x)(x)
,

(6.46)

where σ2
θ̂t

(x) is a variance of the estimate ŷh+(x),θt .

This inverse variance weighting of the estimates is optimal assuming that the
directional estimates ŷh+(x),θt are unbiased and statistically independent. The esti-
mate aggregation defined by (6.46) is one of the efficient ways to deal with the K
estimates obtained for x.

6.5. Applications

6.5.1. Image denoising

In this section, we present simulation results demonstrating performance of the
developed directional algorithms in image denoising.

We use the standard criteria for evaluation of the algorithm:

(1) root mean squared error (RMSE), RMSE =
√

(1/n)
∑

x(y(x)− ŷ(x))2;
(2) signal-to-noise ratio (SNR) in dB, SNR = 10 log10(

∑
x |y(x)|2/∑x |y(x)

− ŷ(x)|2);
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(3) improvement in SNR (ISNR) in dB, ISNR = 20 log10(σ̂z/ RMSE), where
σ̂z is an estimate of the observation standard deviation;

(4) peak signal-to-noise ratio (PSNR) in dB, PSNR = 20 log10(maxx |y(x)|/
RMSE);

(5) mean absolute error (MAE), MAE = (1/n)
∑

x |y(x)− ŷ(x)|;
(6) maximum absolute error (MAXDIF), MAXDIF = maxx |y(x)− ŷ(x)|.

It is well known that there is no one-to-one correspondence between the vi-
sual image quality and the above criteria. Different criteria show quite different
optimal values for the design parameters of the algorithm. A visual inspection,
which of course is quite subjective, continues to be the most important final per-
formance criterion.

6.5.1.1. “Cheese” test image

A test signal is the 128× 128 “cheese” binary image corrupted by an additive zero-
mean Gaussian noise. The image intensity takes integer values y = 0, 1 with the
noise standard deviation σ = 0.1.

For estimation, we use narrow nonoverlapping sectorial kernels of Type 10
with a uniform window function w, the order m = [0, 0].

The kernel supports are defined by the two-dimensional scale h = (h1,h2)
with h ∈ H

H =
{(

1
1

)
,

(
2
1

)
,

(
3
1

)
,

(
5
1

)
,

(
7
2

)
,

(
11
3

)}
. (6.47)

The scales h1 and h2 form pairs and used for estimation in these pairs. The
supports of the kernels are sectorial of the width equal h2 = 1 for h1 = 1, 2, 3, 5,
and the width h2 is increased to 2 and 3 pixels for h1 = 7 and h1 = 11, respectively.

The estimates are calculated as the sample means of observations included in
the kernel supports. The ICI rule is used with the threshold Γ = 1.05.

The estimates and the adaptive scales h+
j (x) are found for eight directions:

θj = ( j − 1)
π

4
, j = 1, . . . , 8. (6.48)

These ICI adaptive directional estimates are fused in the final one using the
multiwindow method (6.46).

The central panel of Figure 6.14 shows the true image. Eight surrounding pan-
els show the ICI adaptive scales h+

j (x) for the corresponding eight directions θj .
Thus, we can see the adaptive scales for directional estimates looking at the hori-
zontal and vertical directions, that is, to East, North, West, and South, as well as to
four diagonal directions Nord-East, Nord-West, South-West, South-East. White and
black correspond to large and small window size values, respectively. The adaptive
window sizes delineate the intensity function of the image very well. This delin-
eation is obviously directional as the contours of the image are shadowed from the
corresponding directions.
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Figure 6.14. ICI adaptive directional scales ĥ+
j (x), θj = ( j − 1)π/4, j = 1, . . . , 8, for “cheese” test

image. The true image is shown in the central panel.

Figure 6.15. ICI adaptive directional estimates yh+,θj , θj = ( j − 1)π/4, j = 1, . . . , 8, for “cheese” test
image. The final fused estimate is shown in the central panel.

Figure 6.15 demonstrates the obtained estimates. The central panel shows the
final fused estimate calculated from the directional ones according to the multi
window estimate formula (6.46). The surrounding panels show the sectorial di-
rectional adaptive scale estimates ŷĥ+

j (x),θj
(x), j = 1, . . . , 8, corresponding to the

adaptive scales given in Figure 6.14 for the corresponding directions.
The noise effects are clearly seen in the adaptive scales h+

j as spread solated
black points. A directional nature of the adaptive estimates ŷĥ+

j (x),θj
(x) is obvious

since the corresponding directions are seen as a line-wise background of this imag-
ing. The multiwindow fusing allows to delete and smooth these directional line
effects and obtain a good quality final estimate.
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Table 6.1. “Cheese” image: criteria values for the eight directional and final multiwindow estimates.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
Final

Est

ISNR, dB 7.22 6.91 7.11 7.50 7.20 6.92 7.17 7.22 16.80

SNR, dB 18.87 18.56 18.77 19.16 18.85 18.57 18.82 18.88 28.45

PSNR, dB 27.14 26.83 27.04 27.43 27.13 23.41 27.09 27.15 36.73

RMSE 11.19 11.60 11.33 10.83 11.22 11.58 11.26 11.18 3.71

MAE 6.81 6.77 6.95 6.65 6.72 6.82 6.86 6.73 2.40

MAXDIF 178.8 172.1 187.9 143.7 195.8 154.1 180.5 175.9 65.31

Overall, the multiwindow estimation allows to reveal and preserve sharp edges
of this binary image and at the same time efficiently suppress the noise.

The numerical results are given for the considered directional estimates in
Table 6.1. They show the criteria values for the all eight directional and final esti-
mates.

The criterion values for the final estimate compared with the directional ones
show a strong improvement in the fused estimate. In particular, we have for ISNR
the values about 7 dB for the sectorial estimates, while for the fused estimate
ISNR " 16 dB. The used adaptive weight fusing is an efficient tool for the accuracy
improvement. Visually, the improvement effects are clear from the comparison of
the directional and final estimates in Figure 6.15. As it is seen from Table 6.1, the
fusing works very well for all criteria. The criteria RMSE, MAE, and MAXDIF are
recalculated in this table for the image intensity values 0, 255.

6.5.1.2. Real-life images

For texture images, we use the developed algorithm with narrower line-wise ker-
nels from the set defined by the parameters

H =
⎧⎨⎩
⎛⎝1

1

⎞⎠ ,

⎛⎝2

1

⎞⎠ ,

⎛⎝3

1

⎞⎠ ,

⎛⎝5

1

⎞⎠ ,

⎛⎝7

1

⎞⎠ ,

⎛⎝11

1

⎞⎠⎫⎬⎭ . (6.49)

The algorithm demonstrates a quite good performance with criterion values
presented in Table 6.2. In this table, for the binary images “cheese” and “testpat1”
the wider window sizes (6.47) are used. It is assumed that the texture image in-
tensity is scaled to the interval [0, 1]. In the table numerical results, the criteria
RMSE, MAE, and MAXDIF are recalculated for the image intensity belonging to
the interval [0, 255].

In successive first three columns in Figures 6.16 and 6.17, true image, noisy
image, and the adaptive estimates are shown. The last column shows the adaptive
window sizes obtained for the horizontal direction.
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Table 6.2. Accuracy criterion for LPA-ICI adaptive imaging.

Test image ISNR dB SNR dB PSNR dB RMSE MAE

Cheese 15.86 27.49 35.12 4.47/4.14 2.79

Lena 9.41 24.08 29.42 8.62 6.02

Cameraman 8.04 22.53 28.01 10.13 6.47

Peppers 9.46 24.72 29.47 8.57 6.12

Boats 7.81 22.47 27.82 10.36 7.42

Testpat1 7.53 25.85 27.51 10.74 6.07

Figure 6.16. 256×256 test images “cameraman” and “testpat1.” The successive columns show images:
true, noisy, estimate, and distribution of the adaptive window sizes for the horizontal estimates.

Figure 6.17. 512×512 test images “lena,” “peppers,” and “boats.” The successive columns show images:
true, noisy, estimate, and distribution of the adaptive window sizes for the horizontal estimates.

The program function shape explorer.m returns the adaptive neighborhoods
obtained by the ICI rule. Figure 6.18 illustrates the work of this program for “cam-
eraman” test image and shows the adaptive neighborhoods used for different pixels
and their eight-directional sizes.
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x = (42, 170) {h+(x, θk)}k=1,...,8

= {11, 11, 11, 11, 11, 11, 11, 11}
x = (50, 115) {h+(x, θk)}k=1,...,8

= {11, 11, 11, 7, 11, 11, 11, 11}

x = (66, 119) {h+(x, θk)}k=1,...,8

= {7, 7, 7, 7, 11, 7, 5, 3}
x = (80, 141) {h+(x, θk)}k=1,...,8

= {11, 7, 7, 7, 11, 7, 11, 11}

x = (67, 80) {h+(x, θk)}k=1,...,8

= {11, 11, 11, 11, 11, 1, 1, 1}
x = (100, 110) {h+(x, θk)}k=1,...,8

= {2, 11, 2, 1, 2, 11, 2, 1}

Figure 6.18. Adaptive neighborhoods for different pixels of “cameraman” test image.

6.5.2. Differentiation

In a number of applications, one is interested not in a signal itself but rather in a
signal’s derivative.

The LPA can be used for design of the linear differentiating directional kernels
(6.33)-(6.34) with the estimates

ŷ(r1,r2)
h,θ (x) =

(
g(r1,r2)
h,θ � z

)
(x), (6.50)

where g(r1,r2)
h,θ are the directional kernels for the derivative calculated in the direc-

tion θ.
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This sort of derivative is a generalization of the directional finite differences.
The generalization concerns a possible use of higher-order polynomials in the LPA
and an arbitrary shape of the window-support w.

Directional estimates of the signal ŷh,θi(x) can be different for different direc-
tions. However, they always estimate the same variable y(x). In this way, all of these
estimates have the same meaning and can be naturally fused in a single estimate,
say as the weighted mean in (6.46).

A situation is different for differentiation, as for each sector θ, we estimate
a directional derivative and these derivatives have different meaning for each di-
rection. Thus, a fusing similar to the one used for the signal estimation has no
sense for the derivatives. Something in common should be found in the direc-
tional derivatives in order to use them jointly.

In what follows, we show how the directional derivatives can be used for pre-
cise estimation of the vector gradient. The main idea is that all of these directional
derivatives can be treated as directional projections of the unique vector gradient.

Let us start from the coordinate system used for the directional estimation.
Figure 6.19 shows a coordinate system rotated by an angle θ. A link between the
basic and “rotated” Cartesian coordinate systems is defined by the geometrical
transform

u1 = x1 cos θ + x2 sin θ,

u2 = −x1 sin θ + x2 cos θ,
(6.51)

where (u1,u2) are new rotated coordinates depending on x1, x2 and θ is a fixed
angle.

The inverse of the transform (6.51) is

x1 = u1 cos θ − u2 sin θ,

x2 = u1 sin θ + u2 cos θ.
(6.52)

In the matrix notation we have for (6.51)-(6.52)

u = U(θ)x, x = UT(θ)u,

U(θ) =
⎛⎝ cos θ sin θ

− sin θ cos θ

⎞⎠ .
(6.53)

The kernels g(r1,r2)
h,θ for these derivatives are calculated by the program demo -

CreateLPAKernels.m already discussed in Sections 6.2.4 and 6.4.
Assuming that the signal y is differentiable at the point x with a vector

gradient ∇y = (∂x1 y, ∂x2 y)T , the link between the vector gradient and the direc-
tional derivative has the following well-known form:

∂θ y = ∂x1 y · ∂u1x1 + ∂x2 y · ∂u1x2 = ∂x1 y · cos θ + ∂x2 y · sin θ. (6.54)
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u2

x2 u1

x1

θ

Figure 6.19. A rotation of the rectangular support shows that the number of pixels as well as their
location inside the support depend on the rotation angle θ. For the LPA design of the kernels, new
variables u1 and u2 are used as arguments for calculation of the window function and the polynomials.

The estimates of the first-order derivatives ∂x1 y and ∂x2 y can be calculated as

the directional estimates ŷ(1,0)
h,0 (x) and ŷ(1,0)

h,π/2(x), respectively, directed to θ = 0 and
θ = π/2.

The corresponding first-order directional derivative ∂θ y can be calculated ac-
cording to (6.54) as

∂θ ŷ = ŷ(1,0)
h,0 · cos θ + ŷ(1,0)

h,π/2 · sin θ. (6.55)

However, this first-order directional derivative can be calculated also as ŷ(1,0)
h,θ

using the kernel g(1,0)
h,θ .

What is the difference between the two estimates ∂θ ŷ and ŷ(1,0)
h,θ (x)? If the

function y is continuous differentiable and a neighborhood used for estimation
is small, then obviously these two estimates are equivalent.

However, when a signal can be nondifferentiable and defined only on a dis-
crete grid, these estimates present different information about the local behav-

ior of the function. The directional estimate ŷ(1,0)
h,θ is a sort of generalized finite-

differences calculated for the direction θ while the estimate (6.55) is calculated
from the similar finite-differences but only for horizontal and vertical directions.

It is obvious that for an arbitrary function given on the discrete grid this hori-
zontal and vertical information can be quite misleading, say for the diagonal direc-

tions θ = π/4 or θ = 3π/4. This is why the estimates ŷ(1,0)
h,θ (x) and ∂θ ŷ calculated

from (6.55) can be very different.
One of the applications of the multiple directional derivatives is to use them

for calculation of the vector gradient. If the directional derivatives ŷ(1,0)
h,θi are given,

the following equation links them with the vector gradient:

ŷ(1,0)
h,θi = ∂x1 y · cos θi + ∂x2 y · sin θi. (6.56)
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The least-square method can be used to find ∂x1 y and ∂x2 y from the multidi-
rectional derivative estimates. Minimizing

J =
K∑
i=1

[
ŷ(1,0)
h,θi −

(
∂x1 y · cos θi + ∂x2 y · sin θi

)]2
, (6.57)

we find

∇̂y = (
BTB

)−1
BT ŷ(1,0)

h , (6.58)

where ŷ(1,0)
h = ( ŷ(1,0)

h,θ1
, . . . , ŷ(1,0)

h,θK )T is a vector of the directional derivative and B =
(Bi)K×2, Bi = (cos θi, sin θi).

It is obvious that this estimate of the gradient is different from what can be
obtained just using the corresponding horizontal and vertical derivative estimates

ŷ(1,0)
h,0 and ŷ(1,0)

h,π/2.

Similarly to the smoothing kernels, the differentiating estimates ŷ(1,0)
h,θi have the

window size parameter h defining the support of the estimate and the weights of
the observations used for estimation. The ICI rule is applicable for the adaptive
selection of h in these directional estimates.

Denote the adaptive scale directional derivative estimates as ŷ(1,0)
h+(x),θi .

It is natural for noisy data to replace the criterion (6.57) by the weighted least-
square

J =
K∑
i=1

1
σ2
θi

[
ŷ(1,0)
h+(x),θi −

(
∂x1 y · cos θi + ∂x2 y · sin θi

)]2
, (6.59)

where the weights 1/σ2
θi

are the inverse variances of the adaptive estimates ŷ(1,0)
h+(x),θi .

In the vector-matrix notation J can be rewritten as

J =
(

ŷ(1,0)
h − B∇y

)T
Λ
(

ŷ(1,0)
h − B∇y

)
, (6.60)

where ŷ(1,0)
h = ( ŷ(1,0)

h+(x),θ1
, . . . , ŷ(1,0)

h+(x),θK )T is a vector of the estimates, Λ = diag{1/
σ2
θ1

, . . . , 1/σ2
θK
} is a diagonal matrix, and B = (Bi)K×2, Bi =

(
cos θi, sin θi).

Minimization of (6.60) gives the estimate of the gradient as

∇̂y = (
BTΛB

)−1
BTΛŷ(1,0)

h . (6.61)

Thus, starting from the adaptive scale scalar directional derivatives we obtain the
estimate of the vector-gradient#y.

Figures 6.20–6.23 illustrate the performance of the adaptive window size dif-
ferentiator for the test image “peppers.” In these experiments, the additive Gauss-
ian noise has the standard deviation σ = 0.05. For differentiation it is a quite large
level of the noise.
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Figure 6.20. “Peppers” test image. The adaptive multidirectional estimates of the horizontal and ver-
tical derivatives, the absolute value of the gradient and the gradient angle.

For differentiation we use the kernels g(1,0)
h,θ of the linewise supports, the power

m = [1, 0], with the uniform window symmetric on variable x2, the window
TYPE = 10.

In Figure 6.20 we can see two (horizontal and vertical) of the eight adaptive
multidirectional derivative estimates, the absolute value of the reconstructed gra-
dient and gradient angle. For comparison, in Figures 6.21-6.22 we show these hor-
izontal and vertical derivative estimates assuming that the differentiator window
has a fixed size equal to h = 3 and h = 11, respectively. The absolute value and the
angle of the vector gradient are also shown. It is clear that the estimates with the
smallest possible window h = 3 give the sharp edges, but the derivative estimates
are very noisy. The estimates with the larger window h = 7 are less noisy but the
derivative edges become wider and definitely oversmoothed.

The adaptive window gradient estimates in Figure 6.20 demonstrate that a
delicate job is done preserving the edges which are very sharp and smoothing the
noisy from the estimates. Figure 6.23 shows the distribution of the adaptive win-
dow sizes for the directions θ = 0 and θ = 45◦. In this figure, we can see also
the noisy data (σ = 0.05) and the sum of the absolute values of the directional
derivatives estimates calculated for all 8 directions with the corresponding adap-
tive window sizes. This last image gives very accurate edges of the image and can
be used as very effective and noise-resistant edge detector.
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Figure 6.21. “Peppers” test image. The estimates of the horizontal and vertical derivatives calculated
with the fixed small window size h = 3. The absolute value of the gradient and the gradient angle are
also shown. The estimates are quite noisy.
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Figure 6.22. “Peppers” test image. The estimates of the horizontal and vertical derivatives calculated
with the fixed large window size h = 11. The absolute value of the gradient and the gradient angle are
also shown. The estimates are denoised and edges are oversmoothed.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


276 Adaptive varying window methods

3
4

5

6
7

8

9

Adaptive windows

h+, θ = 0

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

Σi|∂y/∂θi | (edges)

3

4

5

6
7

8

9

Adaptive windows

h+, θ = 45

0

0.2

0.4

0.6

0.8

1
Observations

Figure 6.23. “Peppers” test image. The adaptive window sizes for estimates of the derivatives for θ =
0 and θ = 45◦. The sum of the absolute values of the directional derivatives estimates gives good
indications of the image edges. These derivative estimates are calculated for all 8 directions with the
corresponding adaptive window sizes. Noisy observations.

6.5.3. Anisotropic gradient

Here we introduce a concept of the directional anisotropic gradient based on direc-
tional nonsymmetric LPA differentiation and the ICI adaptive scale selection.

Figure 6.24 illustrates the concept of the anisotropic gradient for two cases
when the signal y is discontinuous and continuous. Figure 6.24(a) shows a piece-
wise linear discontinuous y composed from two linear fragments. It is assumed
that x0 is a discontinuity point. There are left and right neighborhoods of x0 be-
longing to the corresponding argument areas V(x0−) and V(x0

+), where the signal is
regular with a unique derivative and a unique normal vector ny . Thus, at the point
x0 we have two neighborhoods V(x0−) and V(x0

+) giving two different derivatives
∂x y and two different normal vectors.

Compare this situation with another one depicted in Figure 6.24(b), where
again y is composed from two linear functions and the point x0 belongs to in-
tersection of these two lines. In this case, the function is continuous at x0 and
nevertheless there are two different normal vectors ny(x0) and two different left
and right derivatives of y.
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Figure 6.24. The concept of the anisotropic gradient for discontinuous (a) and continuous (b) func-
tions. The estimator of the normal vector ny should use the data for the argument value x < x0 from
the vicinity V(x0−) and from the vicinity V(x0

+) if x > x0.

In what follows, we use the ICI rule in order to identify and to build a largest
neighborhood where the function allows a first-order polynomial model and
where as a result the function is differentiable and the vector gradient can be found.

Similarly to what it is done in Section 6.4 for signal estimation, we introduce
a sectorial partition of the unit ball with K nonoverlapping sectors having x as

a common vertex. Let g(1,0)
h,θ be nonsymmetric differentiating kernels defined on

these sectors with the corresponding first-order derivative estimates ŷ(1,0)
h,θ .

Assume that the support of the differentiating kernel g(1,0)
h,θ is optimized by

selection of the ideal scale h∗(θ) minimizing the corresponding least-square error.
The union of these optimal size supports defines the ideal neighborhood U∗x

for estimation of the gradient ∇y(x). It is the largest neighborhood of x which
can be used for gradient estimation. It is obvious that this differentiation ideal
neighborhood is similar to the ideal neighborhood for the signal estimation in
Figure 6.13.

Using the ICI for the adaptive window size derivative estimation allows to get
some approximation of this ideal differentiation neighborhood. Assume that the

support of the differentiating kernel g(1,0)
h,θ is optimized by selection of the adaptive

scale h+ minimizing the corresponding least-square error. The union of these opti-
mal size supports defines the adaptive neighborhood U∗x for estimation of the gra-
dient ∇y(x). This star-shaped area is a largest adaptive neighborhood of x which
can be used for gradient estimation because it is the largest area where the linear
polynomial model fits the data. This idea is quite similar to the one used for the
adaptive signal estimation as it is illustrated in Figure 6.13.

Let the directional adaptive derivative estimates ŷ(1,0)
h+(x),θi be calculated. We fuse

these estimates together for the gradient calculation using the procedure defined
in (6.59)–(6.61).
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Figure 6.25. ICI adaptive directional scales ĥ+
j (x), calculated for the directional derivative estimation,

θ = ( j−1)π/4, j = 1, . . . , 8, “cheese” test image. The true image is shown in the central panel. Standard
mode of differentiation.

Two points make a principal difference with the adaptive gradient estimates
considered in Section 6.5.2:

(i) the derivative estimates are nonsymmetric;
(ii) the directions with the smallest adaptive h+ = h1 are eliminated from the

fused estimate (6.61).
These two conditions are used in order to obtain for estimation neighbour-

hoods which are not allowed to cross image edges.
When the ICI algorithm performs perfectly, the union of the sectorial sup-

ports of the adaptive estimates ŷ(1,0)
h+(x),θi is a star-shaped set which allows the follow-

ing interesting interpretation.
This star-shaped set is the largest neighborhood of x where the signal y is differ-

entiable. In the more accurate terms, we can say that this star-shaped set is the largest
area where the estimate of the vector gradient ∇̂y fits signal observations provided
that y is differentiable at the point x.

Thus, the ICI adaptive estimate of the directional derivatives used in (6.61)
gives two important complementary results. The first is the estimate of the gra-
dient, and the second is the largest star-shaped neighborhood of x, where y is
differentiable.

All these derivative calculations are implemented in the LASIP program
demo AnisotropicGradient.m allowing to calculate both the standard and anisotro-
pic gradients.

6.5.3.1. Differentiation examples

Example 6.5.1 (gradient for “cheese”). Here we wish to illustrate the performance
of differentiating operators in standard and anisotropic modes. As a test image, we
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Figure 6.26. ICI adaptive directional estimate of the first-order derivatives, θj = ( j − 1)π/4, j =
1, . . . , 8, “cheese” test image. The adaptive scales ĥ+

j (x) are shown in Figure 6.25. The obtained estimate
of the horizontal derivative is shown in the central panel. Standard mode of differentiation.

Figure 6.27. ICI adaptive directional estimate of the first-order derivatives, θj = ( j − 1)π/4, j =
1, . . . , 8, “cheese” test image. The adaptive scales ĥ+

j (x) are shown in Figure 6.25. The obtained estimate
of the vertical derivative is shown in the central panel. Standard mode of differentiation.

use “cheese” given with the zero-mean Gaussian noise of σ = 0.05. It is a quite
high level of the noise for differentiation.

The kernels g(1,0)
h,θ have the linewise support of the width equal to one and the

length taking values from the set h = [2, 4, 6, 8, 10]. The parameter Γ = 2.5, the
window function is Gaussian.

First, we apply the differentiating operators in the so-called standard mode of

differentiation. This means that the kernel g(1,0)
h,θ has a symmetric support on the

variable x1 and the gradient estimates are calculated according to (6.61).
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Figure 6.28. ICI adaptive anisotropic directional scales ĥ+
j (x), calculated for the directional derivative

estimation, θj = ( j − 1)π/4, j = 1, . . . , 8, “cheese” test image. The true image is shown in the central
panel. Comparing shows that these adaptive scales obtained for the anisotropic estimates are sharper
than those for the standard differentiation in Figure 6.25. Anisotropic mode of differentiation.

The adaptive window sizes selected for directional estimation of the deriva-
tives ∂x1 y and ∂x2 y are shown in Figure 6.25 with the true “cheese” image in the
central panel of this figure. Images of the corresponding directional derivative es-
timates are shown in Figures 6.26 and 6.27. The central panel of these two images
show the estimates of the horizontal ∂x1 y and vertical derivatives ∂x2 y. The di-
rectional adaptive estimates shown in eight panels around the central one are the
same in both Figures 6.26 and 6.27. Note that the level of the noise of the final
(horizontal and vertical) estimates is much lower than it is for the directional esti-
mates. The line-wise background well seen in the directional estimates disappears
in these final estimates.

Further, we go to the anisotropic derivative estimates (anisotropic mode of dif-
ferentiation). In order to change the mode of our estimates, we calculate them with

the nonsymmetric support. This means that g(1,0)
h,θ = 0 for x1 < 0. The fusing of the

directional derivatives into the horizontal and vertical estimates is carried out us-
ing (6.61), where the directional estimates g(1,0)

h,θ with the minimum window size
h1 = 2 are dropped in this formula.

Figure 6.28 demonstrates the obtained adaptive window sizes. In comparison
with the adaptive window sizes shown in Figure 6.25 for the standard differentia-
tion, these adaptive window sizes for the anisotropic estimates are much sharper
with narrower areas of small values of the window sizes near the edges of “cheese.”
The adaptive directional estimates with the estimate of the horizontal derivative in
the central panel are shown in Figure 6.29.

While the directional estimates in the eight panels surrounding the central
one look more or less similarly to the directional estimates in Figure 6.26, the final
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Figure 6.29. ICI adaptive anisotropic directional estimate of the first-order derivatives, θj = ( j −
1)π/4, j = 1, . . . , 8, “cheese” test image. The adaptive scales ĥ+

j (x) are shown in Figure 6.26. The ob-
tained anisotropic estimate of the horizontal derivative is shown in the central panel. Even the values of
these derivatives are shown multiplied by 10; they are not visible as their values are very close to 0. Note
that the edges of the image are not visible in this derivative because of the nature of the anisotropic
differentiation. Compare these images versus the central image in Figure 6.26 where these edges are
clearly seen. Anisotropic mode of differentiation.

horizontal estimate shown in the central panel is completely different. Here we ob-
serve the effect which makes a great deal of difference between the standard and the
anisotropic differentiation. The anisotropic differentiation means that the adap-
tive neighborhood selected for estimation is smooth. For “cheese” these neigh-
borhood is always the area where the function takes a constant value with the
derivatives equal to zero. The central panel of Figure 6.29, where the horizontal
derivative estimate is about equal to zero for all pixels including the discontinuity
edge, demonstrates a nearly perfect anisotropic performance of the algorithm.

The main feature of the anisotropic differentiation demonstrated in this ex-
ample is that the algorithm does not cross the discontinuity curves and the edges
of “cheese” test image are completely not seen in this derivative estimation.

6.6. Conclusion

The developed algorithms define a class of nonlinear spatially adaptive filters dem-
onstrating a state-of-art performance and on many occasions visually and quanti-
tatively outperforming the best existing methods (see, e.g., [7, 8, 28, 30]). In this
chapter, we are restricted to the Gaussian denoising and differentiation only.

However, the LPA-ICI technique is quite universal and generalized for a wide
scope of imaging problems including: Gaussian and non-Gaussian denoising, non-
blind and blind multichannel deblurring, super-resolution imaging, poissonian
signal processing, multiresolution imaging, and edge detection, color imaging, and
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so forth. The algorithms implemented in Matlab for these applications as well as
further references can be found on LASIP website http://www.cs.tut.fi/∼lasip.
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[6] I. Djurović and L. Stanković, “Nonparametric algorithm for local frequency estimation of multi-
dimensional signals,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 467–474, 2004.

[7] A. Foi, “Anisotropic Nonparametric Image Processing: Theory, Algorithms and Applications,”
Tesi di Dottorato, Dipartimento di Matematica, Politecnico di Milano, Italy, 2005.

[8] A. Foi, V. Katkovnik, K. Egiazarian, and J. Astola, “A novel anisotropic local polynomial estimator
based on directional multiscale optimizations,” in Proceedings of 6th International Conference on
Mathematics in Signal Processing, pp. 79–82, Cirencester, UK, 2004.

[9] A. Foi, V. Katkovnik, K. Egiazarian, and J. Astola, “Inverse halftoning based on the anisotropic
LPA - ICI deconvolution,” in Proceedings of International TICSP Workshop on Spectral Methods
and Multirate Signal Processing (SMMSP ’04), J. Astola, K. Egiazarian, and T. Saramäki, Eds., pp.
49–56, Vienna, Austria, September 2004.

[10] A. Foi, R. Bilcu, V. Katkovnik, and K. Egiazarian, “Anisotropic local approximations for point-
wise adaptive signal-dependent noise removal,” in Proceedings of 13th European Signal Processing
Conference (EUSIPCO ’05), p. 4, Antalya, Turkey, September 2005.

[11] W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 13, no. 9, pp. 891–906, 1991.

[12] L. Ganesan and P. Bhattacharyya, “Edge detection in untextured and textured images—a com-
mon computational framework,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 27, no. 5, pp. 823–834, 1997.

[13] A. Goldenshluger and A. Nemirovski, “On spatially adaptive estimation of nonparametric regres-
sion,” Mathematical Methods of Statistics, vol. 6, no. 2, pp. 135–170, 1997.

[14] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice-Hall, Upper Saddle River, NY,
USA, 2nd edition, 2002.

[15] T. J. Hastie and C. Loader, “Local regression: automatic kernel carpentry,” Statistical Science, vol. 8,
no. 2, pp. 120–143, 1993, (with discussion).

[16] C. M. Hurvich, J. S. Simonoff, and C.-L. Tsai, “Smoothing parameter selection in nonparamet-
ric regression using an improved Akaike information criterion,” Journal of the Royal Statistical
Society. Series B, vol. 60, no. 2, pp. 271–293, 1998.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.cs.tut.fi/~lasip
http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


Vladimir Katkovnik et al. 283

[17] V. Katkovnik, “Problem of approximating functions of many variables,” Automation and Remote
Control, vol. 32, no. 2, part 2, pp. 336–341, 1971.

[18] V. Katkovnik, “Homogeneous integral averaging operators obtained by the method of least
squares,” Automation and Remote Control, vol. 32, no. 11, part 1, pp. 1767–1775, 1971.

[19] V. Katkovnik, Linear Estimation and Stochastic Optimization Problems, Nauka, Moscow, Russia,
1976.

[20] V. Katkovnik, “Linear and nonlinear methods of nonparametric regression analysis,” Soviet Jour-
nal of Automation and Information Sciences, vol. 5, pp. 25–34, 1979.

[21] V. Katkovnik, Nonparametric Identification and Smoothing of Data (Local Approximation Meth-
ods), Nauka, Moscow, Russia, 1985.

[22] V. Katkovnik, “A new method for varying adaptive bandwidth selection,” IEEE Transactions on
Signal Processing, vol. 47, no. 9, pp. 2567–2571, 1999.
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7
Image interpolation by optimized
spline-based kernels

Atanas Gotchev, Karen Egiazarian, and Tapio Saramäki

In this chapter, we discuss the arbitrary scale image interpolation problem con-
sidered as a convolution-based operation. Use is made of the class of piecewise
(spline-based) basis functions of minimal support constructed as combinations of
uniform B-splines of different degrees that are very susceptible for optimization
while being also very efficient in realization. Adjustable parameters in the com-
binations can be tuned by various optimization techniques. We favor a minimax
optimization technique specified in Fourier domain and demonstrate its perfor-
mance by comparing with other designs in terms of error kernel behavior and by
interpolation experiments with real images.

7.1. Introduction

Reconstruction of a certain continuous function from given uniformly sampled
data is a common problem in many image processing tasks such as image enlarge-
ment, rotation, and rescaling. The problem is broadly known as image interpola-
tion.

CCD or CMOS arrays, the most used devices for recording digital images,
create patterns of discrete pixels on rectangular grids. Many image processing ap-
plications, such as zooming, affine transforms, unwarping, require generating new
pixels at coordinates different from the given grid. These new pixels can be gener-
ated by a two-stage procedure. First, a certain continuous function is reconstructed
to fit the given uniformly sampled data and then it is resampled at the desired co-
ordinates. The process is widely known as interpolation and, in order to be suc-
cessful, the reconstruction (interpolation) functions have to be chosen properly.
Some of the most commonly adopted interpolation models represent the contin-
uous function under reconstruction as a discrete sum of weighted and shifted, ad-
equately chosen, basis functions. This is the so-called linear or convolution-based
interpolation. A more general framework considers the reconstruction functions
as generators of shift-invariant spaces. This formalism allows making an elegant
relation between the continuous function to be sampled or reconstructed and its
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approximation (projection) on a shift-invariant space in terms of its discrete rep-
resentation (samples). Moreover, for this formalism, the approximation theory
provides tools for quatifying the error between the function and its approxima-
tion. Among reconstruction functions generating shift-invariant spaces, B-splines
have attracted special attention due to their efficiency and excellent approxima-
tion properties. Furthermore, piecewise polynomial functions expressed as linear
combinations of B-splines of different degrees have been optimized to achieve even
better approximation properties for shortest possible function’s support.

In this chapter, we address the problem of image interpolation by optimized
spline-based kernels. In Section 7.2, we state the interpolation problem in signal
and frequency domains. We then describe the most general distortions caused by
nonideal interpolation and quantitative measures for evaluating the performance
of a particular interpolator. Further, in Section 7.3, we demonstrate how to design
and analyze piecewise polynomial basis functions of minimal support which can
be used in interpolation and projection tasks. The design is based on linear com-
binations of uniform B-splines of different degrees. We compare the basis kernels
designed following different optimization criteria in terms of error kernel behav-
ior and by interpolation experiments with real images. All our notations are for
the one-dimensional (1D) case. While it helps to clarify the ideas in a simpler way
with higher dimensions easy to generalize, it is also practical as in many applica-
tions separable interpolators as tensor product of 1D functions are preferred for
their computational efficiency.

7.2. Basics of sampling and interpolation

7.2.1. Sampling

Consider the most popular imaging system consisting of an optical system and
digital image capturing device. The optical system (lens) focuses the scene on the
imaging plane. Its performance depends, among other factors such as distance
and focal length, on the finite aperture size. It determines the optical resolution
limits. The optical transfer function (OTF), being the autocorrelation function of
the aperture size [54], is also finite and hence cuts all spatial frequencies outside
the region of its support.

The next is the sampling device, transforming the captured image into pixels.
In most modern digital imaging systems it is a kind of imaging sensor based on
the principle of charge-coupled devices (CCDs) [54]. Then, the spatial resolution
is limited by the spatial sampling rate, that is, the number of photo-detectors per
unit length along a particular direction.

The process of taking real scenes and converting them into pixels can be math-
ematically formalized by the processes of image acquisition and sampling. The op-
tical system can be modeled as a spatial linear lowpass filter acting on the continu-
ous two-dimensional signal. The output band-limited signal is then sampled at the
sampling rate determined by the spatial distribution of the photo-detectors. While
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ga(x)Image row
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image row
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ya(x) = [ga(x)comb(x)]∗h(x)Reconstructed
image row

(c)

Figure 7.1. Sampling and reconstruction operations. (a) Initial continuous signal; (b) sampled at in-
tegers; (c) reconstructed by linear convolution (dashed-dotted line).

the optical system somehow blurs the signal, an insufficient sampling rate, caused
by detectors spaced few and far between, can introduce aliasing. These two effects
are inevitable. However, they have been well studied and are taken into account
when designing modern imaging systems [14, 54].

Consider the one-dimensional function r(x) representing a true scene along
the x-axis. As a result of optical blurring, modeled as linear convolution with a
kernel s(x), we obtain another continuous function ga(x), smoother and band-
limited (Figure 7.1(a)):

ga(x) = (r ∗ s)(x). (7.1)

For the sake of simplicity we assume that the initial sampling grid is placed
on the integer coordinates and generate the discrete sequence g[k] = ga(x). In
continuous time it can be modeled by the product ga(x) comb(x), where

comb(x) =
∞∑

k=−∞
δ(x − k). (7.2)

The resulting impulse train is a sum of integer-shifted ideal impulses weighted
by the signal values at the same coordinates

gp(x) = ga(x)
∞∑

k=−∞
δ(x − k) =

∞∑
k=−∞

g[k]δ(x − k). (7.3)
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Figure 7.1(b) illustrates the sampling process.
The blurring effect can be quantified as the difference between the functions

r(x) and ga(x) measured by the L2 error norm

ε2
blur =

∥∥r − ga
∥∥
L2
=
∫∞
−∞

(
r(x)− ga(x)

)2
dx. (7.4)

It is expressible in the Fourier domain as

ε2
blur =

∫ ∣∣1− S(2π f )
∣∣2∣∣R(2π f )

∣∣3
df , (7.5)

where R(2π f ) is the Fourier transform of the initial signal r(x) and S(2π f ) is the
frequency response of the (optical) blurring system.

The effect of sampling is well studied in the Fourier domain. The Fourier
transform Gp(2π f ) of the product ga(x) comb(x) contains the original spectrum
of ga(x) and its replications around multiples of 2π [43],

Gp(2π f ) =
∞∑

n=−∞
Ga

(
2π( f − n)

)
, (7.6)

where Ga(2π f ) is Fourier transform of the blurred continuous signal ga(x).
Any overlap of the replicated spectra can cause a degradation of the original

spectrum. The effect is known as aliasing.

7.2.2. Interpolation

Generally speaking, the role of the interpolation is to generate some missing in-
termediate points between the given discrete pixels. First, based on the existing
discrete data, a continuous signal is generated and then, the desired interpolated
samples are obtained by resampling it at the desired coordinates. In this general
setting, the interpolation factor is arbitrary, not necessarily an integer, not even
a rational number. In most cases, the continuous (analog) model fitting is per-
formed by convolving the samples with some appropriate continuous interpolat-
ing kernel [62], as illustrated in Figure 7.1(c).

The interpolation does not recover the original scene continuous signal itself.
In most cases one starts directly with discrete data and does not know the charac-
teristics of the optical system nor the sampling rate and the effects introduced by
the sampling device. What one can do is to try matching a continuous model that is
consistent with the discrete data in order to be able to perform some further con-
tinuous processing, such as differentiation, or to resample the fitted continuous
function into a finer grid. Within this consideration, interpolation does not deal
with inverse problems such as deconvolution, although some knowledge about
the acquisition and sampling devices could help in the choice of the interpolating
function [66].
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Δ 1

ya(x)

h(x − 1)
h(x) h(x + 1)

nl − 1 nl nl + 1
Δ(l − 2) Δ(l − 1) Δl Δ(l + 1)

μl μl+1

g[k] - initial samples y[l] - new samples

Figure 7.2. Interpolation problem in signal domain. White circles represent initial discrete sequence
g[k] with sampling ratio 1. Black circles represent new sequence y[l] taken with smaller sampling
interval Δ from continuous function ya(x).

7.2.2.1. Interpolation problem in signal domain

Assume that there exist given discrete data g[k] defined on a uniform grid κ ≡
{0, 1, 2, . . . ,Lin−1}, k∈κ, with sampling step equal to unity, as shown in Figure 7.2.
The g[k]’s can represent, for example, the pixel intensities in an image row or
column. Furthermore, it is supposed that the data have been taken from a certain
continuous function ga(x).

The general interpolation problem is then to generate a new sequence y[l]
with sampling points located at new points between the existing samples g[k] with
the goal being to yield an image (row or column) with an increased number of pix-
els (a magnified, a zoomed in image). The new sequence y[l] can be generated by
first fitting an approximating continuous function ya(x) to the given sequence g[k]
and then resampling it at the desired new sampling points, as shown in Figure 7.2.
For the uniform resampling, y[l] = ya(xl) = ya(lΔ) with Δ < 1.

The function ya(x) approximating the original continuous signal ga(x) can be
generated by a linear, convolution-type model:

ya(x) =
∑
k

g[k]h(x − k). (7.7)

Here, h(x) is a continuous convolution kernel (interpolation filter) mapping the
discrete data onto the continuous model function ya(x). The only information
that we have about the continuous function ga(x) is conveyed by the samples g[k]
and a natural assumption is that g[k] = ga(k). We require the same from the new
function ya(x), that is, for all k0 ∈ κ, ya(k0) = g[k0]. This requirement imposes
the so-called interpolation constraint for the kernel h(x) as follows:

ya
(
k0
) =∑

k

g[k]h
(
k0 − k

)
�⇒ h

(
k0 − k

) =
⎧⎨⎩1, for k = k0,

0, otherwise.
(7.8)
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290 Interpolation by optimized spline kernels

The interpolation kernel should behave like h(k) = δ(k), where δ(k) is the
Kroneker symbol. We say that the kernel h(x) is interpolating.

A more general model can be stated. Consider another convolution kernel
ϕ(x) which generates the approximating function ya(x):

ya(x) =
∑
k

d[k]ϕ(x − k). (7.9)

The model coefficients d[k] do not (necessarily) coincide with the initial sig-
nal samples g[k] and the reconstruction kernel ϕ(x) is not required to pass through
zeros for the integer coordinates (noninterpolating kernel). Still, we require ya(k0)=
g[k0] for all k0 ∈ κ, that is,

ya
(
k0
) =∑

k

d[k]ϕ
(
k0 − k

) = g[k0]. (7.10)

Equation (7.10) determines uniquely the model coefficients. It is in fact a dis-
crete convolution between two sequences: the model coefficients and the interpo-
lation function ϕ(x) sampled at integers. Denote it by p[k] = ϕ(k) and write the
convolution (7.10) in z-domain:

Ya(z) = D(z)P(z), (7.11)

where Ya(z), D(z), and P(z) are the z-transforms of ya(k) = g[k],d[k], and p[k],
respectively. The sequence of model coefficients is obtained by a recursive digital
filtering, as follows:

D(z) = Ya(z)
P(z)

= G(z)
P(z)

. (7.12)

Provided that ϕ is a finitely supported and symmetric function (as in most
cases of interest), its sampled version is a symmetric finite length sequence p[k].
The recursive digital filter 1/P(z) is regarded as corresponding to an infinite dis-
crete sequence, (p−1)[k] being the convolution inverse of the sequence p[k], that
is,

(
p ∗ p−1)[k] = δ[k]. (7.13)

In time domain the filtering (7.12) can be formally expressed as

d[k] = (
p−1 ∗ g

)
[k]. (7.14)

Consequently, the interpolation approach (7.9) involves the preliminary fil-
tering step (7.14) to get the model coefficients d[k]. It is not a costly operation and
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for a large class of reconstruction kernels, can be realized through an efficient IIR
filtering [62, 69, 70, 72]. The benefit is that the function ϕ(x) can be chosen with
better properties, in particular it can be nonoscillatory by contrast to interpolating
function h(x).

The model (7.9) can be brought to the model (7.7) by replacing d[k] in (7.9)
with (7.14),

ya(x) =
∑
k

(
p−1 ∗ g

)
[k]ϕ(x − k) =

∑
k

g[k]
(
p−1 ∗ ϕ

)
(x − k). (7.15)

The convolution

h(x) =
∑
k

(
p−1)[k]ϕ(x − k) (7.16)

results in an infinitely supported interpolating kernel having the following fre-
quency response:

H(2π f ) = Φ(2π f )
P
(
e j2π f

) , (7.17)

where Φ(2π f ) is the continuous frequency response of ϕ(x) and P(e j2π f ) =
P(z)|z=e j2π f .

After building the continuous model as given by (7.7) or (7.9), it is resampled
at new discrete points to obtain y(l) = ya(xl). Here, the current output coordinate
xl can be expressed as xl = nl + μl, where nl = �xl� is the coordinate (integer) of
g[nl], occurring just before or at xl. The interval μl = xl−nl, in turn, is a fractional
interval in the range 0 ≤ μl < 1. Given nl and μl, the current output pixel can be
generated following (7.7):

y[l] =
∑
k

g
[
nl − k

]
h
(
k + μl

)
. (7.18)

From this equation, the interpolation kernel h(x) can be interpreted also as a
filter with varying impulse response that depends on the value of μl. That is why
in the literature it appears under different names such as interpolation kernel, in-
terpolation filter, fractional delay filter, and reconstruction filter, emphasizing some
of its properties [77].

Despite its different names, the kernel should be as follows.
(i) The kernel is desired to be symmetrical to avoid introducing phase distor-

tions.
(ii) The kernel’s support should be as short as possible for the desired interpo-

lation accuracy. This decreases the computational complexity, especially for high-
dimensional cases. Regarding the model (7.9), the support of the reconstruction
function ϕ is envisaged. In fact, for this model, the cardinal interpolation func-
tion is infinitely supported because of the IIR term, but still the computational
complexity would be sufficiently low for short-length kernels.
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(iii) The kernel should ensure good closeness of the approximating function
ya(x) to the unknown function ga(x). This closeness can be measured via different
measures, that is,

(1) in frequency domain, thus invoking the terms of passband preservation
and stopband attenuation [55, 77];

(2) by the kernel’s approximation order, measuring its capability to repro-
duce polynomials up to some degree M and characterizing the rate of
decay of the approximation error when the sampling interval tends to
zero [62, 63].

These terms and some adequate measures of goodness will be discussed in
detail later in this chapter.

7.2.2.2. Interpolation problem in frequency domain

The Fourier transform of the initial sequence g[k] is the periodical version of
Ga( f ):

G
(
e j2π f

) = ∞∑
n=−∞

Ga
(
2π( f − n)

)
. (7.19)

The continuous function ya(x), as given by (7.7), can be expressed in the fre-
quency domain as

Ya(2π f ) = H(2π f )G
(
e j2π f

) = H(2π f )
∞∑

k=−∞
Ga

(
2π( f − k)

)
. (7.20)

See Figure 7.3 for an illustration of the effects of sampling and reconstruction
in frequency domain.

Sinc (ideal) reconstruction kernel. In the ideal case it is desired that Ya(2π f ) =
Ga(2π f ). The classical assumption is that the signal ga(x) is band-limited (or had
been filtered to be band-limited), that is, Ga(2π f ) is zero for higher frequencies.
The classic Shannon theorem [57] states that a band-limited signal ga(x) can be re-
stored from its samples taken at integer coordinates, provided that Ga(2π f ) is zero
for | f | > 1/2. Otherwise the sampling introduces aliasing. The interpolation starts
where sampling has finished: from the discrete sequence g[k] having a periodi-
cal Fourier representation. The interpolation cannot restore frequencies distorted
by aliasing. The best it can do is to try to restore a continuous function yideal(x)
having Fourier transform

Yideal(2π f ) =

⎧⎪⎪⎨⎪⎪⎩
G
(
e j2π f

)
, for 0 ≤ f ≤ 1

2
,

0, for f >
1
2

,
(7.21)
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Figure 7.3. Effects of sampling and reconstruction in frequency domain. |G(e j2π f )| is replicated ver-
sion of |Ga(2π f )|. Hideal(2π f ) (solid line) is finite supported in frequency domain, while |H(2π f )|
(dashed line) has side lobes.

and hope that the sampling has introduced no (little) aliasing. Hence, the ideal
interpolation (reconstruction) is achieved by the filter

Hideal(2π f ) =

⎧⎪⎪⎨⎪⎪⎩
1, for 0 ≤ f ≤ 1

2
,

0, for f >
1
2
.

(7.22)

In the signal domain, the ideal filter is inversely transformed to the sinc func-
tion

hideal(x) =
∫∞
−∞

Hideal(2π f )e− j2π f xdf = sin(πx)
πx

= sinc(x). (7.23)

The reconstruction equation for the case of the sinc reconstruction function
is

yideal(x) =
∞∑

k=−∞
g[k] sinc(x − k). (7.24)

In the real world, the ideal filtering cannot be achieved since the sinc reconstruc-
tion function is infinitely supported (note the summation limits in (7.24)). Even if
the initial signal g[k] is given on the finite interval 0 ≤ k ≤ M − 1 only, to recon-
struct the continuous function ga(x) in this interval, we need an infinite summa-
tion. For signals given on a finite interval of M samples, the sinc-function should
be replaced by a discrete the sinc-function sincd(x) = sin(πx)/(M sin(πx/M))
which is an ideal, to the accuracy of boundary effects, interpolator of discrete
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signals with finite support [82, 83]. This interpolation method is considered in
Chapter 8.

Nonideal reconstruction kernels. Finitely supported nonideal reconstruction ker-
nels have infinite frequency response. Being attractive due to their easier imple-
mentation, they never cancel fully the replicated frequencies above the Nyquist
rate. Figure 7.3 illustrates this effect.

An explicit relation between the output discrete signal y[l] and the input sig-
nal g[k] can be established, assuming a uniform resampling of ya(x) with the re-
sampling step Δ < 1 (finer than the initial one, i.e., the resampling generates more
pixels). The Fourier transform of the output signal y[l] can be expressed in the
following forms:

Y
(
e j2π f Δ

) = 1
Δ

∞∑
n=−∞

Ya

(
2π

(
f − n

Δ

))
, (7.25)

Y
(
e j2π f Δ

) = 1
Δ

∞∑
n=−∞

H
(

2π
(
f − n

Δ

))
G
(
e j2π( f−n/Δ)). (7.26)

This clarifies that the interpolation process generates some frequency regions
which are mirrors of the passband frequency region with respect to 2π/Δ.

As an example, let us take the simplest interpolator, the so-called nearest
neighbor. Practically, this interpolator repeats the value at the closest integer coor-
dinate to the needed new coordinate. Following (7.7), this repetition is modeled
by a convolution between the given discrete sequence and a rectangular recon-
struction function having support between −1/2 and 1/2. The Fourier transform
of this reconstruction function is a sinc function in the frequency domain, that is,
sin(π f )/π f . It has high magnitude side lobes that overlap (not suppress!) the peri-
odical replicas in the product (7.20) and in (7.26), respectively. Moreover, it is not
flat for the frequencies below half the sampling rate and it attenuates considerably
the true (passband) frequencies of the original signal resulting in visible blur.

The two extreme cases, namely, sinc and nearest neighbor interpolators sug-
gest directions for improving the performance of finite support interpolators. With
some preliminary knowledge about the frequency characteristics of ga(x), the in-
terpolator h(x) can be designed in such a way that its frequency response sup-
presses effectively the undesired components of the interpolated signal. This is
equivalent to designing some application-specific optimized approximation of the
ideal reconstruction filter in frequency domain.

7.2.2.3. Interpolation artifacts

Before studying some quantitative measures of interpolators’ performance let us
summarize qualitatively the distortions caused by nonideal interpolators.
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Ringing. Ringing is a result of the oscillatory type of interpolators combined with
the Gibbs effects due to the finite terms approximation of continuous functions
in Fourier domain. Ringing effect occurs even for the ideal sinc interpolators re-
alized in Fourier domain. Actually, those are not true artifacts since they can arise
together with the perfect recovering of the initial samples [82].

Blurring. Blurring is a result of the nonideality of the reconstruction function in
the passband. Instead of preserving all frequencies in this region, nonideal interpo-
lators suppress some of them, especially in the high-frequency area (close to half
the sampling rate). As a result, the interpolated images appeared with no sharp
details, that is, blurred.

Aliasing. Aliasing is an effect due to improper sampling. This is the effect of the
appearing of unwanted frequencies (hence the term aliasing) as a result of the repe-
tition of the original spectrum around multiples of the sampling rate. The aliasing
artifacts resulting from insufficient sampling may appear as Moiré patterns. For
small images, they may be hardly noticeable, but after interpolation on a finer grid
they can become visible.

Imaging. This is the counterpart of aliasing, though the term “imaging” is some-
how confusing. Consider the simple case of sampling rate expansion by an integer
factor of L. It can be accomplished by first inserting L− 1 zeros between the given
samples (up-sampling) and then smoothing the new sequence with a digital filter.
The up-sampling causes “stretching” of the frequency axis [43]. As a result, in the
passband the original spectrum appears together with its L− 1 “images.” The role
of the smoothing filter is to remove these unwanted frequencies. Following the
model (7.7), we first apply the reconstruction operation (fitting the continuous
model ya(x)) and subsequently the resampling. Assuming this model, unwanted
frequencies can interfere into the passband during the process of resampling as
a result of nonsufficient suppression of the frequency replicas during the previ-
ous step of continuous reconstruction. Hence, this effect can be again character-
ized as aliasing, and we will use this term in order not to confuse “imaging” with
digital images. The effects of possible sampling-caused and reconstruction-caused
aliasings are almost undistinguishable since they appear simultaneously (and with
blurring) in the resampled image. The reconstruction-caused aliasing effect is em-
phasized for short-length kernels (i.e., nearest neighbor or linear) and appears in
the form of blocking (pixelation) in the magnified image [62, 82].

7.2.2.4. Interpolation error kernel

There are two sources of errors caused by the nonideality of the reconstruction
kernel to be quantified. First, there is the nonflat magnitude response in the pass-
band (causing blurring) and second, there is the nonsufficient suppression of the
periodical replicas in the stopband (causing aliasing). As the blurring and aliasing
errors both superimpose into the resampled image, it is good to have an integral
measure for both of them. Such a measure would play a substantial role in opti-
mizing and comparing different interpolators. We review the interpolation error
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kernel as it has appeared in the work of Park and Schowengerdt [48]. Then, based
on some approximation theory presumptions, we review a generalized form of this
kernel, appropriate for the interpolation model (7.9), see [10, 64].

Sampling and reconstruction (SR) blur. Park and Schowengerdt [48] have investi-
gated the influence of the phase of sampling on the sampling and reconstruction
accuracy. Return to image acquisition model (7.1)-(7.2) and insert an additional
parameter u, showing the relative position of the sampling device with respect to
the function s(x):

ga(x − u) = (r ∗ s)(x − u). (7.27)

Sampling at integers and reconstructing by a continuous interpolation func-
tion give

ya(x,u) =
∞∑

k=−∞
ga(n− u)h(x − k). (7.28)

Here, the reconstructed function also depends on the sampling phase and it
is not simply a function of the difference x − u. The error between g(x − u) and
y(x,u), called by the authors sampling and reconstruction (SR) blur, is a function
of u as well:

ε2
SR(u) =

∫∞
−∞

(
ga(x − u)− y(x,u)

)2
dx. (7.29)

One can observe that the phase-dependent SR error is a periodic function of
u with a period of unity and hence it can be represented as the Fourier series

ε2
SR(u) =

∞∑
m=−∞

ame
j2πum, (7.30)

where

am =
∫ 1

0
ε2

SR(u)e− j2πumdu. (7.31)

The coefficient a0 plays the most important role since it quantifies the average
value of the SR blur. It can be regarded as the expectation of the random error,
depending on the arbitrary sampling phase. It can be obtained by taking the SR
blur in frequency domain (Parseval’s equality)

ε2
SR(u) =

∫∞
−∞

[ ∞∑
k=−∞

(
δk −H(2π f )

)
Ga

(
2π( f − k)

)
e j2πku

]

×
[ ∞∑
n=−∞

(
δn −H∗(2π f )

)
G∗a

(
2π( f − n)

)
e− j2πnu

]
df

(7.32)
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and integrating over u

a0 =
∫∞
−∞

∞∑
k=−∞

∞∑
n=−∞

(
δk −H(2π f )

)
Ga

(
2π( f − k)

)
× (

δn −H∗(2π f )
)
G∗a

(
2π( f − n)

) ∫ 1

0
e j2π(k−n)udu df .

(7.33)

After some simplifications we get

E
{
ε2

SR

} = a0 =
∫∞
−∞

∣∣Ga(2π f )
∣∣2
(

1− 2 Re
(
H(2π f )

)
+
∣∣H(2π f )

∣∣2
)

+
∣∣H(2π f )

∣∣2 ∑
k 
=0

∣∣Ga
(
2π( f − k)

)∣∣2
df

=
∫∞
−∞

{∣∣Ga(2π f )
∣∣2∣∣(1−H(2π f )

)∣∣2

+
∣∣H(2π f )

∣∣2 ∑
k 
=0

∣∣Ga
(
2π( f − k)

)∣∣2
}
df .

(7.34)

The first term in the summation inside the integral is the error introduced
by the nonideality of the reconstruction kernel (i.e., blurring term), while the sec-
ond term represents the aliasing error due to the nonideality of the reconstruction
kernel for the replicated frequencies. By changing the variable, this term can be
rewritten in an equivalent form as follows:

∫∞
−∞

∣∣H(2π f )
∣∣2 ∑

k 
=0

∣∣Ga
(
2π( f − k)

)∣∣2
df

=
∫∞
−∞

∣∣Ga(2π f )
∣∣2 ∑

k 
=0

∣∣H(
2π( f − k)

)∣∣2
df .

(7.35)

The average SR blur takes a very compact form which separates the influence
of the reconstruction kernel and the initial signal

E
{
ε2

SR

} = ∫∞
−∞

η2(2π f )
∣∣Ga(2π f )

∣∣2
df , (7.36)

where

η2(2π f ) = ∣∣1−H(2π f )
∣∣2

+
∑
k 
=0

∣∣H(
2π( f − k)

)∣∣2
. (7.37)

Here, the nonnegative kernel η2 quantifies the amount of errors introduced
by the reconstruction kernel.
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The total SR error is

ε2
SR(u) = ε2

S(u) + ε2
R(u) + φ(u), (7.38)

where

ε2
S =

∫∞
−∞

∣∣G(2π f )
∣∣2 ∑

k 
=0

∣∣H(
2π( f − k)

)∣∣2
df ,

ε2
R =

∫∞
−∞

∣∣G(2π f )
∣∣2∣∣1−H(2π f )

∣∣2
df ,

φ(u) =
∑
m 
=0

ame
j2πmu.

(7.39)

The term ε2
S is regarded as the error due to insufficient sampling. It is also this

term that is responsible for introducing the aliasing errors if the reconstructed sig-
nal is resampled into a finer grid. The term ε2

R shows the error contribution of a
reconstruction function which is different from unity in the frequency areas of sig-
nificant signal energy. The last, namely, the sampling phase-dependant term φ(u),
determined by the higher harmonics in the Fourier series (7.30), is a zero mean
random variable with variance 2

∑∞
m=1 |am|2. It is always zero if the initial signal is

essentially band-limited and sufficiently sampled [48]. For a particular nonband-
limited signal, equations for am should be written and calculated (numerically).
Many authors prefer just to study the behavior of the averaged error for different
signals and different reconstruction kernels [40, 48, 49, 56].

A generalization of the error kernel (7.37) can be obtained based on the recon-
struction model (7.9). Write the cardinal interpolation kernel (7.16) in frequency
domain

H(2π f ) = Φ(2π f )
P
(
e j2π f

) = Φ(2π f )∑∞
k=−∞Φ

(
2π( f − k)

) , (7.40)

where P(e j2π f ) = ∑∞
k=−∞Φ(2π( f − k)) is the frequency response of the sampled

version p(k) of the reconstruction function ϕ(x). The error kernel (7.37) becomes

η2(2π f ) =
∣∣∣∣1− Φ(2π f )

P
(
e j2π f

)∣∣∣∣2

+
∑
k 
=0

∣∣∣∣Φ
(
2π( f − k)

)
P
(
e j2π( f−k)

) ∣∣∣∣2

=
∣∣P(e j2π f

)−Φ(2π f )
∣∣2

+
∑

k 
=0

∣∣Φ(2π( f − k)
)∣∣2∣∣P(e j2π f

)∣∣2

(7.41)
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Figure 7.4. Error kernel for four classical interpolators.

or has the following equivalent form [64]:

η2( j2π f ) =
∣∣∑

k 
=0 Φ
(
2π( f − k)

)∣∣2
+
∑

k 
=0

∣∣Φ(2π( f − k)
)∣∣2∣∣∑∞

k=−∞Φ
(
2π( f − k)

)∣∣2 . (7.42)

Figure 7.4 shows the error kernel for the ideal (sinc) interpolator and for
the probably most used interpolating linear and cubic interpolators, and for the
noninterpolating B-spline interpolator of third degree [33, 48, 49, 62]. The im-
provement of cubic versus linear interpolator is achieved thanks to the longer
support and the higher degree. The B-spline has the same degree as the cubic
convolution interpolator and the improvement is achieved thanks to the noninter-
polating model applied. B-spline basis functions are described in the next section.

The role of the error kernel will be additionally highlighted from an approxi-
mation theory point of view.

How to compute the error kernel. Since the class of symmetrical, finitely supported
interpolators is of major interest, we give some practical directions regarding how
to compute the error kernel (7.42) for this class. Assume the function ϕ(x) is
supported over the interval [−(N + 1)/2, (N + 1)/2] and is symmetrical, that is,
ϕ(−x) = ϕ(x). Its sampled version, given by the sequence p(k) = ϕ(x)|x=k, is also
symmetrical and has 2�N/2� + 1 nonzero terms. The Fourier transform of this
sequence is given by

P(z)
∣∣
z=e j2π f = ϕ(0) + 2

�N/2�∑
k=1

ϕ(k) cos(2πk f ). (7.43)
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For such a reconstruction function ϕ(x), (7.41) can be simplified,

η2(2π f )

=
(
P
(
e j2π f

)−Φ(2π f )
)2

+
∑

k 
=0

(
Φ
(
2π( f − k)

))2(
P
(
e j2π f

))2

=
(
P
(
e j2π f

))2−2P
(
e j2π f

)·Φ(2π f )+
(
Φ(2π f )

)2
+
∑

k∈Z∗
(
Φ
(
2π( f − k)

))2(
P
(
e j2π f

))2

=
(
P
(
e j2π f

))2 − 2P
(
e j2π f

) ·Φ(2π f ) +
∑∞

k=−∞
(
Φ
(
2π( f − k)

))2(
P
(
e j2π f

))2 .

(7.44)

Although it is an infinite sum, the last term in the numerator can be calcu-
lated rather easily, realizing that it is the Fourier transform of the function ϕ(x)
continuously convolved by itself and subsequently sampled. The autoconvolution
(which is in fact an autocorrelation) is also symmetrical and has a compact sup-
port of 2N + 2. Hence, only N cosine terms take part in the considered infinite
sum

∞∑
k=−∞

(
Φ
(
2π( f − k)

))2 = (ϕ∗ ϕ)(0) + 2
N∑
k=1

(ϕ∗ ϕ)(k) cos(2πk f ). (7.45)

The algorithm for calculating the error kernel can be summarized as follows.
(1) Calculate the Fourier transform Φ(2π f ) of the continuous kernel ϕ(x).
(2) Calculate the Fourier transform P(e j2π f ) of the discrete kernel p(k) =

ϕ(x)|x=k, as given by (7.43).
(3) Calculate the autocorrelation function of the symmetrical continuous

function ϕ(x), aϕ(x) = (ϕ ∗ ϕ)(x) at integer coordinates k : a[k] =
aϕ(x)|x=k.

(4) Find the Fourier transform of the sequence a(k), according to (7.45).
(5) Calculate the kernel (7.44).

7.2.3. Shift-invariant function spaces and generating bases

The model (7.9) has, in fact, a wider scope than the interpolation we have used
it for. For an arbitrary choice of the model sequence d[k], the functions ϕ(x − k)
span a vector space. The function space reformulation of the model (7.9) allows
considering other schemes for obtaining the sequence d[k], apart from the simple
interpolation [10].

Consider the following shift-invariant function space V(ϕ) that is a closed
subspace of L2 and generated by a function ϕ as

V(ϕ) :

{
gV (x) =

∞∑
k=−∞

d[k]ϕ(x − k) : c ∈ l2
}
. (7.46)
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Any function from the space V(ϕ) can be represented as a convolution be-
tween a discrete set of coefficients and the generating function ϕ. In other words,
the integer shifts of ϕ form a basis for the space V(ϕ) and the coefficients d[k] are
regarded as coordinates of the function gV (x) with respect to the given basis.

The generating function has to be chosen in an appropriate manner in order
to ensure that the space V(ϕ) is a closed subspace of L2, that is, ϕ must form a
Riesz basis [3]. By definition, the family of basis functions ϕ(x − k) forms a Riesz
basis if there exist two constants B > A > 0 such that

A‖d‖2
l2 ≤

∥∥∥∥∥
∞∑

k=−∞
d[k]ϕ(x − k)

∥∥∥∥∥
2

L2

≤ B‖d‖2
l2 . (7.47)

The upper bound ensures that V(ϕ) is a well-defined subspace of L2, while
the lower bound provides that it is a closed subspace of L2.

A function in V(ϕ) is entirely described by the discrete-time sequence d[k].
Any function ga(x) ∈ L2 can be approximated by a function in V(ϕ). The interpo-
lation is the simplest way of approximating ga(x) as was discussed in the previous
sections. The least squares (LS) approximation is achieved by a preliminary filter-
ing with an analysis (projecting) function. Since V(ϕ) is closed, the LS approxima-
tion g̃a(x) exists and it is equal to the orthogonal projection of ga(x) into V(ϕ). In
general, the basis ϕ(x− k) is not orthogonal, but only linearly independent. Then,
the orthogonal projection of ga(x) ∈ L2 into V(ϕ) is obtained by

g̃a(x) =
∞∑

k=−∞
d[k]ϕ(x − k), (7.48)

where

d[k] =
∫∞
−∞

ga(τ)ϕ̃(k − τ)dτ. (7.49)

Here, ϕ̃(x) is the dual (biorthogonal) basis of ϕ. As it belongs to the same
space V , it can be represented as a linear combination of the generating basis ϕ as
well. Moreover, its coordinate coefficients are merely the autocorrelation sequence
of ϕ, defined at the integer values as

ϕ̃ ∈ V(ϕ),

ϕ̃(x) = (
(a)−1 ∗ ϕ

)
(x),

a[k] =
∫∞
−∞

ϕ(τ)ϕ(τ − k)dτ.

(7.50)

The proof of this relation can be found, for example, in [3].
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Taking the Fourier transform of (7.50) we obtain the dual basis in Fourier
domain

Φ̃(2π f ) = Φ(2π f )
A
(
e j2π f

) = Φ(2π f )∑∞
n=−∞

∣∣Φ(2π( f − n))
∣∣2 . (7.51)

7.2.4. Approximation theory impact

In order to quantify the approximation error between ga(x) and its approximation
as a function of the sampling step Δ we write a scale-dependent convolution-based
signal expansion:

yΔ(x) =
∑
k

d[k]ϕ
((

x

Δ

)
− k

)
. (7.52)

This is an expansion of a signal belonging to the space generated by the recon-
struction function ϕ parameterized by the sampling (scale) parameter Δ,

VΔ = span
k∈Z

{
ϕ
((

x

Δ

)
− k

)}
. (7.53)

The expansion coefficients d[k] can be obtained either by interpolation or
by projection of ga(x) onto VΔ, for example, LS approximation. In both cases,
the approximation theorists have been interested in quantifying the error between
ga(x) and yΔ(x) as a function of the decreasing and eventually vanishing sampling
step Δ represented in the form

e2(Δ) = E
{
ε2(Δ)

} = ∫∞
−∞

η2(2πΔ f )
∣∣Ga(2π f )

∣∣2
df . (7.54)

Similar to [48], this error is expressed in [10, 62] as a prediction (in a proba-
bilistic sense) of the true approximation mean square error between ga(x) and the
approximating function yΔ(x) (7.52). The error kernel η2(2π f ) for the case of LS
approximation can be obtained by transforming (7.48) and (7.49) to the Fourier
domain and using (7.51). It takes the rather simple form [10, 12]:

η2
LS(2π f ) = 1−

∣∣Φ( j2π f )
∣∣2∑∞

n=−∞
∣∣Φ( j2π( f − n)

)∣∣2 . (7.55)

Further, we consider the concept of Lth-order basis function. It is important
for both projection and interpolation cases. Lth order of approximation shows the
rate of decay of the error as the sampling step tends to zero.

Without loss of generality we will consider the approximation error for the
interpolation case and will just mark the differences for the LS case. The error
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kernel (7.42) is an even function and can be developed in MacLaurin series:

η2(2π f ) =
∞∑
n=0

(
η2(0)

)(2n)

(2n)!
f 2n, (7.56)

where the (η2(·))(2n) is the 2nth derivative of the error kernel.
Approximation order of the basis function ϕ is the lowest order of differentia-

tion L, for which (η2(·))(2L) 
= 0, while (η2(·))(2n) = 0 for all n 0 ≤ n ≤ L− 1,

η2(2π f ) = (
Cϕ

)2
f 2L +

∞∑
n=L+1

(
η2(0)

)(2n)

(2n)!
f 2n, (7.57)

where Cϕ is a constant depending on ϕ as follows:

Cϕ =
√√√√(

η2
)(2L)

(0)
(2L)!

. (7.58)

It has been derived in [75] in the following form:

Cϕ = 1
L!

√√√√ ∞∑
k=−∞

∣∣Φ(L)(2πk)
∣∣2
. (7.59)

The last term in (7.57) can be neglected when Δ is sufficiently small. Hence,
for oversampled signals the approximation order plays a rather important role,
since for such signals the approximation error decreases by order L when Δ de-
creases and tends to zero:

e2(Δ) ∝ (
Cϕ

)2
Δ2L

∫∞
−∞

f 2L
∣∣Ga(2π f )

∣∣2
df . (7.60)

The integrand is the norm of the Lth derivative of ga(x) and the above equation is
compacted to the form

e2(Δ) ∝ (
Cϕ

)2
Δ2L

∥∥g(L)
∥∥2
L2
. (7.61)

Note that no restrictions on ga(x), that is, no band-limitedness, have been im-
posed. If the sampling step is sufficiently small to “kill” the effect of the last term
in (7.57), the reconstruction function can be characterized by a constant and by
a rate of decay ΔL determined by the approximation order. Knowing these two
parameters, the true approximation error can be well predicted by (7.61).
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Strang-Fix conditions. In their paper [59], Strang and Fix formulated sufficient
conditions for a basis function to have an approximation order of L. Later, those
conditions have been widely applied in the wavelet functions design [60], while
Unser [64] and Blu and Unser [10] have stressed their importance for the interpo-
lation.

Here, a simplified form of those conditions, in the context of our problem and
in a more engineering setting, as in [62], is presented.

There are three equivalent conditions leading to a reconstruction function,
ensuring an approximation error in the form of (7.61):

(1) Lth-order zeros in the Fourier domain

Φ(0) = 1,

DlΦ(2πk) = 0, k ∈ Z\{0} 0 ≤ l ≤ L− 1.
(7.62)

(2) Reproduction of all monomials of degree n ≤ N = L− 1,

∀n ∈ [0,N] ∃{dn[k]
} | ∞∑

k=−∞
dn[k]ϕ(x − k) = xn. (7.63)

(3) Discrete moments

∞∑
k=−∞

(x − k)nϕ(x − k) =Mn, 0 ≤ n ≤ L− 1. (7.64)

The first condition for zero derivative is known as partition of unity condition.
It implies that

∑
k ϕ(x − k) = 1, and in particular says that a good basis should

preserve the DC signal value. The second condition shows that the reproduction
of polynomials has not only an intuitive meaning (smooth data are best repre-
sented by polynomials) but it is also implicitly related with the rate of decay of the
approximation error: reconstruction functions having an approximation order L
can reproduce exactly polynomials up to degree L− 1.

Interpolation and least squares projection. Both the interpolation and projection
cases involve Lth-order basis functions complying with the Strang-Fix conditions
for which the approximation error is predicted by a quantity such as

e2(Δ) = (
Cϕ

)2
Δ2L

∥∥g(L)
∥∥2
L2

+ o
(
ΔL

)
. (7.65)

However, the constant for different cases is different. It is smallest for the orthogo-
nal projection case. It is shown in [10] that the constant for the case of LS approx-
imation by an Lth-order basis is given by

Cϕ,LS = 1
L!

√∑
k 
=0

∣∣Φ(L)(2πk)
∣∣2
. (7.66)
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When comparing (7.66) with (7.59) it is seen that the approximation constant for
the interpolation case is composed of two parts as follows:

Cϕ =
√√√
C2
ϕ,LS +

∣∣∣∣ 1
L!
Φ(L)(0)

∣∣∣∣2

. (7.67)

Using (7.42) and (7.55) the error kernels for the interpolation and LS approx-
imation are related as follows:

η2
Int(2π f ) = η2

LS(2π f )

+

∣∣∣∣∣∣
√∑∞

n=−∞
∣∣Φ(2π( f − n)

)∣∣2∑∞
n=−∞Φ

(
2π( f − n)

) − Φ(2π f )√∑∞
n=−∞

∣∣Φ(2π( f − k)
)∣∣2

∣∣∣∣∣∣
2

.

(7.68)

7.3. Piecewise polynomial basis functions of minimal support

In Section 7.2, we reviewed the most commonly used convolution-based interpo-
lation models and analytical tools for evaluating the interpolation function per-
formance. In this section, we demonstrate how to design and analyze piecewise
polynomial interpolation functions obtained as linear combinations of B-splines.
Recently, the use of such, in general noninterpolating, functions has been favored
in the light of modern approximation theory. The approximation order has been
adopted as a key index that predetermines the interpolation quality. What makes
the B-splines preferable for interpolation is their efficiency, since they can achieve
a desired approximation order L with a minimum support of L. Furthermore, the
Lth-order spline-based interpolators have been constructed as combinations of a
B-spline of degree L − 1 with its derivatives. The resulting functions have been
called splines of minimal support [53] or MOMS (maximal order minimal sup-
port) [9]. They have been optimized to have the smallest possible approximation
constant in order to achieve minimal asymptotic approximation error. Functions
of this class have been reported as superior for image interpolation [9, 63].

Another approach has also adopted the use of uniform B-splines of different
degrees as linearly combined bases for forming piecewise polynomial interpola-
tors. However, the weighting parameters in the combination have been tuned by
an optimization mechanism inspired by the digital filter design rather than the
approximation theory. The design aim has been to approximate the ideal band-
limited interpolator in frequency domain by clustering the frequency response ze-
ros around the multiples of the sampling rate (2kπ in terms of angular frequency).
In contrast with the Lth-order interpolators where L − 1 zeros are placed exactly
at 2kπ, this approach sacrifices the multiplicity, distributing the zeros among the
stopband to provide better stopband attenuation.

Further in this chapter, we demonstrate how to design and analyze piecewise
polynomial basis functions of minimal support which can be used in interpolation
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and projection tasks. The design is based on linear combinations of uniform B-
splines of different degrees. We compare the basis kernels thus designed in terms
of error kernel behavior and by interpolation experiments with real images.

7.3.1. Piecewise polynomial interpolators and B-splines

Piecewise polynomial (PP) interpolation functions have been preferred for their
efficient realization and explicit time and frequency expressions [33, 40, 49, 56,
77]. In general, a certain interpolator h(x) of this class is formed by polynomial
pieces

Pk(x) =
M∑
l=0

ak[l]xl, ξk ≤ x < ξk+1, (7.69)

joined together at some break points ξ0, ξ1, . . . ,ξN with ensured continuity [11]. At
the break points, the continuity can be ensured by making the function contin-
uous from the right for example, that is, h(ξi) = h(ξ+

i ) = Pi(x). For the case of
interpolation at uniform grid, the break points are taken as ξk+1 = ξk + 1, then

h(x) =
N−1∑
k=0

Pk(x). (7.70)

Therefore, a PP interpolator is characterized by its extent (number of poly-
nomial pieces) N , the polynomial degree M, and by the constraints for the break
points, such as the interpolation constraints, symmetry around the origin, conti-
nuity, and continuity of some derivatives. Most of the (M + 1)N coefficients are
used to meet those constraints. The degrees of freedom (independent coefficients)
left are used to improve the interpolation accuracy [33, 40, 49, 56, 77]. The power
form of the PP function (7.69), (7.70) is not appropriate for computations. It is
preferable to decompose it into a particular basis. The truncated power basis [11]
has been widely used [19, 63, 77]. Recently, Vesma and Saramäki have proposed
a symmetrical PP basis that deals properly with desired symmetry around the ori-
gin and reduces the computations considerably, while also improving the design
of PP-based interpolators [77].

The uniform B-splines of degree M are piecewise polynomials of degree M
and have a compact support of N = M + 1 while being K = M − 1 times dif-
ferentiable. Thus, they are the most regular piecewise polynomials with the given
support [11, 58, 73]. The centered B-splines are defined as follows:

βM(x) =
M+1∑
i=0

(−1)i

M!

(
M + 1

i

)(
x +

M + 1
2

− i
)M

+
, (7.71)
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where xn+ is the truncated power function max(0, x)n [58]. The B-spline functions
can be obtained by repetitive convolutions:

βM = β0 ∗ βM−1, (7.72)

where

β0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, for |x| ≤ 1

2
,

0, for |x| > 1
2

,

(7.73)

is the B-spline of zero degree. The corresponding frequency domain characteristics
are given by

BM(2π f ) =
(

sin(π f )
π f

)M+1

. (7.74)

The integer shifts of the B-spline function of degree M form a Riesz basis for
the spline space V(βM), that is, all polynomial splines of degree M with integer
knot step can be represented as a linear combination of B-spline basis functions of
the same degree as

sM(x) =
∑
k∈Z

d[k]βM(x − k). (7.75)

Often shift-invariant spaces are called spline-like spaces. B-splines also com-
ply with the Strang-Fix conditions, that means that the B-splines of degree M
having an approximation order L = M + 1 can represent exactly polynomials
up to the Lth order.

Figure 7.5 shows the first four members of the B-spline family, whereas
Figure 7.6 shows a cubic spline expanded as a combination of shifted and weighted
B-splines of third degree.

As a consequence of (7.72), the derivative of B-spline is a B-spline of a lower
degree, that is,

DβM(x) = βM−1
(
x +

1
2

)
− βM−1

(
x − 1

2

)
. (7.76)

Hence, the gradient of a spline signal sM(x) can be computed very easily using the
B-spline expansion, as given by (7.75):

DsM(x) =
∑
k

d[k]DβM(x − k) =
∑
k

(
d[k]− d[k − 1]

)
βM−1

(
x − k +

1
2

)
.

(7.77)
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Figure 7.5. B-splines for M = 0, 1, 2, 3.
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Figure 7.6. Cubic spline as B-spline expansion.

The convolution between two splines, sM(x) and gN (x) of degrees M and N , re-
spectively, gives rise to a spline function of a higher degree M + N + 1 as follows
[69, 70]:

(
sM ∗ gN

)
(x) =

∫∞
−∞

sM(ξ)gN (x − ξ)dξ

=
∞∑

k=−∞
(c ∗ d)[k]

∫∞
−∞

βM(ξ)βN (x − k − ξ)dξ
(7.78)
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or

(
sM ∗ gN

)
(x) =

∞∑
k=−∞

(c ∗ d)[k]βM+N+1(x − k). (7.79)

B-splines are strictly positive and for polynomial degrees M > 1 they do not
go through zeros at integer coordinates. In order to use them for interpolation,
they should be involved in the generalized interpolation model (7.9) as follows:
the basis function in the model (7.9) is the B-spline of degree M itself ϕ(x) =
βM(x), while the prefilter sequence is determined by the B-spline sampled version
p[k] = bM[k] = βM(k). The resulting interpolator frequency response is given by

H(2π f ) = BM(2π f )
BM

(
e j2π f

) = (
sinc( f )

)M+1

bM[0] +
∑�M/2�

k=1 bM[k] cos(2πk f )
. (7.80)

It specifies the impulse response of an infinite interpolator [69, 70] while being still
computationally very efficient [72]. B-splines are also building blocks for design-
ing optimized PP interpolation functions.

7.3.2. Piecewise polynomial basis functions of minimal support

We consider a subclass of PP basis functions complying with the following require-
ments.

(i) The functions are noninterpolating in the sense that they do not go
through zeros for integer coordinates. This assumption favors the gener-
alized interpolation model (7.9) instead of the classical model (7.7). We
consider the latter as too restrictive for the design of efficient interpola-
tors.

(ii) The functions are symmetric in order to preserve the phase relations.
(iii) The support M is chosen to be minimal, that is, N =M + 1, where M is

the polynomial degree; thus the targeted approximation order is L ≤ N .
These requirements target PP functions having an interpolation performance

comparable and even better than the B-spline interpolation performance for the
same degree M.

It is possible to construct the desired functions through the truncated power
basis or through the symmetrical PP basis described in [77]. However, it has turned
out that the B-splines are a better basis [18, 21, 22]. The required positivity and
symmetry are their inherent features. The minimal support is ensured by taking
a central B-spline of degree M and adding lower degree B-spline terms. Such a
combination has explicit and easily manageable forms in both time and frequency
domains and is very susceptible to optimization. The idea of constructing PP in-
terpolators by combining B-splines of different degrees has appeared in different
forms [8, 18, 53]. Engineers recognized the new construction as an opportunity to
play with the additional degrees of freedom in a frequency domain specified opti-
mization. Mathematicians recognized the construction as a convolution between a
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B-spline and a distribution and were interested mainly in what the asymptotic be-
havior of the prospective approximating candidates is. Both approaches converged
to a number of new optimized functions [9, 21, 39].

7.3.2.1. O-MOMS

The idea of combining B-splines of different degrees has appeared in a more for-
mal setting in [8, 9, 53] with the aim to construct a basis function having an ap-
proximation order L and the smallest possible support. It turned out that such a
function is merely a combination of the B-spline of degree M = L − 1 and its
derivatives [9, 53]:

ϕL(x) = βL−1(x) +
L−1∑
k=1

λkD
kβL−1(x). (7.81)

Blu et al. [9] have called this function class MOMS—maximal order of min-
imum support. It is characterized by the approximation order L, the (minimal)
support of L, and the polynomial degree of L− 1. Putting all parameters λk equal
to zero, we get the B-splines, which are the most regular functions in the class of
MOMS. Further optimization can be achieved by adding some weighted derivative
terms and tuning the weighting parameters. Derivatives of a B-spline are B-splines
of lower degree and hence the construction (7.81) yields a PP interpolator of min-
imal support and of highest possible approximation order. Blu et al. [9] propose
using the degrees of freedom to minimize the optimal approximation constant
Cϕ,LS (7.66). Their experiments have shown that this minimization gives better
results than the global minimization of the constant Cϕ (7.67). Minimization is
carried out by an analytical method. The functions obtained are called O-MOMS
(optimized MOMS). We give briefly their optimization results.

Transform the function (7.81) into Fourier domain

ΦL(2π f ) = Λ( j2π f )
(

sinc( f )
)L

, (7.82)

where Λ(z) =∑L−1
k=0 λkz

k is a polynomial of degree L− 1.
As a result of analytical optimization, the class of O-MOMS can be character-

ized by the following induction relation [9]:

ΛL+1(z) = ΛL(z) +
z2

4
(
4L2 − 1

)ΛL−1(z) (7.83)

with initial conditions Λ1(z) = Λ2(z) = 1. The minimal constant CL is given by

CL = L!
(2L)!

√
2L + 1

. (7.84)
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Several important observations are made in [9]: the polynomial in (7.83) is
even with strictly positive coefficients of even powers. For L even, the highest poly-
nomial degree is L− 2. As a result, the function ϕL(x) is continuous and has a dis-
continuous first derivative. For L odd, the highest polynomial degree is L − 1. The
resulting O-MOMS function ϕL(x) is discontinuous. These observations indicate
that regularity does not affect approximation accuracy. It is possible to construct
interpolators which have good approximation properties but which nevertheless
have low regularity and may even be discontinuous.

7.3.3. Modified B-splines

In this section, we present an alternative approach for obtaining optimized PP
basis functions. We use B-splines as building blocks to design a kernel having a
polynomial degree of M and a support of N = M + 1. The combination takes the
following general form:

βmod(x) =
M∑

m=0

∑
n∈Z

γmnβ
m(x − n). (7.85)

In our earlier publications [21, 22, 39] we have been calling such a combina-
tion modified B-spline function, emphasizing the fact that it is formed by a central
B-spline of degree M combined with additional B-spline terms of lower degrees. It
is also a basis function for some convolution-based spline-like signal space. From
a computational point of view it is a PP function of minimal support, where the
weighting coefficients γmn are optimized in a proper manner [18].

It is preferable to combine B-splines of odd degrees since they have knots at
the integers, while the even degree B-splines have knots at half-integers and require
an extra shift by half when making calculations.

We have studied extensively the following two cases: combining third and first
degree B-splines and combining fifth- with third- and first-degree B-splines. This
combination game can proceed further with higher degrees and with more pa-
rameters to be tuned. We have restricted it to these low-degree cases mainly for
computational reasons. Moreover, when the B-spline degree is high enough, that
is, higher than five, the performance is already sufficient for most of the image pro-
cessing applications [62]. The optimization plays a substantial role in improving
the performance precisely in the low-degree cases.

7.3.3.1. Third-degree combination

In this case, the modified B-spline basic function becomes

βmod(x) = β(3,1)(x) = β3(x) + γ10β
1(x) + γ11β

1(x + 1) + γ11β
1(x − 1). (7.86)
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Figure 7.7. PP kernels obtained as a combination of B-splines. (a) third- and first-degree combina-
tions. From top to bottom: cubic term, linear term, resulting kernel. (b) fifth-, third-, and first-degree
combinations. From top to bottom and from left to right: quintic, cubic, linear terms, and resulting
kernel.

This combination is of particular interest since the cubic term is smooth
enough and has short support. We denote it as (3,1) showing the degrees of B-
splines involved. Cubic convolution [33] and cubic spline [30] have been consid-
ered for a long time as the best cost/performance compromise for image interpo-
lation. By adding linear terms, we aim at improving the performance for the same
cost. The preservation of the partition of unity condition implies γ10 = −2γ11 and
(7.86) takes the form

β(3,1)(x) = β3(x) + γ11
[
β1(x − 1)− 2β1(x) + β1(x + 1)

]
. (7.87)

It can be regarded as a combination of a smoothing function β3(x) and a difference
part of zero average (β1(x − 1) − 2β1(x) + β1(x + 1)) or, more broadly, a combi-
nation of a scaling function and a wavelet. The properly adjusted parameter γ11

gives the trade-off between smoothing and sharpening. Figure 7.7(a) shows the
combination between a centered B-spline of third degree and centered and shifted
B-splines of first degree.

The frequency response of the modified function is represented as

B(3,1)(2π f ) =
(

sin(π f )
π f

)4

− 2γ11
(
1− cos(2π f )

)( sin(π f )
π f

)2

. (7.88)

The sampled version p(3,1)[k] = β(3,1)(x)|x=k has the following z-transform:

P(3,1)(z) =
(

4
6
− 2γ11

)
+
(

1
6

+ γ11

)(
z + z−1). (7.89)
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Finally, the frequency response of the interpolating function is obtained by

P(3,1)(z)
∣∣
z=e j2π f = P(3,1)(e j2π f

)
,

H(3,1)(2π f ) = B(3,1)(2π f )
P(3,1)

(
e j2π f

) . (7.90)

7.3.3.2. Fifth-degree combination

We combine quintic, cubic, and linear B-spline in a combination (5,3,1). The
modified B-spline takes the form

β(5,3,1)(x) = β5(x) + γ30β
3(x) + γ31

(
β3(x − 1) + β3(x + 1)

)
+ γ10β

1(x) + γ11
(
β1(x − 1) + β1(x + 1)

)
+ γ12

(
β1(x − 2) + β1(x + 2)

)
.

(7.91)

The kernel, as combined by quintic, cubic, and linear polynomial pieces, is shown
in Figure 7.7(b). In the frequency domain it is represented as

B(5,3,1)(2π f ) =
(

sin(π f )
π f

)6

+
(
γ30 + 2γ31 cos(2π f )

)( sin(π f )
π f

)4

+
(
γ10 + 2γ11 cos(2π f ) + 2γ12 cos(4π f )

)( sin(π f )
π f

)2

,

(7.92)

while the sampled version p(5,3,1)[k] = β(5,3,1)(x)|x=k has the z-transform

P(5,3,1)(z) =
(

66
120

+
4
6
γ30 +

2
6
γ31 + γ10

)
+
(

26
120

+
1
6
γ30 +

4
6
γ31 + γ11

)(
z + z−1)

+
(

1
120

+
1
6
γ31 + γ12

)(
z2 + z−2).

(7.93)

The frequency response of the interpolating function is obtained by

P(5,3,1)(z)
∣∣
z=e j2π f = P(5,3,1)(e j2π f

)
,

H(5,3,1)(2π f ) = B(5,3,1)(2π f )
P(5,3,1)

(
e j2π f

) . (7.94)

The partition of unity condition is ensured by γ30 +2γ31 +γ10 +2γ11 +2γ12 = 1.

7.3.3.3. Optimization

Consider an interpolation with a resampling step Δ < 1. The interpolation process
generates frequency components which are mirrors of the passband frequency re-
gion with respect to 2π/Δ. With some preliminary knowledge about the frequency
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characteristics of g(x), the interpolator h(x) = (p−1 ∗ ϕ)(x) can be designed in
the continuous frequency domain in such a way that it suppresses effectively the
undesired components of the interpolated signal (see Figure 7.3).

Our optimizing approach considers the possibility to express the edges (sharp
transition in images) as a certain amount of important high-frequency components
in the frequency characteristics of ga(x). Their mirrors in the stopband have to
be suppressed. Suppression efficiency has to compromise with the flatness of the
passband region of the interpolator’s frequency response. It is useful to represent
the frequency axis F ⊂ [0,∞) as consisting of disjoint regions: one passband and
multiple stopbands.

We assume that most of the important signal components (frequencies) are
in the frequency band | f | ≤ α with α < 1/2. The passband region is determined by

Fp = [0,α] (7.95)

and the stopband regions are determined by

Fs =
∞⋃
r=1

[r − α, r + α]. (7.96)

We design H(2π f ) = Φ(2π f )/P(e j2π f ) to preserve the signal in the passband
and to attenuate the undesired frequencies in the stopbands.

The optimization problem can be defined as follows [77].
Given the basis function support N , the polynomial degree M, and the frac-

tion of the Nyquist frequency α; specify D(2π f ) = 1 and W(2π f ) = w for f ∈ Fp,
and D(2π f ) = 0 and W(2π f ) = 1 for f ∈ Fs, and find the unknown coefficients
γmn to minimize

δ∞ = max
f∈F

∣∣W(2π f )
[
H(2π f )−D(2π f )

]∣∣, (7.97)

where F = Fp ∪ Fs, in such a way that preserves the partition of unity condition.
The function D(2π f ) ≡ Hideal(2π f ) is recognized as the desired impulse response,
while the function W(2π f ) is a positive weighting function, specifying the toler-
ance for the desired function. As defined in (7.97), the optimized function H(2π f )
is a minimax approximation to the desired continuous function D(2π f ), that is,
an approximation minimizing the L∞ error norm [55]. The reason for choosing
the minimax instead of least squares (L2 error norm) minimization is twofold.

(1) Most of the images are oversampled and the information content is con-
centrated in the low frequencies. We are not worried too much about the amount
of energy that can be transferred during the process of resampling from aliasing
components that are close to the Nyquist frequency. Correspondingly, we disre-
gard the requirement of minimal aliased energy, usually met by the LS optimiza-
tion.

(2) We would like to treat the passband and stopbands uniformly. The uniform
treatment is provided by the minimax optimization.
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Table 7.1. SNRs for different optimized PP kernels obtained as combinations of third- + first- degree
B-splines.

ModB-spline (3,1) SNR after successive rotations

2α −γ01
Mandrill256 Geom2.256 Barbara512 Mandrill512 Lena512

10× 36◦ 10× 36◦ 15× 24◦ 15× 24◦ 15× 24◦

0.5 0.0730 26.37 22.46 26.37 25.29 34.52

0.6; w = .2 0.0610 26.13 22.19 25.75 24.98 34.34

0.6; w = .5 0.0686 26.33 22.41 26.28 25.23 34.54

0.6; w = 1 0.0748 26.36 22.40 26.30 25.26 34.45

0.6; w = 2 0.0818 26.06 21.93 25.47 24.86 33.86

0.6; w = 5 0.0848 25.74 21.30 24.76 24.47 33.39

0.7; w = .2 0.0714 26.37 23.93 27.57 25.66 34.32

0.7; w = .5 0.8140 26.09 21.98 25.54 24.90 33.91

0.7; w = 1 0.0892 24.95 20.59 23.39 23.58 32.40

0.7; w = 2 0.0970 22.35 17.92 20.18 20.94 29.72

0.7; w = 5 0.1004 20.68 16.32 18.55 19.63 28.16

0.8 w = .2 0.0848 25.74 21.30 24.76 24.47 33.39

0.8; w = .5 0.0980 21.90 17.47 19.71 20.50 29.29

O-MOMS (3,1) 0.0476 25.67 23.14 25.19 24.63 33.60

B-spline (3) 0.0000 24.45 21.71 22.05 22.90 31.66

In numerical work, we take a sampled grid over F and convert the continu-
ously defined optimization task to a multiobjective goal attainment problem solv-
able by the algorithm of Gembicki [20], as realized in the Matlab function
fgoalattain [47].

We have sampled both the passband and first four stopbands by 500 equidis-
tant points and proved experimentally that this grid is dense enough for our prob-
lem.

Third-degree and fifth-degree families of PP interpolators in the form of mod-
ified B-splines have been optimized for M = 3 and M = 5 for various values of α
and various passband weights w. The optimized parameters obtained are listed in
Tables 7.1 and 7.2.

7.3.3.4. Efficient implementation

The B-spline representation of a PP interpolator provides a simple frequency do-
main form which is appropriate for optimal design. As far as efficient implemen-
tation is concerned, it is advisable to transform the B-spline representation to the
truncated power basis representation. It is especially suitable for the convolution-
based interpolation models (7.7) and (7.9).
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Table 7.2. Designs of PP interpolators of fifth degree.

Design no. 2α w γ10 γ11 γ12 γ30 γ31

1 0.7 10 −0.0001 −0.0046 −0.0023 −0.1361 0.0750

2 0.7 Sqrt(10) −0.0034 −0.0064 −0.0033 −0.133 0.0779

3 0.7 1 −0.0017 −0.0046 −0.0024 −0.1325 0.0741

4 0.7 Sqrt(0.1) 0.0005 −0.0026 −0.0013 −0.1323 0.0698

5 0.7 0.1 0.0003 −0.0022 −0.0013 −0.1289 0.0678

6 0.8 10 −0.0072 −0.0127 −0.006 −0.141 0.0928

7 0.8 Sqrt(10) −0.0137 −0.0164 −0.0072 −0.1317 0.0963

8 0.8 1 −0.0093 −0.0119 −0.0055 −0.1347 0.0894

9 0.8 Sqrt(0.1) −0.0038 −0.0077 −0.0036 −0.143 0.0847

10 0.8 0.1 −0.0005 −0.0085 −0.0024 −0.1633 0.0928

11 0.9 10 −0.0023 −0.0208 −0.0101 −0.1677 0.1159

12 0.9 Sqrt(10) −0.0091 −0.0216 −0.0127 −0.1461 0.1119

13 0.9 1 −0.0492 −0.0438 −0.0173 −0.0918 0.1316

14 0.9 Sqrt(0.1) −0.0335 −0.0341 −0.0127 −0.1237 0.1254

15 0.9 0.1 −0.0254 −0.0323 −0.0095 −0.156 0.1325

fifth-degree B-spline 0.0000 0.000 0.0000 0.0000 0.0000

O-MOMS (5,3,1) 0.00076 −0.0005 0.00013 −0.0606 0.0303

The truncated function is defined as

(x)+ := max{0, x}. (7.98)

Further, the truncated power function is defined as

(x)r+ := (
x+
)r

, r = 0, 1, 2, . . . . (7.99)

The shifted function (x − ξ)r+ is a piecewise polynomial of order r + 1 having
r − 1 continuous derivatives and a jump in the rth derivative across ξ of size r!. To
define the function for all values of r and x, that is, x = 0, we assume 00 = 0. With
this assumption, (x − ξ)r+ is a PP function for r = 0. For a given break sequence
ξ0, ξ1, . . . , ξN we form the functions

ρkm(x) :=
⎧⎪⎨⎪⎩
(
x − ξ0

)m
, k = 0,(

x − ξk
)m

+ , k = 1, . . . ,N − 1,
(7.100)

for m = 0, . . . ,M − 1. They are linearly independent and they span the space of
all piecewise polynomials of order M having breaks at ξ0, ξ1, . . . , ξN . Consequently,
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they form a basis and any PP function h(x) from this space can be expressed as
[11]:

h(x) =
N−1∑
k=0

M∑
m=0

cm[k]ρkm(x), (7.101)

where

cm[k] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dmh

(
ξ0
)

m!
, k = 0,

jumpξk
Dmh(x)

m!
, k = 1, . . . ,N − 1.

(7.102)

Now, the PP interpolation function is expressed as a sum of new truncated
polynomial pieces, each represented in terms of a truncated power basis. For break
points placed at the integers it is

h(x) =
N−1∑
k=0

Qk(x − k), (7.103)

where

Qk(x) =
M∑

m=0

cm[k]xm+ . (7.104)

The sequences cm[k], for k = 0, . . . ,N − 1, can be considered as a bank of M + 1
FIR filters having z-transforms

Cm(z) =
N−1∑
k=0

cm[k]z−k (7.105)

and the corresponding continuous Fourier transform is obtained for z = e− j2π f .
The interpolator expressed in the form of (7.103), (7.104) can be easily imple-

mented, see (7.18). To interpolate at the new point xl = xl + μl, we need h(k + μl),
that is

h
(
k + μl

) = M∑
m=0

cm[k]μml . (7.106)

Substituting h(k + μl) in (7.18) and changing the order of summations give

y[l] =
N−1∑
k=0

g
[
nl − k

] M∑
m=0

cm[k]μml =
M∑

m=0

vm
[
nl
]
μml , (7.107)
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μ

g[k]

CM(z) · · · C1(z) C0(z)

× + × +
y[l]

Figure 7.8. Farrow structure for PP interpolator.

where

vm
[
nl
] = N−1∑

k=0

g
[
nl − k

]
cm[k] (7.108)

are the outputs of the FIR filters (7.105). The corresponding filter structure is
known as Farrow structure[19] and is shown in Figure 7.8. This structure, origi-
nally proposed by Hou and Andrews for the case of B-splines [30], has been redis-
covered and generalized as a form for efficient realizations of piecewise polynomial
approximations. For M-degree polynomial it consists of M+ 1 parallel FIR branch
filters with fixed coefficients.

The interpolant point can be obtained by multiplying the output of the mth
FIR filter by μm−1. The only value that has to be loaded to the interpolator is the
fractional interval μl.

The B-splines are naturally expressed as PP functions in the truncated power
basis (cf. (7.71)). Adopting the Farrow structure notations, the coefficients cm[k]
for the B-spline of degree M and support N =M + 1 are expressed as

cm[k] =
N/2∑
i=−l

(−1)N/2−iN !(i + k)M−m

(N/2 + i)!(N/2− i)!(M −m)!m!
. (7.109)

The Farrow structure is essentially the same, except the input sequence, which is
formed by the model coefficients d[k] instead of the initial samples g[k].

The Farrow structure operation is clearly presented through the matrix no-
tations. Using (7.108) and (7.109), for the case of cubic B-spline, where N = 4,
M = 3, the interpolated sample y(l) is determined as [30]

y[l] = ya
(
nl + μl

) = 1
6

[
μ3
l μ2

l μ1
l 1

]
×

⎡⎢⎢⎢⎢⎢⎣
−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
d[nl − 2]

d[nl − 1]

d[nl]

d[nl + 1]

⎤⎥⎥⎥⎥⎥⎦ .

(7.110)
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The above equation clearly shows that a single interpolated sample is obtained
by the local weighting of the neighbor polynomial pieces. The rows of the fixed
matrix represent the FIR filter branches of the Farrow structure. Note that not the
input signal g[k] itself, but rather the model coefficients d[k] are filtered. When
the interpolation point occurs in the next integer interval between samples on the
input grid, that is, n = n + 1, the model coefficient on the top d[nl − 2] drops out
and the next coefficient d[nl + 2] enters from below, as in a conveyer.

For the modified case of B-splines of third and first degrees, the matrix is still
fixed, though with different coefficients,

y[l] = 1
6

[
μ3
l μ2

l μ1
l 1

]

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3− 6γ11 −6γ10 + 6γ11 3 + 6γ10 − 6γ11 −6γ11

1 + 6γ11 4 + 6γ10 1 + 6γ11 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d[nl − 2]

d[nl − 1]

d[nl]

d[nl + 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(7.111)

For the case of B-spline of fifth degree the matrix equation has the form

y[l] = 1
120

[
μ5
l μ4

l μ3
l μ2

l μ1
l μ0

l

]

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 5 −10 10 −5 1

5 −20 30 −20 5 0

−10 20 0 −20 10 0

10 20 −60 20 10 0

−5 −50 0 50 5 0

1 26 66 26 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d[nl − 3]

d[nl − 2]

d[nl − 1]

d[nl]

d[nl + 1]

d[nl + 2]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(7.112)

For the case of combination of fifth-, third-, and first-degree B-splines, the
values of the fixed matrix change. In fact, the first two rows, corresponding to the
filters c0[k] and c1[k], are the same, while the last four rows have been modified by
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the parameters γ’s. Below, the filters are presented in the transposed form

C(5,3,1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1

c2

c3

c4

c5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where cT0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

5

−10

10

−5

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, cT1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5

−20

30

−20

5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

cT2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10− 20γ31

20− 20γ30 + 60γ31

−80γ31 + 60γ30

−20 + 80γ31 − 60γ30

10− 60γ31 + 20γ30

20γ31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, cT3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 + 60γ31

20− 120γ31 + 60γ30

−60 + 120γ31 − 120γ30

20− 120γ31 + 60γ30

10 + 60γ31

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

cT4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5− 60γ31 − 120γ12

−50 + 120γ12 − 120γ11 − 60γ30

−120γ10 + 120γ11

50 + 120γ10 + 60γ30 − 120γ11

5− 120γ12 + 60γ31 + 120γ11

120γ12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, cT5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 20γ31 + 120γ12

26 + 80γ31 + 120γ11 + 20γ30

66 + 80γ30 + 40γ31 + 120γ10

26 + 20γ30 + 80γ31 + 120γ11

1 + 20γ31 + 120γ12

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(7.113)

7.3.4. Comparisons

Some elaborate surveys [35, 41] have compared a large number of PP-based and
sinc-based image interpolators. Thirty two kernels have been studied in [35], while
126 kernels have been studied in [41]. The experiments included geometrical for-
ward and backward transformations: subpixel translation, rotation, and rescaling
over a large number of images of different kinds, including digital photographs
and biomedical images. The reported results in [35, 41] show the superiority of
B-spline basis functions in a cost-performance sense. In addition, Thévenaz et al.
[62, 63] have analyzed a number of convolution-based interpolation kernels and
favored the class of MOMS from an approximation theory point of view. They
stressed the importance of the approximation order and approximation constant,
and corroborated their theoretical considerations by involving the investigated

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


Atanas Gotchev et al. 321

Figure 7.9. Rotation as three successive translations [76].

kernels in repetitive rotations experiments. In the rest of this chapter we will com-
pare our optimized designs with the O-MOMS and B-splines, as functions belong-
ing to the class of minimally supported PP basis functions.

7.3.4.1. The rotation experiment

We have adopted the experiment with successive image rotations [76]. A test image
is rotated to a certain angle which is the result of an integer division of 360◦, for
example, 24◦ = 360◦/15, 36◦ = 360◦/10, and so forth. The rotation is repeated
until the image reaches its starting position. Consider the matrix

R(θ) =
⎡⎣cos θ − sin θ

sin θ cos θ

⎤⎦ . (7.114)

It determines a rotation of the image coordinates (x, y) by the angle θ. The matrix
factorization

R(θ) =
⎡⎣cos θ − sin θ

sin θ cos θ

⎤⎦ =
⎡⎢⎣1 − tan

(
θ

2

)
0 1

⎤⎥⎦ ·
⎡⎣ 1 0

sin θ 1

⎤⎦ ·
⎡⎢⎣1 − tan

(
θ

2

)
0 1

⎤⎥⎦
(7.115)

decomposes the rotation into three 1D translations, as illustrated in Figure 7.9
[76]. Each subpixel translation is an interpolation operation with no rescaling.
The repetitive rotation experiment is very appropriate for accumulating the inter-
polation errors, thereby emphasizing the interpolator’s performance [62].

Several well-known test images have been chosen because of their different
frequency contents. Among them, the Barbara, mandrill, and patterns images that
contain high-frequency and texture details, the geometrical image contains differ-
ent radial frequencies, the Lena image is more like a low-frequency image, and the
bridge contains some straight edges (Figure 7.10).
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322 Interpolation by optimized spline kernels

Figure 7.10. Test images with different frequency contents.

On the chosen set of images, we have performed 10 and 15 successive rota-
tions of 36◦ and 24◦, respectively, involving PP optimized interpolators, B-splines
and O-MOMS of third and fifth degrees. As a measure of goodness, we have used
the SNR between the initial image and the rotated one. Table 7.1 summarizes the
results for the third-degree kernels, while Table 7.3 summarizes the results for the
fifth-degree kernels. One can see that significant improvements are provided by
some of the proposed modified B-splines for the relatively high-frequency im-
age Barbara. Even improvements of more than 4 dB are achieved, compared to
the classical fifth-degree B-spline and the O-MOMS. This argues the applicabil-
ity of the chosen optimization technique, especially for high-frequency images.
For relatively low-frequency images (like Lena), noticeable improvements can be
achieved.

We illustrate the improvement of interpolation quality by two visual exam-
ples. A portion of the Barbara image, namely, the high-frequency trousers (Figure
7.11) is shown after 15 × 24◦ rotations using three different PP interpolators of
third degree. As can be seen in Figure 7.12 the most blurred image is the one ob-
tained by the cubic B-spline. Our modified spline (3,1) gives the superior visual
quality. To magnify the effect, the same images are enlarged by factor of two in
Figure 7.13.

The second example is the central part of the geometrical image (Figure 7.14)
containing high radial frequencies. The images, resulting from 15 successive rota-
tions of 24◦ and by using three interpolation kernels of third degree, are shown in
Figure 7.15, whereas Figure 7.16 shows the same images enlarged by factor of two.
Again, more details are preserved in the image rotated using the Mod B-spline
(3,1).
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Table 7.3. SNRs for optimized PP kernels of fifth degree in Table 7.2 after rotation 10× 36◦.

Design no. Bridge Barbara Geometrical Lena

1 29.54 32.25 24.32 36.21

2 29.65 32.67 24.43 36.26

3 29.60 32.49 24.38 36.23

4 29.52 32.22 24.30 36.19

5 29.49 32.15 24.30 36.17

6 29.80 33.08 24.54 36.32

7 29.82 33.35 24.65 36.22

8 29.82 33.34 24.60 36.28

9 29.80 33.26 24.53 36.32

10 29.81 33.29 24.52 36.37

11 29.20 30.15 24.05 35.81

12 29.72 31.57 24.33 36.10

13 29.20 32.79 24.76 34.67

14 29.58 33.44 24.82 35.43

15 29.50 33.07 24.78 35.51

B-spline (5) 28.02 27.89 23.37 34.98

O-MOMS (5,3,1) 28.47 29.05 23.69 35.38

Figure 7.11. Portion of Barbara image: trousers (zoomed out).

Table 7.4 shows comparisons of different spline-based interpolations for four
rotation experiments. Barbara image has been rotated clockwise 15 times by 24◦

and 10 times by 36◦. The same successive rotations have been accomplished then
backwards to allow for accumulating more interpolation errors. The differences
between the original image and the rotated ones have been measured by peak
signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), mean absolute error
(MAE), mean square error, and maximum difference. The experiments have in-
volved the interpolation kernels described in Section 7.3.4.2. The results in the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


324 Interpolation by optimized spline kernels

Figure 7.12. Results of successive rotations, 15× 24◦. From left to right: original image, rotated using
cubic B-spline, rotated using O-MOMS (3,1), rotated using Mod B-spline (3,1).

Figure 7.13. Same as in Figure 7.11 magnified by a factor of two. From left to right and from top to
bottom: original, cubic B-spline rotated, O-MOMS (3,1) rotated, Mod B-spline (3,1) rotated.

table once again confirm the superior performance of the properly optimized ker-
nels. Note, that the modified B-spline kernel of third degree already achieves better
performance than some of the higher degree kernels.
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Figure 7.14. Portion of geometrical image: center (zoomed out).

Figure 7.15. Results of successive rotations, 15× 24◦. From left to right: original image, rotated using
cubic B-spline, rotated using O-MOMS (3,1), rotated using Mod B-spline (3,1).

Figure 7.16. Same as in Figure 7.14 magnified by factor of two. From left to right and from top to
bottom: original image, cubic B-spline rotated, O-MOMS (3,1) rotated, Mod B-spline (3,1) rotated.

7.3.4.2. Approximation error kernel

The performance of different interpolators can be compared theoretically based on
the representation of the approximation error (7.42), (7.54) in frequency domain
[62].

We present a comparison between two modified B-spline-based optimized
kernels, of third and fifth degrees, respectively, and their O-MOMS counterparts.
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Table 7.4. Trend of some quality measures for different spline-based interpolators. Barbara (512×512)
image processed.

Interpolator

Rotations 15× 24◦ clockwise

PSNR, SNR, MAE MSE MaxDiff

[dB] [dB] L1 norm L2 norm L∞ norm

B-spline (3) 27.02 22.07 5.5717 0.0276 70

O-MOMS (3,1) 30.20 25.25 3.6765 0.0191 58

Mod B-spline (3,1) 32.64 27.70 2.9757 0.0144 50

B-spline (5) 31.19 26.25 3.3074 0.0171 50

O-MOMS (5,3,1) 32.41 27.89 2.8853 0.0148 46

Mod B-spline (5,3,1) 36.47 31.53 1.9769 0.0093 28

Interpolator

Rotations 15× 24◦ clockwise and back

PSNR, SNR, MAE MSE MaxDiff

[dB] [dB] L1 norm L2 norm L∞ norm

B-spline (3) 25.07 20.12 7.1015 0.0345 77

O-MOMS (3,1) 28.23 23.28 4.5958 0.0240 67

Mod B-spline (3,1) 30.40 25.46 3.9859 0.0019 60

B-spline (5) 28.98 24.04 4.2307 0.0220 60

O-MOMS (5,3,1) 30.21 25.27 3.6552 0.0191 55

Mod B-spline (5,3,1) 34.14 29.20 2.5497 0.0121 34

Interpolator

Rotations 10× 36◦ clockwise

PSNR, SNR, MAE MSE MaxDiff

[dB] [dB] L1 norm L2 norm L∞ norm

B-spline (3) 28.64 23.69 4.5812 0.0229 63

O-MOMS (3,1) 31.92 26.97 3.0177 0.0157 55

Mod B-spline (3,1) 34.03 29.08 2.5076 0.0123 49

B-spline (5) 32.92 27.97 2.7346 0.0140 49

O-MOMS (5,3,1) 34.11 29.16 2.4038 0.0122 44

Mod B-spline (5,3,1) 37.89 32.95 1.7016 0.0079 26

Interpolator

Rotations 10× 36◦ clockwise and back

PSNR, SNR, MAE MSE MaxDiff

[dB] [dB] L1 norm L2 norm L∞ norm

B-spline (3) 26.30 21.36 6.0891 0.0300 74

O-MOMS (3,1) 29.76 24.82 3.8270 0.0201 69

Mod B-spline (3,1) 31.65 26.71 3.3366 0.0162 72

B-spline (5) 30.51 25.56 3.5545 0.0185 59

O-MOMS (5,3,1) 31.77 26.83 3.0745 0.0160 56

Mod B-spline (5,3,1) 35.81 30.87 2.1270 0.0100 31
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Figure 7.17. Magnitude responses of three PP interpolators of third degree.

The O-MOMS interpolation kernels of the form (7.81) have been optimized
to have minimal interpolation constant [9]. This has yielded interpolator func-
tions of the type of (7.81) as follows:

βO-MOMS(3,1)(x) = β3(x) +
(

1
42

)
D2β3(x),

βO-MOMS(5,3,1)(x) = β5(x) +
(

1
33

)
D2β5(x) +

(
1

7920

)
D4β5(x).

(7.116)

Here, the abbreviations O-MOMS(3, 1) and O-MOMS(5, 3, 1) denote the de-
grees of the B-splines involved in the combination.

The modified kernels have been optimized to have a passband up to α = 0.35
with maximal ripples of 0.1–0.2% and to suppress the frequencies in the stopband
as much as possible. The optimization has resulted in the kernels

βmod(3,1)(x) = β3(x)− 0.0714β1(x) + 0.0357
(
β1(x − 1) + β1(x + 1)

)
,

βmod(5,3,1)(x) = β5(x)− 0.1289β3(x) + 0.0003β1(x)

+ 0.0678
(
β3(x − 1) + β3(x + 1)

)
− 0.0022

(
β1(x − 1) + β1(x + 1)

)
− 0.0013

(
β1(x − 2) + β1(x + 2)

)
.

(7.117)

Again, the notations Mod B-spline (3,1) and Mod B-spline (5,3,1) stand for
the degrees of the B-splines involved in the corresponding combinations.

Figure 7.17 compares the magnitude response of the optimized interpolation
kernel of third degree (solid line), as of (7.90), with the O-MOMS (dashed line)
and B-spline (dotted line) of same degree. It is well visible that the zeros of the
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Figure 7.18. Magnitude responses of three PP interpolators of fifth degree.

modified kernel are not all located at the multiples of the sampling rate. This re-
sults in a better stopband attenuation.

The magnitude response of the fifth-degree modified B-spline interpolator
(solid line), as of (7.94), is shown in Figure 7.18 together with O-MOMS (dashed
line) and quintic B-spline (dotted line). Here, the effect of zero clustering for the
case of modified B-spline interpolator is not indicated down to −100 dB.

Much more can be seen from the curve of the error approximation kernel, as
of (7.42). As can be seen in Figure 7.19, the O-MOMS kernels (dashed lines) per-
form better for low frequencies, while the modified B-spline kernels (solid lines)
are superior for higher frequencies (the curves to the left are for the third-degree
kernels and the curves to the right are for the fifth-degree kernels). Note, however,
that for low frequencies the predictive approximation error in the case of modified
B-splines is less than 10−6! This theoretical performance comparison concurs with
the rotation experiment and shows that the modified kernels are potentially more
promising because of their better high-frequency performance and reasonable and
acceptable low-frequency error.

7.3.4.3. Total squared error

The total squared approximation error can be predicted using (7.54) for different
interpolators and for different image models [63]. We have computed the error
(7.54) for the following image models: white noise, Markov process, and an edge
(unit step function), involving the interpolators from Section 7.3.4.2.

White noise. The power spectrum of the white noise is uniform and constant
over the interval of integration. For this image model, the total squared error
is obtained by integrating the error kernel (7.42) over the chosen interval. We
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Figure 7.19. Approximation error kernels for different PP interpolators.

Table 7.5. Predictive squared error for different image models and different interpolators.

Interpolator
ε2, [DB]

White noise Markov process

B-spline (3) 13.15 28.91

O-MOMS (3,1) 14.03 29.98

Mod (3,1) 14.58 30.63

B-spline (5) 14.94 31.02

O-MOMS (5,3,1) 15.47 31.62

Mod (5,3,1) 17.02 33.62

have adopted the settings in [63], namely, the integration interval has been set
to [−π,π] (band-limited white noise). The results are summarized in Table 7.5.

Markov process. The Markov process has been chosen as it models a large class of
real images [63]. In frequency domain, its power spectrum is described by

∣∣Ga(2π f )
∣∣2 = −2 log(ρ)

(2π f )2 + log2(ρ)
(7.118)

with a correlation factor ρ less than but close to unity. To be consistent with the
experiments in [63], we have set ρ = 0.9. The results are presented in the last
column of Table 7.5. Even for such a low-frequency process the modified interpo-
lation kernels play better, a fact emphasizing once again the importance of a proper
compromise in specifying the optimization criteria.
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Edge (step function). The step function is a model of sharp changes in the image
intensity, that is, image edges. It is not a band-limited function and the accuracy of
its reconstruction by means of interpolation depends on the phase of the sampling
process, that is, the relative position of the samples around the step. For this image
model, the measure (7.42) gives the amount of the approximation errors averaged
over all possible sampling phases.

Assume an ideal rectangular scanning device aperture of unity length. It trans-
forms the step function into the ramp function of unity width. Its spectrum is

∣∣Ga(2π f )
∣∣2 = sinc2(π f )

(2π f )2
. (7.119)

One can represent the averaged error as function of the sampling frequency. The
curves for some traditional interpolators, such as sinc (the ideal interpolator for
band-limited functions), linear, and piecewise cubic, have been obtained in [49].
We add here the curves for the cubic B-spline interpolator (Figure 7.20(a)) and
for the optimized O-MOMS (3,1) and Mod (3,1) (Figure 7.20(b)). As can be seen
from the figures, for such a nonband-limited model the sinc interpolator is outper-
formed by the spline-based interpolators for a large range of sampling ratios. Also,
the frequency domain specified optimization criteria that lead only to marginal
improvement in this particular case.

7.4. Conclusions

In this section, we reviewed new spline-like basis functions, namely, PP functions
of minimal support. We demonstrated how to improve the interpolation perfor-
mance by taking optimized combinations of B-splines of different degrees. The
combinations of third- and first-degree B-splines and of fifth-, third-, and first-
degree B-splines were especially studied because they provide a good opportunity
to deal with both smooth and sharp image areas and because they offer accept-
able computational complexity. Two optimization techniques were presented: first
one based on approximation theoretic assumptions and second one operating in
frequency domain just like in a classical filter design. By the latter technique, the
adjusted parameters were optimized in such a way that the resulting interpolation
function sufficiently suppresses the imaging frequencies. As a result, the obtained
PP interpolation kernels achieved better frequency characteristics than the classical
B-splines, that is, flatter in the passband, steeper in the transition band, and with
sufficient attenuation in the stopbands. While being very similar in construction
to the so-called O-MOMS functions, the main difference between two optimized
families is in the position of frequency response zeros around the multiples of the
sampling rate (2kπ in terms of angular frequency). MOMS functions have multi-
ple zeros at those points complying with the Strang-Fix conditions for Lth-order
approximation functions. In the alternative design, the Lth order of approxima-
tion is traded for a better frequency domain stopband performance. In fact, as a
result of the minimax optimization procedure the obtained functions have zeros
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Figure 7.20. Averaged approximation error for image model “edge scanned with ideal aperture” and
for different interpolators.

clustered around (2kπ), thus forming the desired stopbands. We showed that this
optimization technique, working entirely in frequency domain, gives very promis-
ing results. This is done thanks to the good compromise between the increased
interpolation capabilities for relatively high frequencies and the controllable low-
frequency error. We experimentally proved the best interpolation capabilities of
the functions thus constructed, especially for preserving high-frequency image de-
tails.
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As far as the computational complexity is concerned, we described efficient
filtering structures at arbitrary scale, based on the so-called Farrow structure.

Thanks to their susceptibility to optimization and computationally efficient
structures, the modified B-spline kernels can considerably increase the interpo-
lation quality and, therefore, they can be applied in image rescaling and rotation
tasks and in approximation of multiscale operators as well.
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[9] T. Blu, P. Thévenaz, and M. Unser, “MOMS: maximal-order interpolation of minimal support,”
IEEE Transactions on Image Processing, vol. 10, no. 7, pp. 1069–1080, 2001.

[10] T. Blu and M. Unser, “Quantitative Fourier analysis of approximation techniques. I. Interpolators
and projectors,” IEEE Transactions on Signal Processing, vol. 47, no. 10, pp. 2783–2795, 1999.

[11] C. de Boor, A Practical Guide to Splines, Springer, New York, NY, USA, 2nd edition, 2001.

[12] C. de Boor, R. A. DeVore, and A. Ron, “Approximation from shift-invariant subspaces of L2(Rd),”
Transactions of the American Mathematical Society, vol. 341, no. 2, pp. 787–806, 1994.

[13] P. J. Burt, “Fast filter transform for image processing,” Computer Graphics and Image Processing,
vol. 16, no. 1, pp. 20–51, 1981.

[14] S. Chaudhuri, Ed., Super-Resolution Imaging, Kluwer Academic, Boston, Mass, USA, 2001.

[15] C. K. Chui, Multivariate Splines, vol. 54 of CBMS-NSF Regional Conference Series in Applied Math-
ematics, SIAM, Philadelphia, Pa, USA, 1988.

[16] C. K. Chui and J.-Z. Wang, “On compactly supported spline wavelets and a duality principle,”
Transactions of the American Mathematical Society, vol. 330, no. 2, pp. 903–915, 1992.

[17] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of compactly supported
wavelets,” Communications on Pure and Applied Mathematics, vol. 45, no. 5, pp. 485–560, 1992.
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age decimation,” in Proceedings of International Conference on Image Processing (ICIP ’03), vol. 3,
pp. 929–932, Barcelona, Spain, September 2003.

[29] T. Hentschel and G. Fettweis, “Continuous-time digital filters for sample-rate conversion in re-
configurable radio terminals,” in Proceedings of the European Wireless Conference (EW ’00), pp.
55–59, Dresden, Germany, September 2000.

[30] H. S. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 26, no. 6, pp. 508–517, 1978.

[31] R. Hummel, “Sampling for spline reconstruction,” SIAM Journal on Applied Mathematics, vol. 43,
no. 2, pp. 278–288, 1983.

[32] A. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, USA, 1989.

[33] R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1153–1160, 1981.

[34] R. Lagendijk and J. Biemond, Iterative Identification and Restoration of Images, Kluwer Academic,
Boston, Mass, USA, 1991.

[35] T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image
processing,” IEEE Transactions on Medical Imaging, vol. 18, no. 11, pp. 1049–1075, 1999.

[36] P. Lemarié, “Ondelettes à localisation exponentielle,” Journal de Mathématiques Pures et Ap-
pliquées, vol. 67, no. 3, pp. 227–236, 1988.

[37] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[38] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, Calif, USA, 1998.

[39] G. Marchokov, A. Gotchev, J. Vesma, T. Saramäki, and K. Egiazarian, “Efficient polynomial-based
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8
Fast discrete sinc-interpolation:
a gold standard for image resampling

L. Yaroslavsky

Numerous image processing tasks and applications require digital image re-
sampling and geometrical transformations. These operations always assume build-
ing, from available image samples, a “continuous” image model, which is then re-
sampled into the required new sample positions. For generating the “continuous”
image model, available image samples are interpolated using, usually, convolution
interpolation kernels. In the design of this process, a compromise is sought be-
tween the interpolation accuracy and computational complexity. In this chapter,
we describe a family of discrete sinc-interpolation algorithms that can be regarded
as a gold standard for interpolation of sampled signals defined by a final number
of their samples. We prove that discrete sinc-interpolation is the only convolution-
based interpolation method that preserves signal content in its baseband defined
by the sampling rate, provide experimental evidence of its prevalence, outline its
various algorithmic implementations based on fast transform, illustrate its ap-
plications for signal/image fractional shifts, image rotation, image resizing, sig-
nal integration and differentiation, and show that the availability of fast Fourier
and fast DCT-based discrete sinc-interpolation algorithms makes discrete sinc-
interpolation a very competitive alternative to other interpolation techniques in
applications that are sensitive to interpolation accuracy and require image resam-
pling in a regular equidistant sampling grid. For image resampling in irregular
sampling grid, we suggest sliding window discrete sinc-interpolation methods that
provide the best, for the given window size, interpolation accuracy and are, in ad-
dition, capable of simultaneous image resampling and filtering for restoration or
enhancement and of local adaptation of the interpolation kernel.

8.1. Introduction

Accurate and fast signal and image resampling is a key operation in many digi-
tal image processing applications such as image reconstruction from projections,
multimodality data fusion, image superresolution from image sequences, stabi-
lization of video images distorted by atmosphere turbulence, target location and
tracking with subpixel accuracy, and so forth, to name a few.
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338 Discrete sinc-interpolation

Resampling assumes interpolation of available signal/image samples to ob-
tain samples in between the given ones. In some applications, for instance, in
computer graphics and print art, simple interpolation methods, such as nearest
neighbor or linear (bilinear), can provide satisfactory results. In applications that
are more demanding in terms of the interpolation accuracy, higher-order spline
interpolation methods gained popularity. The interpolation accuracy of spline in-
terpolation methods is proportional to the spline order. In the same way, their
computational complexity grows.

Meanwhile, there exists a unique discrete signal interpolation method that
is capable, given finite set of signal samples, to secure virtually error-free sig-
nal interpolation. This method is the discrete sinc-interpolation. Discrete sinc-
interpolation has been known for quite a lot of time but still remains to be a sort
of an “ugly duckling” in the family of discrete signal interpolation methods. Vir-
tually in all text and reference books on digital signal and digital image processing,
one can find only brief mentioning discrete sinc-interpolation solely in an associ-
ation with DFT spectrum zero-padding, which is rather inefficient and inflexible
if compared, computationwise, with other interpolation methods. It is also most
frequently confused with the continuous sinc-interpolation that, theoretically, se-
cures error-free reconstruction of band-limited signals and least mean square error
reconstruction of arbitrary continuous signals, provided infinitely large number of
signal samples is available and that cannot be implemented in reality when only a
finite number of signal samples is available.

The chapter intends to advocate broad use of the discrete sinc-interpolation in
signal and especially in image processing. To this goal, we, in Section 8.2, provide a
theoretical proof that discrete sinc-interpolation is the only convolution-based in-
terpolation method that preserves signal content in its frequency baseband defined
by the signal sampling rate. In Section 8.3, we support this proof by experimen-
tal comparison of discrete sinc-interpolation with other interpolation methods in
terms of the interpolation accuracy. In Section 8.4, we describe various fast Fourier
and fast DCT transform-based algorithms for signal and image subsampling, ar-
bitrary fractional shift, zooming, rotation and scaling, and numerical integration
and differentiation with discrete sinc-interpolation that uses all available signal
samples. As these algorithms are computationally efficient only if resampling in
a regular equidistant sampling grid is required, we, in Section 8.5, suggest sliding
window DCT domain discrete sinc-interpolation algorithms that are suitable for
signal resampling in arbitrary irregular sampling grid, provide the best, for the
given window size, interpolation accuracy, are capable, additionally to interpola-
tion, of simultaneous signal/image restoration and enhancement, and allow easy
local adaptation of the interpolation kernel. Necessary mathematical details and
auxiliary materials are entered in the appendices.

8.2. Optimality of the discrete sinc-interpolation:
a mathematical formulation

For the purposes of the resampling filter design, one can regard signal coordinate
shift as a general resampling operation. This is justified by the fact that samples of
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the resampled signal for any arbitrary signal resampling grid can be obtained one
by one through the corresponding signal shift to the given sample position. In this
section, we introduce, for signals defined by the finite number of their samples,
an optimal signal shifting resampling filter that preserves signal content in its fre-
quency baseband defined by the signal sampling rate and show that the filter point
spread function (impulse response) is the discrete sinc-function.

8.2.1. Preliminaries and denotations

Let {ak} be a set of samples of an analog signal a(x), N = 0, 1, . . . ,N − 1:

ak =
∫∞
−∞

a(x)ϕ(s)(x − k̃(s)Δx
)
dx, (8.1)

where {ϕ(s)(·)} is a set of sampling basis functions, k̃(s) = k + u(s), and u(s) is a
shift, in units of the sampling interval Δx of the signal sampling grid with respect
to signal coordinate system.

We assume that, for signal shifting resampling, resampled signal samples {ãx̃k}
are obtained by means of digital convolution

ãx̃k =
N−1∑
n=0

h
(intp)
n (x̃)ak−n (8.2)

of the initial signal samples {ak} with a certain interpolation kernel h
(intp)
n (x̃) (re-

sampling filter point spread function), where x̃ is a required signal shift with re-
spect to the sampling grid of samples {ak}.

We assume also that samples {ã x̃
k} correspond to a continuous x̃-shifted sig-

nal:

ã(x) =
N−1∑
k=0

ã x̃
kϕ

(r)(x − k̃(r)Δx
)
, (8.3)

where {ϕ(r)(·)} is a set of reconstruction basis functions, as, for instance, those

that describe image display devices, k̃(r) = k + u(r), and u(r) is a shift, in units of
the sampling interval Δx of the reconstructed signal sampling grid with respect to
reconstructed device coordinate system.

8.2.2. Continuous impulse and frequency responses of
digital resampling filters

Signal resampling is a linear signal transformation. As any linear transformation,
it is completely characterized by its impulse response, or point spread function
(PSF). In order to find PSF of the resampling transformation, let us establish alink
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between reconstructed resampled x̃-shifted signal ã(x) of (8.3) and initial signal
a(x). To this goal, combine (8.1)–(8.3) and obtain

ã(x)=
N−1∑
k=0

N−1∑
n=0

h
(intp)
n (x̃)ϕ(r)[x−(k+u(r))Δx] ∫∞

−∞
a(ξ)ϕ(s)[ξ−(k−n+u(s))Δx]dξ

=
∫∞
−∞

a(ξ)

{ N−1∑
k=0

N−1∑
n=0

h
(intp)
n (x̃)ϕ(r)[x−(k+u(r))Δx]ϕ(s)[ξ−(k−n+u(s))Δx]}dξ

=
∫∞
−∞

a(ξ)h̃
(intp)
x̃ (x, ξ)dξ.

(8.4)

Function

h̃
(intp)
x̃ (x, ξ) =

N−1∑
k=0

N−1∑
n=0

h
(intp)
n (x̃)ϕ(r)[x − (

k + u(r))Δx]ϕ(s)[ξ − (
k − n + u(s))Δx]

(8.5)

in (8.4) can be treated as the overall point spread function (OPSF) of the numerical
signal x̃-shifting resampling process described by (8.2).

Define overall frequency response of the shifting resampling process as 2D
Fourier transform of its OPSF:

H
(intp)
x̃ ( f , p) =

∫∫∞
−∞

h
(intp)
x̃ (x, ξ) exp

[
i2π( f x − pξ)

]
dx dξ. (8.6)

Replace, in (8.6), h(intp)(x, ξ) with its expression given by (8.5), and obtain

H
(intp)
x̃ ( f , p)

=
∫∫∞
−∞

N−1∑
k=0

N−1∑
n=0

h
(intp)
n (x̃)ϕ(r)[x − (

k + u(r))Δx]
× ϕ(s)[ξ − (

k − n + u(s))Δx] exp
[
i2π( f x − pξ)

]
dx dξ

=
N−1∑
k=0

N−1∑
n=0

h
(intp)
n (x̃)

∫∞
−∞

ϕ(r)[x − (
k + u(r))Δx] exp(i2π f x)dx

×
∫∞
−∞

ϕ(s)[ξ − (
k − n + u(s))Δx] exp(−i2πpξ)dξ
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=
N−1∑
k=0

N−1∑
n=0

h
(intp)
n (x̃) exp

[
i2π f

(
k + u(r))Δx]

× exp
[− i2πp

(
k + u(r) − u(r) − n + u(s))Δx]

×
∫∞
−∞

ϕ(r)(x) exp(i2π f x)dx
∫∞
−∞

ϕ(s)(ξ) exp(−i2πpξ)dξ

=
N−1∑
n=0

h
(intp)
n (x̃) exp

[
i2πp

(
n + u(r) − u(s))Δx dξ] N−1∑

k=0

× exp
[
i2π( f − p)

(
k + u(r))Δx]

×
∫∞
−∞

ϕ(r)(x) exp(i2π f x)dx
∫∞
−∞

ϕ(s)(ξ) exp(−i2πpξ)dξ.

(8.7)

The first term in this product

H
(intp)
x̃ (p) =

N−1∑
n=0

h
(intp)
n (x̃) exp

[
i2πp

(
n + u(r) − u(s))Δx] (8.8)

is determined solely by the resampling filter coefficients {h(intp)
n (x̃)} and signal

sampling interval Δx. We call this term “continuous frequency response (CFrR) of
the resampling filter.”

The second term can be represented as

SVN ( f − p) =
N−1∑
k=0

exp
[
i2π( f − p)

(
k + u(r))Δx]

= exp
[
i2π( f − p

)
NΔx

]− 1
exp

[
i2π( f − p)Δx

]− 1
exp

[
i2π( f − p)u(r)Δx

]

= sin
[
π( f − p)NΔx

]
sin

[
π( f − p)Δx

] exp
[
iπ(N − 1)( f − p)

(
N − 1 + 2u(r))Δx]

=N sincd
[
N ;π( f −p)NΔx

]
exp

[
iπ(N−1)( f −p)

(
N−1+2u(r))Δx],

(8.9)

where

sincd(N ; x) = sin(x)
sin(x/N)

(8.10)

is the discrete sinc-function.
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342 Discrete sinc-interpolation

It is only natural to maintain the following relationship between the number
of signal samples N and sampling grid shift u(r) in the display coordinate system:

u(r) = −N − 1
2

. (8.11)

In this case, the phase term in (8.9) becomes zero, and

SVN ( f − p) = N sincd
[
N ;π( f − p)NΔx

]
. (8.12)

This term describes how the overall frequency response of the resampling process
is affected by the finiteness of the number of signal samples. Specifically, it shows
that, for any finite number of signal samples N , numerical signal resampling is not
shift invariant process and it is subjected to boundary effects. The contribution of
the boundary effects decays when the number of signal samples N grows. In the
limit, when N →∞,

lim
N→∞

SVN ( f − p) = lim
N→∞

N sincd
[
N ;π( f − p)NΔx

] = δ
[
π( f − p)NΔx

]
,

(8.13)

and the numerical signal resampling process tends to become shift invariant.
Two last terms in (8.7),

Φ(s)(p) =
∫∞
−∞

ϕ(s)(ξ) exp(−i2πpξ)dξ,

Φ(r)( f ) =
∫∞
−∞

ϕ(r)(x) exp(i2π f x)dx,

(8.14)

are frequency responses of signal sampling and reconstruction devices.
Given the number of signal samples and signal sampling and reconstruction

devices, the quality of the numerical resampling process can be evaluated in terms

of the continuous frequency response (CFrR) H
(intp)
x̃ (p) of the resampling filter

defined by (8.3).
In order to facilitate analysis of the CFrR, it is useful to link it with samples

{η(intp)
r } of a shifted discrete Fourier transform (SDFT) of the resampling filter

coefficients {h(intp)
n (x)}. For SDFT (u, 0), these sets of the coefficients are related

through the equation

h
(intp)
n (x̃) = 1√

N

N−1∑
r=0

η
(intp)
r (x̃) exp

[
− i2π

(n + u)r
N

]
, (8.15)

where u is a signal domain transform shift parameter (see Chapter 3). We will refer

to the set of coefficients η
(intp)
r (x̃) as to discrete frequency response of the resampling

filter.
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Replacing {h(intp)
n (x)} in (8.3) with its expression in (8.15), obtain

H(intp)(p) =
N−1∑
n=0

1√
N

N−1∑
r=0

η
(intp)
r (x̃) exp

[
− i2π

(n + u)r
N

]

× exp
[
i2πp

(
n + u(r) − u(s))Δx]

=
N−1∑
r=0

η
(intp)
r (x̃)

{
1√
N

N−1∑
n=0

exp
[
− i2π

(n + u)r
N

]

× exp
[
i2πp

(
n + u(r) − u(s))Δx]}

=
N−1∑
r=0

η
(intp)
r (x̃)

{
1√
N

N−1∑
n=0

exp
[
i2π

(
pΔx − r

N

)
n
]}

× exp
(
− i2π

ur

N

)
exp

[
i2πp

(
u(r) − u(s))Δx]

=
N−1∑
r=0

η
(intp)
r (x̃)

1√
N

exp
[
i2π(pΔx − r/N)N

]− 1
exp

[
i2π(pΔx − r/N)N

]− 1

× exp
(
− i2π

ur

N

)
exp

[
i2πp

(
u(r) − u(s))Δx]

=
N−1∑
r=0

η
(intp)
r (x̃)

√
N

N

sin
[
π(pΔx − r/N)N

]
sin

[
i2π(pΔx − r/N

)]
× exp

[
− i2π

r

N

(
u +

(N − 1)
2

)]

× exp
[
i2πp

(
u(r) − u(s) +

(N − 1)
2

)
Δx

]
.

(8.16)

Provided reconstruction shift parameter is determined by (8.11), the natural se-
lections of signal sampling shift parameter u(s) and SDFT shift parameter u are

u(s) = 0, u = −N − 1
2

. (8.17)

Then, obtain finally

H(intp)(p) ∝
N−1∑
r=0

η
(intp)
r (x̃) sinc

[
N ;π

(
pΔx − r

N

)
N
]
. (8.18)

With this, we arrive to the following theorems.
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344 Discrete sinc-interpolation

Theorem 8.1. SDFT(−(N − 1)/2, 0) coefficients of resampling filter point spread

function {h(intp)
n (·)}, or its discrete frequency response η

(intp)
r (·), are samples of the

filter continuous frequency response H(intp)(p).

Theorem 8.2. Continuous frequency response H(intp)(p) of the resampling filter is a

function, discrete-sinc interpolated from its samples η
(intp)
r (·), taken with sampling

interval 1/NΔx, where N is the number of signal samples involved in the resampling
and Δx is signal sampling interval.

Note that, generally, these theorems are applicable to any digital filter and its
discrete and continuous frequency responses.

8.2.3. Optimal resampling filter

We define the optimal shifting resampling filter as the filter that generates a shifted
copy of the input signal and preserves samples of the analog signal spectrum in its
baseband defined by its sampling rate and the number of available signal samples.
According to this definition, continuous frequency response of the optimal shifting
resampling filter for the coordinate shift δx̃ is, by virtue of the Fourier transform
shift theorem,

H(intp)(p) = exp(i2πpδx̃). (8.19)

Then, according to Theorem 8.1, for odd number of signal samples N , samples

{η(intp)
r,opt (δx̃)} of CFrR of the optimal resampling filter that define its point spread

function {h(intp)
n (δx̃)} should be selected as

η
(intp)
r,opt (δx̃) = 1√

N
exp

(
i2π

rδx̃

NΔx

)
, r = 0, 1, . . . ,

N − 1
2

,

η
(intp)
r,opt (δx̃) = η

∗(intp)
N−r,opt(δx̃), r = N + 1

2
, . . . ,N − 1.

(8.20)

For even number of signal samples N , coefficient η
(intp)
N/2,opt(δx̃), which corre-

sponds to the signal higher frequency in its baseband, requires a special treatment.
As it is shown in Appendix A, this coefficient must be an imaginary number in

order to keep filter point spread function {h(intp)
n (δx̃)} to be real valued. This lim-

itation inevitably prevents the N/2th signal spectral coefficient from being exact
sample of the ideal frequency response and assumes its arbitrary choice. The most
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natural one is the assignment

η
(intp)
r,opt (δx̃) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
i2π

rδx̃

NΔx

)
, r = 0, 1, . . . ,

N

2
− 1,

−Ai sin
(
π
δx̃

Δx

)
, r = N

2
,

η
(intp)
r,opt (δx̃) = −(η(intp)

N−r,opt(δx̃)
)∗

, r = N

2
+ 1, . . . ,N − 1,

(8.21)

where A is a weight coefficient that defines signal spectrum shaping at its highest
frequency component. In what follows, we will consider, for even N , the following
three options for A:

Case 0 : A = 0,

Case 1 : A = 1,

Case 2 : A = 2.

(8.22)

It is shown in Appendix B that, for odd N , point spread function of the opti-
mal resampling filter defined by (8.15) is

h
(intp)
n (δx̃) = sincd

{
N ,π

[
n− N − 1

2
− δx̃

Δx

]}
. (8.23a)

For even N , Case 0 and Case 2, optimal resampling point spread functions are

h
(intp 0)
n (δx̃) = sincd

{
N ;N − 1;π

[
n− N − 1

2
− δx̃

Δx

]}
, (8.23b)

h
(intp 2)
n (δx̃) = sincd

{
N ;N + 1;π

[
n− N − 1

2
− δx̃

Δx

]}
, (8.23c)

correspondingly, where a modified sincd-function sincd is defined as

sincd(N ;M; x) = sin(Mx/N)
N sin(x/N)

. (8.24)

One can easily see that Case 1 is just a combination of Case 0 and Case 2:

h
(intp 2)
n (δx̃) = h

(intp 0)
n (δx̃) + h

(intp 2)
n (δx̃)

2

= sincd(±1;N ; x) = sincd(N − 1;N ; x) + sincd(N + 1;N ; x)
2

.

(8.23d)

These four functions h
(intp)
n (δx̃) are illustrated in Figure 8.1 for N = 512. As one

can see, Case 1-discrete sinc-function decays to zero much faster than three other
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Figure 8.1. Four versions of discrete sinc-function of (8.23a)–(8.23d) ((a)–(d)) and point spread
functions of four spline interpolation methods ((e)–(h)).
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versions and therefore is less liable to boundary effects. We call signal resampling,
by means of filters defined by (8.23), discrete sinc-interpolation.

Such result can be formulated as the follows.

Theorem 8.3. For analog signals defined by their N samples, discrete sinc-interpola-
tion is, for odd N , the only discrete convolution-based signal resampling method that
does not distort signal spectrum samples in its baseband specified by the signal sam-
pling rate Δx. For even N , discrete sinc-interpolation distorts only the highest N/2th
frequency spectral component.

In conclusion of this section, note that the reasoning concerning the design of
the optimal resampling filter discussed in this section can also be used for the de-
sign of numerical implementation of any shift invariant signal linear transforma-
tions. In Section 8.4.5, we will use it for the design and comparison of algorithms
for signal numerical differentiation and integration.

8.2.4. Optimal resampling filter: discussion and interpretation;
discrete sinc- and continuous sinc-functions

Discrete sinc functions sincd and sincd defined by (8.10) and (8.24) are discrete
point spread functions of the ideal digital lowpass filter, whose discrete frequency
response is a rectangular function. Depending on whether the number of signal
samples N is odd or even number, they are periodic or antiperiodic with period
N , as it is illustrated in Figures 8.2(a) and 8.2(b). According to Theorem 8.2, con-
tinuous frequency response of discrete sinc-interpolators is a function, discrete
sinc-interpolated from its discrete frequency response. Both continuous and dis-
crete frequency responses of discrete sinc-interpolators are illustrated in Figure
8.2(c).

As one can see from the figure, discrete sinc-inerpolation does preserve signal
spectrum in spectrum sampling points, while in between sampling points spec-
trum oscillations are possible due to the continuous frequency response interpo-
lation. However, these oscillations are caused solely by the finite number of signal
samples and depend solely on signal boundary conditions. Specifically in image
processing, this means that they can be significantly weakened by an appropri-
ate windowing of the interpolated discrete signal at its boundaries without any
change of the interpolation PSF. It is in this sense one can say that the preserva-
tion of signal spectral samples in the process of signal resampling is the necessary
and sufficient condition of signal spectrum preservation as far as it concerns the
selection of the resampling interpolation function. In Section 8.3, we will provide
an experimental evidence in favor of this statement.

Discrete sinc-functions are plotted in Figure 8.2 along with the continuous
sinc-function sinc x = sin x/x. It is a Fourier transform of the rectangular func-
tion, which is the frequency response of the ideal lowpass filter for continuous sig-
nals. Discrete sinc-functions are discrete analogs of the continuous sinc-function,
however, these functions must not be confused.
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Figure 8.2. (a)-(b) Continuous (bold circles) versus discrete (thin line) sinc-functions for odd and
even N , respectively; (c) continuous frequency response of the sincd-interpolator (solid line) and sam-
ples of the ideal lowpass filter frequency response (bold circles).

Sinc-function is an aperiodic function with infinite support. It is a convolu-
tion kernel that preserves spectra of continuous signals in their baseband defined
by the sampling rate. For band-limited signals, it provides signal perfect recon-
struction from their samples provided infinite number of the samples is available.
For signals that are not band-limited, it provides least mean square error signal
reconstruction under the same condition.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


L. Yaroslavsky 349

Discrete sinc-interpolation, in its turn, provides perfect, for the given num-
ber of signal samples, discrete signal resampling with preservation of correspond-
ing continuous signal spectra in their sampling points. Continuous frequency re-
sponse of discrete-sinc interpolators coincides with that of continuous sinc-
interpolator in spectral sampling points defined by the number of the discrete
signal samples, but deviates from it between sampling points, deviations being
dependent on discrete signal boundary conditions.

Continuous sinc-function is a mathematical model that cannot be imple-
mented in reality due to its infinite support. As a practical substitute for sinc-
function, a windowed sinc-function is considered frequently for interpolation pur-
poses. As a convolutional interpolation kernel, it has no indisputable advantages
over other interpolation kernels for the same number of samples. Discrete sinc-
functions must not be confused with a windowed sinc-function either.

8.3. Discrete sinc-interpolation versus other interpolation methods:
performance comparison

In this section, we provide experimental evidence that the discrete sinc-interpola-
tion outperforms other known interpolation methods in terms of the interpola-
tion accuracy and signal preservation and is capable of virtually error-free sig-
nal interpolation. Compared with discrete sinc-interpolation are nearest neigh-
bor interpolation, linear (bilinear) interpolation, cubic (bicubic) spline interpola-
tion, and higher-order spline interpolation methods: Mems(5, 3, 1) (see [1]), and
Beta11 spline (see [2]). Point spread functions of the first 4 interpolation methods
are shown in Figures 8.1(e)–8.1(h), correspondingly, where they can be compared
with point spread functions of the above described modifications of the discrete
sinc interpolation ((a)–(d)).

Mentioned interpolation methods were compared in two applications: image
rotation and image zooming. In image rotation, several rotations of test images
were performed using mentioned interpolation methods so as the total rotation
angle be multiple of 360◦. Then, the rotation error was evaluated as a difference
between initial and rotated images, and its DFT power spectrum was evaluated
and displayed. For image zooming, test images were subjected to 4 times zooming
and then DFT spectra of zoomed images were computed and displayed in order to
evaluate spectra aliasing artifacts introduced by the methods.

For discrete sinc-interpolation, the version with point spread function shown
in Figure 8.1(d) was used. In experiments with nearest neighbor, bilinear, and
bicubic interpolation, Matlab programs imrotate.m and interp2.m from image
processing tool box were used. In experiments with Mems(5, 3, 1)-interpolation, a
software package kindly provided by Dr. Gotchev (see [3]) was used. Discrete sinc-
interpolation used in the experiments was implemented in Matlab using standard
Matlab tools.

As test images, two images were used: an image of a printed text (“Text” image,
Figure 8.3(a)) and a computer generated pseudorandom image with uniform DFT
spectrum (“PRUS” image, Figure 8.3(b)). The “Text” image was used to evaluate
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(a) (b)

Figure 8.3. Test images used in the experiments: (a) “Text” image; (b) “PRUS” image.

readability of the text for different rotation method. The “PRUS” image was used
for demonstrating distortions of signal spectra caused by the resampling.

Results of comparison, for rotation of test image “Text,” of three standard
methods of image resampling, nearest neighbor, bilinear and bicubic ones, and
that of discrete-sinc interpolation in application to image rotation, are shown in
Figures 8.4(a)–8.4(d).

As it was mentioned, for the standard methods, Matlab program imrotate.m
from image processing tool box was used. For discrete sinc-interpolated rotation,
a Matlab code was written using standard Matlab tools that implements the 3-
step rotation algorithm (see [4]) through DFT-based fractional shift algorithm
described in the next section. Images shown in the figure clearly show that, after 60
rotations though 18◦ each, standard interpolation methods completely destroy the
readability of the text, while discrete sinc-interpolated rotated image is virtually
not distinguishable from the original one.

Nearest neighbor, bilinear, and bicubic interpolations are spline interpola-
tions of the first, second, and third order. The higher the spline order, the higher
interpolation accuracy, and the higher their computational complexity. However,
higher-order spline interpolators still underperform the discrete sinc-interpolation
as one can see from Figures 8.5(a) and 8.5(b) where results of 1000 rotations,
through 18◦ each rotation, of the “Text” image using Mems(5, 3, 1)-based rota-
tion program and the above mentioned Matlab code that implements 3-step ro-
tations with discrete sinc-interpolation. While rotated test image obtained with
Mems(5, 3, 1)-interplolation, is substantially blurred, image, rotated with discrete
sinc-interpolation remains unchanged. Figures 8.5(c) and 8.5(d) are reference im-
ages that represent the test image low pass filtered to 0.5 (image (c)) and to 0.4
(image (d)) of the baseband. Comparing them with Mems(5, 3, 1)-rotated image,
one can say that, after 1000 rotations, Mems(5, 3, 1)-rotated image is equivalent,
from the point of view of the text readability, to a lowpass filtered image with the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


L. Yaroslavsky 351

(a) 1080 degrees rotated image in 60
steps (NearNeighb, T = 7.268)

(b) 1080 degrees rotated image in 60
steps (Bilinear, T = 11.1)

(c) 1080 degrees rotated image in 60
steps (Bicubic, T = 17.67)

(d) 1080 degrees rotated image in 60
steps (Discrete sinc, T = 14.158)

Figure 8.4. Discrete sinc-interpolation versus conventional interpolation methods: results of multiple
rotation of the test image ”Text.” Numbers in brackets indicate processing time.

residual bandwidth of 0.4-0.5 of the initial one. Note that in these experiments,
both compared methods had comparable run time on the same computer.

In the analysis of the interpolation errors, it is very instructive to compare
their power spectra. Figures 8.6(a)–8.6(d) present power spectra of rotation er-
rors obtained for the test image “PRUS” rotated 10 times through 36◦ each time,
using bicubic interpolation (Matlab program imrotate.m), Mems(5, 3, 1), Beta11,
and discrete sinc-interpolation, correspondingly. Rotation results obtained with
Beta11 spline interpolation were kindly provided by Dr. Thévenaz (see [2]). Ro-
tation error spectra for Mems(5, 3, 1) and discrete sinc-interpolation and larger
number (100) of rotations through multiple of 360◦ are shown for comparison
in Figures 8.7(a) and 8.7(b), correspondingly. All spectra in Figures 8.6 and 8.7
are centered around zero frequency (dc) component; left-right and top-bottom
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(a) (b)

(c) (d)

Figure 8.5. Discrete sinc-interpolation versus Mems(5, 3, 1) interpolation method: results of im-
age rotations through 18 000◦ in 1000 steps using Mems(5, 3, 1) interpolation (a) and discrete sinc-
interpolation (b) and reference test images lowpass filtered to 0.5 (c) and to 0.4 (d) of the baseband.

borders of the images correspond to the highest horizontal and, correspondingly,
vertical spectral components.

These spectra clearly show that, of those four methods, only discrete sinc-
interpolation preserves image content in its baseband. For discrete sinc-
interpolation, only spectral components outside the circle with radius equal to the
highest horizontal/vertical frequency (frequency index N/2) are distorted. These
distortions are, in accordance with Theorem 8.3, associated with the implementa-
tion of the discrete sinc-interpolation for even number of signal samples. Plots of
horizontal and vertical spectra sections (Figures 8.6(e), 8.6(f)) illustrate spectra of
rotation error in more quantitative terms.

In Figures 8.6 and 8.7, one can also see that all interpolation methods pro-
duce, in image rotation, errors outside a circle inscribed into square that corre-
sponds to the image baseband area. These errors are rotation aliasing errors. They
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Figure 8.6. (a)–(c): rotation error spectra for bicubic (a), Mems(5, 3, 1) (b), Beta11 (c), and discrete
sinc-interpolation (d) interpolation methods; (e)–(f): vertical and horizontal cross-sections of the 2D
spectra (dots: spectra samples; solid lines: continuous spectra). All spectra are shown centered at spec-
trum zero frequency (dc) component, image lightness being proportional to spectra intensity.

originate from image diagonal spectral components that should, due to the rota-
tion, go outside the baseband square and are put inside it because of the cyclicity
of the DFT. Figure 8.8 shows rotation error spectra for 10 × 36◦ rotations, using
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(a) (b)

Figure 8.7. Rotation error spectra for 100 × 36◦ rotations of “PRUS”-image using Mems(5, 3, 1)-
interpolation (a) and discrete sinc-interpolation (b). All spectra are shown centered at spectrum zero
frequency (dc) component image lightness being proportional to spectra intensity.

(a) (b)

(c)

Figure 8.8. Rotation error spectra for 10 × 36◦ rotations of PRUS image low pass filtered to 0.7 of
its baseband for bicubic (a), Mems(5, 3, 1) (b) and discrete sinc-interpolation (c) methods. All spectra
are shown centered at spectrum zero frequency (dc) component, image lightness being proportional
to spectra intensity.

bicubic, spline351, and sinc-interpolation, of PRUS image that was lowpass pre-
filtered to 0.7 of the baseband in horizontal and vertical dimensions. As a result
of such a lowpass filtering, aliasing error components are excluded, and one can
see from the figure that discrete sinc-interpolation, as opposite to other methods,
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does not produce, in this case, rotation errors at all (few components still visi-
ble in Figure 8.8(c) are intentionally left as reference points that keep, for display
purposes, dynamic range of the error for all compared methods).

Experimental results presented in Figures 8.4–8.8 illustrate interpolation er-
rors within the image baseband. Aliasing interpolation errors outside the image
baseband for different interpolation methods, in spectra of 4x-zooming “PRUS”
image are illustrated in Figure 8.9 for bilinear, bicubic, Mems(5, 3, 1)- and discrete
sinc-interpolation methods. One can clearly see that spectrum of discrete-sinc-
interpolated zoomed image (Figure 8.9(d)) does not contain any aliasing compo-
nents while spectra images zoomed with other methods do. Corresponding 1D
horizontal sections of these spectra shown in Figures 8.9(d)-8.9(e) illustrate this
quantitatively.

8.4. Global image resampling: fast discrete sinc-interpolation
algorithms and applications

8.4.1. Signal subsampling (zooming in) by DFT and
DCT spectrum zero-padding

Fast discrete sinc-interpolation algorithms are all based on fast transforms (fast
Fourier transform or fast DCT transform). The most well-known signal re-
sampling algorithm that implements discrete sinc-interpolation is the signal sub-
sampling algorithm by means of zero-padding of its DFT spectrum. Given sub-
sampling (zoom) factor M, the algorithm generates, from signal of N samples, a
signal of MN samples in which every Mth samples are corresponding samples of
the original signal and the rest (M − 1)N samples are discrete sinc-interpolated
from original samples. The algorithm can be described by the equation

ãk̃ = IFFTMN
{

DFT ZPM
[

FFTN
(
ak
)]}

, (8.25)

where {ak}, k = 0, 1, . . . ,N−1, are input signal samples, {ãk̃}, k̃ = 0, 1, . . . ,NM−1,
are output signal samples, M is a signal zoom (subsampling) factor, FFTN (·) and
FFTMN (·) are direct and inverse fast Fourier transform operators of N- and, cor-
respondingly, MN-point. DFT ZPM[·] in (8.25) is a zero-padding operator that
forms, from N-points sequence of samples, an MN-points sequence by padding
the former with (M − 1)N zeros. When N is an odd number, zeros are placed be-
tween (N − 1)/2th and (N + 1)/2th samples of the N-points sequence. When N is
an even number, then, either

(i) (M−1)N + 1 zeros are placed between N/2−1th and N/2 + 1th samples
of the N-points sequence and N/2th sample is discarded, or

(ii) (M − 1)N zeros are paced after N/2th sample and then the sequence
repeated beginning of its N/2th sample, or

(iii) (M−1)N zeros are paced after N/2th sample of the sequence, this sample
is halved and then N/2th through (N − 1)th samples are placed, N/2th
sample being halved.
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Figure 8.9. Spectra of 4x-zoomed “PRUS” image for bilinear (a) bicubic (b), Mems(5, 3, 1) (c), and
discrete sinc-interpolation (d) methods and corresponding central horizontal sections of the spectra
((e)–(h)). All spectra are shown centered at spectrum zero frequency (dc) component, image lightness
being proportional to spectra intensity. Note speckle patterns in spectra (a)–(c) caused by the interpo-
lation inaccuracy.
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Cases (i)–(iii) implement above described Case 0, Case 2, and Case 1 discrete
sinc-interpolation, respectively.

Although discrete sinc-interpolation is optimal in preserving signal spectrum,
it has one major drawback. As interpolation kernel discrete sinc-function decays to
zero relatively slow, discrete sinc-interpolation heavily suffers from boundary ef-
fects that may propagate rather far from signal boundaries. It is especially the case
in image processing when image size rarely exceeds, in each dimension, 1000 sam-
ples. With the use of FFT in the resampling algorithm, images are treated as being
virtually periodic. Therefore, samples at their left and right and, correspondingly,
upper and bottom borders are, virtually, immediate neighbors in the interpolation
process. Therefore, any discontinuity between opposite border samples will cause
heavy discrete sinc-function oscillations that propagate far away from the borders.

A simple and very efficient solution of this problem is working in the domain
of discrete cosine transform (DCT) instead of DFT:

ãk̃ = IDCTMN
{

DCT ZPM
[

DCTN
(
ak
)]}

, (8.26)

where DCTN (·) and IDCTMN (·) are N-points fast direct and MN-points inverse
discrete cosine transforms and DCT ZPM[·] is a DCT spectrum zero-padding
operator that places (M−1)N zeros after the last (N−1)th DCT spectrum sample.
For faster decay of the interpolation kernel, it is also advisable to halve the last two
samples that, for DCT, represent signal highest frequency component.

Figure 8.10 demonstrates virtual absence of boundary effect oscillations for
image zooming by DCT spectrum zero-padding algorithm compared to DFT spec-
trum zero-padding.

As it is shown in Appendix C, point spread function of the DCT spectrum
zero-padding with halving its last two components is defined by equation

˜̃ak = αDCT
0√
2LN

+
1

N
√
L

N−1∑
n=0

an

{
sin

[
π
(
(N + 1)/2NL)(ñL− k̃)

]
sin

[
π(ñL− k̃)/2NL

] cos
[
π(ñL− k̃)

2L

]

+
sin

[
π
(
(N+1)/2NL

)
(ñL+k̃)

]
sin

[
π(ñL+k̃)/2NL

] cos
[
π(ñL + k̃)

2L

]

+
sin

[
π
(
(N−1)/2NL

)
(ñL−k̃)

]
sin

[
π(ñL−k̃)/2NL

] cos
[
π
N−2
2NL

(ñL−k̃)
]

+
sin

[
π
(
(N−1)/2NL

)
(ñL+k̃)

]
sin

[
π(ñL+k̃)/2NL

] cos
[
π
N−2
2NL

(ñL+k̃)
]}

.

(8.27)

One can see from (8.27) that DCT zero-padding interpolation is not a cyclic
shift invariant and is implemented by two pairs of sincd-function interpolation
kernels 1/2-shifted and mirror reflected with respect to each other. Its behavior is
illustrated in Figure 8.11 for sampling positions at boundaries and at the middle
of the signal extent.
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(a) (b)

(c)

Figure 8.10. Zooming of an image fragment outlined by white box in (a): zero-padding its DFT spec-
trum (b) and zero-padding DCT spectrum (c). Note that heavy oscillations in the vicinity of image
borders in image (a) disappear in image (b).

As it is immediately seen from (8.27), point spread function of the DCT zero-
padding interpolation approximates the discrete sinc-function very closely. This
close similarity is illustrated in Figure 8.12 that shows PSFs (Figure 8.12(a)) and
discrete frequency responses (Figure 8.12(b)) of DFT and DCT zero-padding for
signal 4x-zooming.

Computationwise, signal L-times zooming by zero-padding its DFT or DCT
spectra requires O(logN) operations per each signal N samples for direct trans-
form and O(L logNL) operation for inverse transform of zero pad spectra which
is quite inefficient for large L. Moreover, when conventional radix 2 FFT and fast
DCT algorithms are used, zooming factor L should be selected to be an integer
power of 2. These two facts limit applicability of the spectra zero-padding algo-
rithms. However, in certain cases the use of above described algorithms is a good
practical solution. This might be, for instance, the case when one works in a certain
software environment, such as Matlab. Image zooming by means of DCT spectra
zero-padding can be naturally used when images are represented in a compressed
form such as in JPEG compression. In this case, zooming can be carried out with-
out the need to decompress images. In the next sections, much more computation-
ally efficient and flexible discrete sinc-interpolation algorithms will be described

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


L. Yaroslavsky 359

0

0.5

1

(a)

0

0.5

1

(b)

0

0.5

1

(c)

Figure 8.11. Point spread function of DCT zero-padding for three different sampling positions.

that can compete, both in terms of the interpolation accuracy and computational
complexity, with other interpolation methods.

In conclusion, note that signal interpolation by DFT and DCT spectra zero-
padding can be naturally extended to interpolation by zero-padding of signal spec-
tra in other bases, such as Walsh or wavelet ones. This option is discussed in
Appendix D.

8.4.2. DFT- and DCT-based signal fractional shift algorithms

In this section, we describe signal fractional shift algorithms that provide a compu-
tationally efficient and competitive solution for virtually error-free signal resam-
pling. Consider first the DFT-based algorithm that computes, for signal samples

{ak}, discrete sinc-interpolated samples {a(u)
k } of a signal shifted with respect to

the initial signal by an arbitrary distance u times signal sampling interval Δx. The
algorithm is described by the equation

ãk̃ = IFFTN
{{
η(intp)(uΔx)

} • [FFTN
(
ak
)]}

, (8.28)

where FFTN (·) and IFFTN (·) are direct and inverse N-point fast Fourier trans-

forms, • symbolizes pointwise (Hadamard) matrix product and {η(intp)
r (uΔx)} is

a set of coefficients defined, for odd N by the above (8.20) in which δx̃ should be
replaced by uΔx. For even N , (8.21) is applicable with a slight modification that

η
(intp)
N/2 (uΔx) should be taken equal to A cos(2πru/N) because simple DFT is used in

the algorithm rather than SDFT assumed in the derivation of (8.21) and, therefore,
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Figure 8.12. Point spread functions (a) and frequency responses (b) of DCT spectrum zero-padding
(8.27) and DFT zero-padding (sincd-function sincd(±1,N , x) of (8.23d)) for 4x-zooming.

set of coefficients {η(intp)
r (uΔx)}must obey complex conjugate symmetry property

of DFT spectra of real sequences.
We will call this algorithm “DFT-based signal fractional shift algorithm.” This

algorithm can be recommended for numerous applications. First of all, it allows
generating arbitrarily shifted discrete sinc-interpolated copies of signals. For in-
stance, it is especially useful for implementing image shearing in 3-step image ro-
tation algorithm (see [4]) in which, at each of the three stages, image shearing
(correspondingly, vertical, horizontal, and another vertical) is performed. Above
presented experimental results for image rotation with discrete sinc-interpolation
were obtained using DFT-based fractional shift algorithm.

Another option is signal/image zooming-in with an arbitrary integer zoom
factor. For zoom factor L, signal/image zooming can be implemented through
combination of L−1 signal/image copies shifted by corresponding multiple of 1/L
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shifts. Above presented experimental results with discrete sinc-interpolated image
zooming were obtained using this algorithm.

One of the applications in which image rescaling with high interpolation ac-
curacy is required is real time location and tracking of moving targets in video
sequences. In this case, template images of the target with arbitrary orientation
and scale can be very rapidly computed using bilinear interpolation or similar fast
resampling techniques applied to a reference image of the target highly oversam-
pled using DFT/DCT-based zooming. Paper [5] reports such a hybrid resampling
for an implementation of the direct Fourier method of tomographic reconstruc-
tion (see also [6, Section 9.4.5]).

Yet another application option is signal/image subsampling in the vicinity of
a selected sample; this feature enables realization of continuous spectrum analysis
and computing signal correlation with subpixel accuracy for target location.

Being a cyclic convolution, the “DFT-based” signal fractional shift algorithm
suffers from same boundary effects as the DFT zero-padding algorithm does. The
efficient practical solution of the problem is to implement convolution in DCT do-
main instead of DFT domain [7, 8]. Signal convolution in DCT domain is equiv-
alent to shifted DFT(1/2,0) convolution of an auxiliary signal obtained from the
initial signal by its extension to double length by means of its mirrored copy to
eliminate discontinuities at the signal boundaries. For signal uΔx-shift, the algo-
rithm is described by the equation

ãk̃ = IDCTN
{[
η

(intp),re
r (uΔx)

] • [DCTN
(
ak
)]}

− IDcSTN
{[
η

(intp),im
r (uΔx)

] • [DCTN
(
ak
)]}

,
(8.29)

where DCTN (·) and IDCTN (·) are operators of direct and inverse DCT trans-
forms, IDcSTN (·) is operator of the inverse discrete cosine-sine transform (for def-

initions of DCT and DcST, see Chapter 3), and {η(intp),re
r (uΔx)}, {η(intp),im

r (uΔx)} are

real and imaginary parts of coefficients {η(intp)
r (uΔx)} defined by (8.20) in which

N should be replaced by 2N :

{
η

(intp),re
r (uΔx)

} = {
cos

(
πur

N

)}
,

{
η

(intp),im
r (uΔx)

} = {
sin

(
πur

N

)}
, r = 0, 1, . . . ,N − 1,

(8.30)

and • symbolizes elementwise (Hadamard) product of vectors.
With respect to the boundary effects, DCT-based fractional shift algorithm is

as efficient in eliminating boundary effects as the above-described DCT spectrum
zero-padding algorithm. In terms of the interpolation accuracy, it is equivalent to
the above DFT-based fractional shift algorithm as it implements convolution with
discrete sinc-function. Experimental evidence of the equivalency is illustrated in
Figures 8.13(a) and 8.13(b).
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(a) (b)

(c)

Figure 8.13. Error spectra for 60×6◦ rotations of PRUS-image test image. (a): DFT-sinc interpolation;
(b): DCT-sinc interpolation; (c): RotDFT-algorithm. All spectra are shown centered at spectrum zero
frequency (dc) component. Standard deviation of the rotation error is practically the same for all cases:
20.0, 19.4 and 21.1, respectively.

8.4.3. Signal zooming using “scaled” DFT

DFT- and DCT-based fractional shift algorithms originate from the concept of
shifted discrete fourier transforms (SDFT) that are obtained, for sampled signals,
from Fourier integral transform in the assumption of an arbitrary shift of the sig-
nal and its Fourier spectra sampling grid shifts with respect to continuous signal
and its spectrum coordinate systems (see [9] and also Chapter 3). Conventional
discrete Fourier transform can be regarded as a special case of SDFTs when no sig-
nal and its spectrum sampling grids are assumed. It is also assumed in the deriva-
tion of DFTs that signal and its Fourier spectrum sampling intervals, say Δx and
Δ f , are linked with the number N of signal samples, according to the sampling
theorem, by the “cardinal sampling” condition

Δ f = 1
NΔx

. (8.31)

As it is shown in Chapter 3, if one assumes a certain σ-times oversampling
or undersampling, with respect to the cardinal sampling, with sampling inter-
val Δx = 1/σNΔ f in σ-scaled coordinates and sampling grid shifts (uσ , vσ) in,
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respectively, signal and transform domains, scaled discrete Fourier transforms
(ScDFT(uσ , vσ ; σ))

αu,v;σ
r = 1√

σN

N−1∑
k=0

ak exp
[
i2π

(
k + uσ

)(
r + vσ

)
σN

]
(8.32)

can be obtained.
Similar to the case of shifted DFT, where the availability of arbitrary shift pa-

rameters enables, as it was described above, arbitrary fractional shift of sampled
signal with discrete sinc-interpolation, the availability of an arbitrary scale param-
eter in ScDFT enables discrete signal resampling into an arbitrary scale by means
of applying to the signal direct and inverse ScDFTs with different scale parameters.
The following equations prove that this resampling is carried out with discrete-
sinc interpolation. Let

αr = 1√
N

N−1∑
n=0

an exp
[
i2π

(
n + u0

)(
r + v0

)
N

]
= 1√

N

N−1∑
n=0

an exp
[
i2π

ñ
(
r + v0

)
N

]
,

(8.33)

where ñ = n + u0, be SDFT(u0, v0) coefficients of a signal specified by its samples
{an}. Applying to these coefficients ScDFT(uσ , vσ ; σ) of (8.32), obtain

ãk = 1√
σN

N−1∑
r=0

αr exp
[
i2π

(
k + uσ

)(
r + vσ

)
σN

]
= 1√

σN

N−1∑
r=0

αr exp
(
i2π

k̃r̃

σN

)
,

(8.34)

where k̃ = k + uσ and r̃ = r + vσ . Then,

ãk = 1
N
√
σ

N−1∑
r=0

{ N−1∑
n=0

an exp
(
i2π

r + v0

N
ñ
)}

exp
(
i2π

r + vσ
σN

k̃
)

= 1
N
√
σ

N−1∑
n=0

an exp
[
i2π

(
ñv0 + k̃vσ /σ

N

)] N−1∑
r=0

exp
(
i2π

ñ + k̃/σ

N
r
)

= 1
N
√
σ

N−1∑
n=0

an
sin

[
π(ñ + k̃/σ)

]
sin

[
π(ñ + k̃/σ)/N

]
× exp

{
i2π

[
ñ
(
v0 + (N − 1)/2

)
+ (k̃/σ)

(
vσ + (N − 1)/2

)
N

]}
.

(8.35)
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364 Discrete sinc-interpolation

With settings

v0 = vσ = −N − 1
2

, (8.36)

we finally obtain

ãk= 1√
σ

N−1∑
n=0

an
sin

[
π(ñ+k̃/σ)

]
N sin

[
π(ñ+k̃/σ)/N

] =N−1∑
n=0

an sincd
{
N ,π

[(
n+u0

)
+
k + uσ
σ

]}
,

(8.37)

which means discrete sinc-interpolated signal resampling and rescaling with re-
spect to points u0, uσ , respectively.

As it is shown in Chapter 3, scaled DFT can be represented as a digital convo-
lution, and therefore, by the convolution theorem, can be computed using FFT. In
this way, we arrive at the ScDFT-based image rescaling algorithm:

ãk̃ =
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→{

exp
(
− iπ

k̃2

σN

)}

• IFFT[Nσ]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
FFT[Nσ]

{
ZP[Nσ],N

{
SDFTN ,u0

(
ak
)} • ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→{

exp
(
− iπ

r̃ 2

σN

)}}

•FFT[Nσ]

[���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→{
exp

(
iπ

r̃ 2

σN

)}]
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

,

(8.38)

where [Nσ] is the smallest integer larger than N , FFT[Nσ]{·} and IFFT[Nσ]{·} are
direct and inverse [Nσ]-points FFT, SDFTN ,u0 (ak) is shifted DFT defined by (8.33),
• denotes elementwise (Hadamard) product of vectors, and ZP[Nσ],N{·} is a zero-
padding operator. If σ > 1, it places ([Nσ] − N) zeros in the middle of the input
sequence, as in the zero-padding algorithm, and if σ < 1 it nulls (N − [Nσ]) cor-
responding spectral coefficients to implement lowpass filtering required for signal
undersampling. To the best of the author’s knowledge, such an algorithm of im-
age rescaling was first published in [10]. Figure 8.14 illustrates examples of image
resizing using ScDFT.

8.4.4. Image rotation and scaling using rotated 2D DFT

Second signal dimension adds additional degrees of freedom to signal transforma-
tions. For 2D signals, sampling of signals and their Fourier spectra can be carried
out in the coordinates that are shifted, scaled, and rotated with respect to the sig-
nal and/or their spectra coordinates system. Taking this into account, one can, as
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Figure 8.14. Examples of rescaling, using ScDFT algorithm of (8.38), of an image, shown in the left
top corner, with scale factors 1/π, 2/π, 3/π, 4/π and 5/π (bottom images, left to right).

it is shown in Chapter 3, arrive at “rotated and scaled discrete Fourier transform”
(RotScDFT):

αθr,s =
1
σN

N−1∑
k=0

N−1∑
l=0

ak,l exp
[
i2π

(
k̃ cos θ + l̃ sin θ

σN
r̃ − k̃ sin θ − l̃ cos θ

σN
s̃
)]

,

(8.39)

where

k̃ = k + u(k)
σ , l̃ = l + u(l)

σ , (8.40)

u(k)
σ , u(l)

σ , θ, and σ are signal sampling grid shifts, rotation angle, and scale factor
with respect to the signal coordinate system, and

r̃ = r + v(r)
σ , s̃ = s + v(s)

σ , (8.41)

v(r)
σ and v(s)

σ are Fourier spectrum sampling grid shifts.
Similar to the above-described signal shift or signal rescaling using shifted

DFT or scaled DFT, one can use rotated DFT for image rescaling and rotation by
applying RotDFT with appropriate scale and rotation angle parameters to signal
SDFT spectrum. The following equations prove that in this rotation and rescal-
ing separable discrete sinc-interpolation in rotated and scaled image coordinate is
implemented.

Let

αr,s = 1
N

N−1∑
m=0

N−1∑
n=0

am,n exp

[
i2π

( ˜̃m˜̃r
N

+
˜̃n ˜̃s
N

)]
, (8.42)

where ˜̃m = m + u(n)
0 , ˜̃n = n + u(n)

0 , ˜̃r = r + v(r)
0 , ˜̃s = s + v(s)

0 are SDFTs of an image
represented by its samples {am,n}. Apply to this spectrum rotated DFT defined by
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366 Discrete sinc-interpolation

(8.39), and obtain

ãk,l = 1
σN

N−1∑
r=0

N−1∑
s=0

{
1
N

N−1∑
m=0

N−1∑
n=0

am,n exp

[
i2π

( ˜̃m˜̃r
N

+
˜̃n ˜̃s
N

)]}

× exp
[
i2π

(
k̃ cos θ + l̃ sin θ

σN
r̃ − k̃ sin θ − l̃ cos θ

σN
s̃
)]
= 1

σN2

N−1∑
m=0

N−1∑
n=0

am,n

×
{ N−1∑

r=0

N−1∑
s=0

exp
[
i2π

( ˜̃m+(k̃ cos θ+ l̃ sin θ)/σ
N

r+
˜̃n−(k̃ sin θ− l̃ cos θ)/σ

N
s
)]}

×exp

[
i2π

( ˜̃mv(r)
0 +(k̃ cos θ + l̃ sin θ)v(r)

σ /σ

N
+
˜̃nv(s)

0 +(k̃ sin θ− l̃ cos θ)v(s)
σ /σ

N

)]

= 1
σN2

N−1∑
m=0

N−1∑
n=0

am,n
sin

{
π
[ ˜̃m + (k̃ cos θ + l̃ sin θ)/σ

]}
sin

[
π
(( ˜̃m + (k̃ cos θ + l̃ sin θ)/σ

)
/N

)]
× sin

{
π
[˜̃n + (l̃ cos θ − k̃ sin θ)/σ

]}
sin

[
π
((˜̃n + (l̃ cos θ − k̃ sin θ)/σ

)
/N

)]
× exp

[
i2π

˜̃m(
v(r)

0 + (N − 1)/2
)

+ (k̃ cos θ + l̃ sin θ)
(
v(r)
σ + (N − 1)/2

)
/σ

N

]

× exp

[
i2π

˜̃n(v(s)
0 + (N − 1)/2

)
+ (k̃ sin θ − l̃ cos θ)

(
v(s)
σ + (N − 1)/2

)
/σ

N

]
,

(8.43)

or, with natural settings

v(r)
0 = v(r)

σ = v(s)
0 = v(s)

σ = −N − 1
2

,

ãk,l = 1
σ

N−1∑
m=0

N−1∑
n=0

am,n sincd
{
N ;π

[ ˜̃m +
k̃ cos θ + l̃ sin θ

σ

]}

× sincd
{
N ;π

[˜̃n +
l̃ cos θ − k̃ sin θ

σ

]}
,

(8.44)

which means signal resampling in rotated and scaled coordinates with separable
discrete sinc-interpolation. Figure 8.13(c) provides an experimental evidence of
virtual equivalency, in terms of the interpolation accuracy, of image rotation using
RotDFT and using DFT or DCT signal fractional shift-based three-pass rotation
algorithm.

It is shown in Chapter 3 that RotDFT can, similar to ScDFT, be represented
as a digital convolution and, therefore, can be efficiently computed using FFT. In
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this way we arrive at the following image rescaling and rotation algorithm:{
ãk,l

}=IFFT 2σN
{

FFT 2σN
[

ZP[Nσ],N
{

SDFTN
(
ak
)}•Ar,s

]•FFT 2σN
[

ChF(r, s)
]}

,
(8.45)

where FFT 2[Nσ][·] and IFFT 2[Nσ][·] are operators of direct and inverse [Nσ]-
point 2D FFT, [Nσ] is the smallest integer larger than Nσ , SDFTN (ak) is defined
by (8.33) and ZP[Nσ],N{·} is the same zero-padding operator which was involved
in above-presented image zooming algorithm and • denotes, as everywhere above,
elementwise, or Hadamard product of vectors. A nonscale version of the described
image rotation algorithm was suggested in [11].

To conclude this section, mention that, as this image rotation and rescaling
algorithm is implemented through processing in DFT domain, one can combine
rotation and scaling with adaptive image restoration and enhancement through
nonlinear modification of its spectrum such as soft/hard thresholding, Pth low
dynamic range compression and alike as it is described in Chapter 5. Such a com-
bined algorithm is described by the equation{

ãk,l
} = IFFT 2σN

{
PWNLT

{
FFT 2σN

[
ZP[Nσ],N

{
SDFTN

(
ak
)} • Ar,s

]
• FFT 2σN

[
ChF(r, s)

]}}
,

(8.46)

where PWNLT{·} is the above-mentioned pointwise nonlinear spectrum trans-
formation.

Figure 8.15 illustrates this option. It shows a result of a simultaneous image
rotation and scaling and a result of rotation, scaling, denoising by hard threshold-
ing in spectral domain combined with P-law transformation of absolute values of
image spectral coefficients with P = 0.5 as it is described in Chapter 5.

8.4.5. Numerical differentiation and integration

Signal numerical differentiation and integration are operations that require mea-
suring infinitesimal increments of signals and their arguments. Therefore, numer-
ical computing signal derivatives and integrals assume one of another method of
building continuous models of signals specified by their samples through explicit
or implicit interpolation between available signal samples. Because differentiation
and integrations are shift invariant linear operations, methods of computing sig-
nal derivatives and integrals from their samples can be conveniently designed and
compared in the Fourier transform domain.

Let Fourier transform spectrum of continuous signal a(x) is α( f ):

a(x) =
∫∞
−∞

α( f ) exp(−i2π f x)df . (8.47)

Then, Fourier spectrum of its derivative

ȧ(x) = d

dx
a(x) =

∫∞
−∞

[
(−i2π f )α( f )

]
exp(−i2π f x)df (8.48)
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368 Discrete sinc-interpolation

(a)

(b) (c)

Figure 8.15. Image re-scaling, rotation, denoising and enhancement using RotScDFT: (a) initial im-
age; (b) 10◦-rotated, 1.7 times magnified image; (c) 10◦-rotated, 1.7 times magnified, denoised, and
enhanced image.

will be (−i2π f )α( f ) and Fourier spectrum of its integral

a(x) =
∫
a(x)dx =

∫∞
−∞

[(
− 1

i2π f

)
α( f )

]
exp(−i2π f x)df (8.49)

will be α( f )/(−i2π f ). From Fourier transform convolution theorem it follows that
signal differentiation and integration can be regarded as signal linear filtering with
filter frequency responses, correspondingly

Hdiff = −i2π f , Hint = i

2π f
. (8.50)

Let now signal a(x) be represented by its samples {ak}, k = 0, 1, . . . ,N − 1,
and let {αr} be a set of DFT coefficients of discrete signal {ak}:

ak = 1√
N

N−1∑
r=0

αr exp
(
− i2π

kr

N

)
. (8.51)

Then, following the argumentation of Section 8.2 for the optimal resampling fil-

ter, one can conclude that samples {η(diff)
r,opt } and {η(int)

r,opt} of continuous frequency
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response of numerical differentiation and integration representation are defined
as

η(diff)
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− i2πr
N

, r = 0, 1, . . . ,
N

2
− 1,

−π

2
, r = N

2
,

i2π(N − r)
N

, r = N

2
+ 1, . . . ,N − 1,

(8.52a)

η(int)
r,opt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, r = 0,

iN

2πr
, r = 1, . . . ,

N

2
− 1,

−π

2
, r = N

2
,

iN

2π(N − r)
, r = N

2
+ 1, . . . ,N − 1,

(8.52b)

for even Nand

ηdiff
r =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− i2πr

N
, r = 0, 1, . . . ,

N − 1
2

− 1,

i2π(N − r)
N

, r = N + 1
2

, . . . ,N − 1,
(8.52c)

η(int)
r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iN

2πr
, r = 0, 1, . . . ,

N − 1
2

− 1,

iN

2π(N − r)
, r = N + 1

2
, . . . ,N − 1,

(8.52d)

for odd N .
One can show that numerical differentiation and integration according to

(8.52) imply discrete sinc-interpolation of signals. Note that the coefficients η(diff)
N/2

and η(int)
N/2 in (8.52a), (8.52b) are halved that correspond to the above-described

Case 1 of discrete sinc-interpolation (8.23d).
Equations (8.52) imply the following algorithmic implementation for com-

puting derivatives and integrals of signals specified by their samples

{
ȧk
} = IFFTN

({
η(diff)
r,opt

} • FFT
({
ak
}))

, (8.53a){
ak
} = IFFTN

({
η(int)
r,opt

} • FFT
({
ak
}))

. (8.53b)

Thanks to the use of fast Fourier transform, the computational complexity of the
algorithms is O(logN) operations per signal sample. Digital filter described by
(8.53a) is called discrete ramp-filter.
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370 Discrete sinc-interpolation

Likewise all DFT-based discrete sinc-interpolation algorithms, DFT-based dif-
ferentiation and integration algorithms, being the most accurate in term of pre-
serving signal spectral components within the baseband, suffer from boundary ef-
fects. Obviously, DFT-based differentiation is especially vulnerable in this respect.

This drawback can be efficiently overcome by means of even extension of the
signals to double length through mirror reflection at their boundaries before ap-
plying above-described DFT-based algorithms. For such extended signals, DFT-
based differentiation and integration are reduced to using fast DCT and IDcST
algorithms instead of FFT:

{
ȧk
} = IDcST

({
η(diff)
r,opt

} •DCT
({
ak
})) = 2π

N
√

2N

N−1∑
r=1

rα(DCT)
r sin

(
π
k + 1/2

N
r
)

;

(8.54a)

{
ak
} = IDcST

({
η(diff)
r,opt

} •DCT
({
ak
})) = √

N

2π
√

2

N−1∑
r=1

α(DCT)
r

r
sin

(
π
k + 1/2

N
r
)

,

(8.54b)

with the same computational complexity of O(logN) operations per signal sam-
ple.

In numerical mathematics, alternative methods of numerical computing sig-
nal derivatives and integrals are common that are implemented through signal
discrete convolution in the signal domain

ȧk =
Nh−1∑
n=0

hdiff
n ak−n , ȧk =

Nh−1∑
n=0

hint
n ak−n. (8.55)

The following simplest differentiating kernels of two and five samples are rec-
ommended in manuals on numerical methods (see [12]):

hdiff(1)
n = [−1, 1], (8.56a)

hdiff(2)
n =

[
− 1

12
,

8
12

, 0,− 8
12

,
1

12

]
. (8.56b)

Both are based on an assumption that in the vicinity of signal samples signals can
be expanded into Taylor series.

Most known numerical integration methods are the Newton-Cotes quadra-
ture rules (see [13]). The three first rules are the trapezoidal, the Simpson, and the
3/8-Simpson ones. In all the methods, the value of the integral in the first point is
not defined because it affects to the result constant bias and should be arbitrarily
chosen. When it is chosen to be equal to zero, the trapezoidal, Simpson, and 3/8-
Simpson numerical integration methods are defined, for k as a running sample
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index, by equations

a(T)
1 = 0, a(T)

k = a(T)
k−1 +

1
2

(
ak−1 + ak

)
, (8.57a)

a(S)
1 = 0, a(S)

k = a(S)
k−2 +

1
3

(
ak−2 + 4ak−1 + ak

)
, (8.57b)

a(3/8S)
0 = 0, a(3/8S)

k = a(3/8S)
k−3 +

3
8

(
ak−3 + 3ak−2 + 3ak−1 + ak

)
. (8.57c)

Another frequently used alternative is cubic spline integration (see [14]), for which

a(int,CS)
k+1 − a(int,CS)

k = 1
2

(
ak + ak+1

)− 1
24

(
mk + mk+1

)
, (8.57d)

where coefficients {mk} are determined by the system of linear equations{(
mk−1 + 4mk + mk+1

) = 6
(
ak+1 − 2ak + ak−1

)}
. (8.57e)

In these integration methods, a linear, a quadratic, a cubic and a cubic spline in-
terpolation, respectively, are assumed between the sampled slope data. In the cu-
bic spline interpolation, a cubic polynomial is evaluated between every couple of
points (see [14]), and then an analytical integration of these polynomials is per-
formed.

As it was shown in Section 8.2.2, discrete frequency responses of digital filters
completely determine their continuous and overall frequency responses. Compare
discrete frequency responses of above-described numerical differentiation and in-
tegration methods. Applying N-point discrete Fourier transform to (8.57), obtain

ηdiff(1)
r ∝ sin

(
πr

N

)
,

ηdiff(2)
r ∝ 8 sin(2πr/N)− sin(4πr/N)

12
,

(8.58)

η(int,T)
r = α(Tr)

r

αr
=
⎧⎪⎨⎪⎩

0, r = 0,

− cos(πr/N)
2i sin(πr/N)

, r = 1, . . . ,N − 1,

η(int,S)
r = α(S)

r

αr
=
⎧⎪⎨⎪⎩

0, r = 0,

−cos(2πr/N) + 2
3i sin(2πr/N)

, r = 1, . . . ,N − 1,

η(int,3S)
r = α(3S)

r

αr
=
⎧⎪⎨⎪⎩

0, r = 0,

−cos(3πr/N) + 3 cos(πr/N)
i sin(3πr/N)

, r = 1, . . . ,N − 1,

η(int,CS)
r =

⎧⎪⎨⎪⎩
0, r = 0,

− 1
4i

cos(πr/N)
sin(πr/N)

[
1 +

3
cos

(
2π(r/N)

)
+ 2

]
, r = 1, . . . ,N − 1.

(8.59)
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Figure 8.16. Absolute values of frequency responses of differentiation filters described by (8.56a)
(curve D1), (8.56b) (curve D2), and (8.52c) (“Ramp”-filter).
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Figure 8.17. Absolute values of frequency responses of numerical integration filters described by
(8.59) and of DFT-based method (8.52b) and (8.52d).

These frequency responses along with the frequency responses of DFT-based
differentiation and integration filters (8.52a) and (8.52c) are shown, for compari-
son, in Figures 8.16 and 8.17.

One can see from the figure that common numerical differentiation and inte-
gration methods entail certain and sometimes very substantial distortions of signal
spectral contents on high frequencies. All of them attenuate signal high frequencies
and Simpson and 3/8-Simpson integration methods, being slightly more accurate
than trapezoidal method in the middle of the signal baseband, tend even to gener-
ate substantial artifacts if signals contain higher frequencies. Frequency response
of the 3/8-Simpson rule tends to infinity for the 2/3 of the maximum frequency,
and the frequency response of the Simpson rule has almost the same tendency for
the maximal frequency in the baseband. This means, in particular, that round-
off computation errors and noise that might be present in input data will be over
amplified by Simpson and 3/8-Simpson in these frequencies.

Quantitative evaluation of the superiority of DFT/DCT-based differentiation
methods can be gained from experimental data illustrated in Figures 8.17–8.19,
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Figure 8.18. Experimental data on samplewise normalized standard deviation of the differentiation
error for D1, D2, and DFT methods. Numbers at curves indicate fraction (from quarter to one) of test
signal bandwidth with respect to the base bandwidth as defined by the sampling rate.

which present results obtained by computer statistical simulation of differentia-
tion of realizations of pseudorandom signals with uniform spectrum in the range
1/16 of the baseband the entire baseband. In the simulation, 16 series of statisti-
cal experiments with 100 experiments in each run were carried out. In the runs,
pseudorandom signals of 32 704 samples with uniform spectrum were generated
in order to imitate continuous signals. In each Kth run, generated pseudorandom
signal was lowpass filtered to 1/32K of its baseband using ideal lowpass filter im-
plemented in DFT domain, and its derivative was computed using DFT domain
ramp-filter. The filtered signal was used as a model of a continuous signal and its
derivative was used as an estimate of its ideal derivative. Then, a central half of this
signal that encompasses 16 352 samples taken 8196 samples apart from the signal
borders was subsampled to generate 511 samples of a test discrete signal used in
the differentiation by the three methods defined by (8.56a) (D1 method), (8.56b)
(D2 method), (8.52c) (DFT method), and (8.54a) (DCT method). Correspond-
ing central part of the ideal derivative signal was also correspondingly subsampled
and was used as a reference to evaluate differentiation error for tested methods.
Differential error was computed as a difference between the “ideal” derivative and
results of applying tested differentiation methods divided by standard deviation
of the “ideal” derivative over 511 samples. Finally, standard deviation of the nor-
malized error over 100 realizations was found for each signal sample. Obtained
results are plotted samplewise in Figure 8.18 for methods D1, D2, and DFT and in
Figure 8.19 for methods D2, DFT, and DCT.

In Figure 8.18, one can see that, indeed, the simplest method D1 performs
very poorly, while method D2 outperforms DFT method for signals with band-
width less than 0.5 of the baseband. Also can be seen that accuracy of the DFT
differentiation method improves with the distance from signal boundaries. How-
ever, even for samples that are far away from signal boundaries, boundary effects
badly deteriorate the differentiation accuracy. Data presented in Figure 8.19 evi-
dence that DCT method does successfully overcome the boundary effect problem
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Figure 8.19. Experimental data on samplewise normalized standard deviation of the differentiation
error for D2, DFT, and DCT methods. Numbers at curves indicate fraction (from quarter to one) of
test signal bandwidth with respect to the base bandwidth as defined by the sampling rate.
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Figure 8.20. Normalized standard deviation of the differentiation error averaged over 100 samples in
the middle of the signal (samples 200–300) for D1, D2, DFT, and DCT differentiation methods as a
function of test signal bandwidth (in fractions of the baseband defined by the signal sampling rate).

and substantially outperforms both D1 and D2 methods even for narrowband sig-
nals.

In the described experiment, average mean square differentiation error com-
puted over the central half of the test signals with different bandwidth was also
measured for different methods. The results presented in Figure 8.20 convincingly
evidence that method D2 provides better accuracy only for signals with bandwidth
less than 0.05 of the baseband, and even for such signals normalized error stan-
dard deviation for DCT method is anyway less than 10−5. For signals with broader
bandwidth, the accuracy of the DCT differentiation method outperforms other
methods at least by 2 order of magnitude. It was also found in this experiment
that masking signal with a window function that gradually nulls signal samples
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Figure 8.21. Integration error versus sample index for DFT-based, cubic spline, and DCT-based nu-
merical integration methods for sinusoidal signals with normalized initial frequencies 0.27 (a), 0.54
(b), and 0.81 (c).

in the vicinity of its border substantially improves the differentiation accuracy of
both DFT and DCT methods even further. To complete this comparison of dif-
ferentiation methods, note also that, as it follows from above results, conventional
numerical methods maintain good differentiation accuracy if signals are highly
oversampled, which actually undermines their only advantage, that of low com-
putational complexity.

In order to illustrate and compare, in quantitative terms, performance of dif-
ferent numerical integration methods, we present in Figures 8.21 and 8.22 exper-
imental results reported in [15] on integration accuracy for test sinusoidal sig-
nals of different frequencies for cubic spline, DFT-based and DCT-based inte-
gration methods which are the most accurate among above-described methods.
The number of signal samples N was 256, 512, and 1024 and, for each integer
frequency index r, results for 20 sinusoidal signals with frequencies in the range
[r − 1/2 : r + 1/2] taken with step 1/20 were averaged to obtain root mean square
integration error for each signal sample. The error was evaluated with respect to
the analytical integral value for the correspondent signal.

Figure 8.21(a) shows mean square integration error for first 10 samples of
sinusoidal signals with N = 256 and frequency indices 35, 70, and 105 (0.27, 0.54,
and 0.81 of the highest frequency in the baseband, correspondingly). As one can
see, for low-signal frequency, DFT method underperforms cubic spline one due to
boundary effects while, for higher frequencies, it provides higher accuracy and its
advantage grows with signal frequency. One can also see that DCT-based method
suffers from boundary effects not more than cubic spline one and substantially
outperforms the latter for all signal samples beginning 4-5th ones.

Figure 8.22 shows similar data obtained for sinusoidal signals with number of
samples N = 256, 512, and 1024 and normalized frequencies in the range [0.54±
1/N]. They show that boundary effects do not practically depend on the number
N of samples and that they affect only first 10 or so signal samples.
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Figure 8.22. Integration error versus sample index for DFT-based, cubic spline, and DCT-based nu-
merical integration methods for sinusoidal signal with normalized initial frequency 0.54 for sinusoidal
signals with different number of samples N : (a) N = 256, (b) N = 512, (c) N = 1024.
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Figure 8.23. Comparison of the integrator resolving power: (a) integrator input; (b) output of the
ideal integrator with unlimited bandwidth; (c) output of the DFT-based integrator; (d) output of the
cubic spline integrator; (e) output of the trapezoidal integrator.

Further insight into metrological advantages of DFT/DCT-based numerical
integration methods over other methods may be gained from comparison of the
integration resolving power. Resolving power of integrators characterizes their ca-
pability to resolve between close sharp impulses in the input data. Though it is fully
defined by the integrator frequency responses, it is much more straightforward to
compare the resolving power for different integrators directly in signal domain.

Figure 8.23 illustrates results of a numerical evaluation of the capabilities of
three types of integrators, trapezoidal, cubic spline, and DFT-based ones, to resolve
two sharp impulses placed on the distance of one sampling interval one from an-
other for the case when the second impulse is of half height of the first impulse
(see [15]). The signals shown in the figure are 8 times subsampled and sincd-
interpolated to imitate the corresponding continuous signals at the integrator out-
put. The figure clearly shows how much the tested integrators differ in their re-
solving power. DFT-based integrator (Figure 8.23(c)) produces the sharpest peaks
with the lowest valley between signal peaks compared to that for cubic spline inte-
grator (Figure 8.23(d)) and trapezoidal integrator (Figure 8.23(e)). In particular,
the latter seems to be virtually incapable of reliable resolving the half-height im-
pulse.
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DFT and especially DCT-based differentiation and integration methods being
the most accurate numerical differentiation and integration methods can find nu-
merous applications in optical metrology and experimental data processing. Signal
differentiating by ramp-filtering has found its application in digital image recon-
struction from its projections by the filtered back projection method. The DCT-
based discrete filtered back projection image reconstruction algorithm of image re-
construction that uses the DCT-based ramp-filter and image rotation algorithm
described in Section 8.4.2 is as follows:

{
âk,l

} = Nθ−1∑
s=0

ROTθ
{{

ṗ(θs)
k

}⊗ {�1l}}; k, l = 0, 1, . . . ,N − 1, (8.60)

where

{
ṗ(θs)
k

} = IDcST
({
ηdiff
r

} •DCT
({
p(θs)
k

}))
(8.61)

is a vector-row of samples of ramp-filtered image projection {p(θs)
k } obtained for

angle θs, s = 0, 1, . . . ,Nθ − 1, {�1l} is a vector-column of N ones and ⊗ symbolizes
matrix Kronecker product.

In addition to higher accuracy, DFT/DCT-based differentiation and integra-
tion methods have one more property that makes them ideally suited for differ-
entiation/integration of noisy data. According to the theory of optimal Wiener fil-
tering, when input data contain noise, frequency responses Hdiff and Hint of ideal
differentiation and integration devices defined by (8.50) should be modified with
an account to signal-to-noise ratio in the data to become

H(noise)
diff = Hdiff

SNR( f )
1 + SNR( f )

,

H(noise)
int = Hint

SNR( f )
1 + SNR( f )

,

(8.62)

where SNR( f ) is input data signal-to-noise ratio on frequency f . As DFT/DCT-
based differentiation and integration methods are designed and implemented in
signal spectral domain, corresponding modification of their discrete frequency re-
sponses (8.52) is straightforward and their implementation does not require any
additional data processing.

8.4.6. Computational complexity and other practical issues

One of the fallacies regarding discrete sinc-interpolation is a widely shared opin-
ion of its high computational complexity. Indeed, the most known DFT spectrum
zero-padding algorithms have a relatively high computational complexity and are
very inflexible. Being implemented using traditional FFT algorithms, they require,
for L-fold equidistant subsampling (zooming) of signals of N samples, O(logLN)
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of operations (additions and multiplications of complex numbers) per output sig-
nal sample and require subsampling factor L to be power of 2. Such an imple-
mentation involves a vast amount of operations with zero data. However, these
operations can be removed using, for inverse FFT of zero padded data, pruned
FFT algorithms (see [6]). Similar pruned algorithms for fast DCT are also avail-
able (see [16]). For large L, this can substantially reduce the computational com-
plexity of the DFT/DCT spectra zero-padding algorithms. However, it does not
improve the algorithm flexibility. Above described DFT- and DCT-based signal
fractional shift algorithms completely eliminate those drawbacks of zero-padding
algorithms.

Computational complexity of subsampling (zooming), with arbitrary sub-
sampling factor, of 1D signals of N samples using DFT- and DCT-based signal
fractional shift algorithms is O(logN) per output sample. One can compare them
with the computational complexity of spline-based resampling algorithms whose
computational complexity is, by the order of magnitude, O(n), where n is a value
proportional to the spline order. For instance, for mentioned Mems(5, 3, 1), n = 9,
which means that, by the order of magnitude, its complexity is comparable with
that of DFT(DCT)-based fractional shift algorithm for N = 512.

Computational complexity of image zooming depends on whether zoom-
ing is carried out in a separable (rows-column) or in an inseparable way. In the
separable implementation, Lx × Ly-zooming images of Nx × Ny pixels, requires
O(LxNxNy logNx) operations (Lx times Nx-point FFTs for each of Ny image rows)
for zooming along coordinate x plus O(LyLxNxNy logNy) operations (Ly times
Ny-point FFTs for each of LxNx 1D zoomed image rows) for zooming along co-
ordinate y. Therefore, the per-output sample computational complexity of sepa-
rable image Lx × Ly-zooming can be estimated as being O(logNy + logNx/LyNx),
which means that the computational complexity of the separable image zoom-
ing using DFT/DCT-based signal fractional shift algorithms is determined mainly
by the lowest dimensionality of the image. Inseparable implementation requires
performing LxLy times NxNy-point FFTs. Therefore, the per-output pixel compu-
tational complexity will be higher: O(logNxNy) operations. Note, however, that
inseparable zooming allows zooming with simultaneous arbitrary inseparable 2D
spectrum shaping and filtering.

Three-step image rotation implemented through the use of DFT/DCT-based
signal fractional shift algorithm requires, for the image of Nx × Ny pixels,
O(2NxNy logNx) operations for each of two-image shearing in x direction plus
O(2NxNy logNy) operations for image shearing in y direction which amounts
O(2 logNx + logNy) operations. The same, by the order of magnitude, is estima-
tion of computational complexity of fast Radon transform and fast filtered back
projection inverse Radon transform as well as of DFT/DCT-based differentiation
and integration methods.

Scaled DFT-based image zooming algorithm is computationally more expen-
sive than image zooming by means of DFT/DCT-based signal fractional shift al-
gorithm, especially for large zoom factors σ as it involves two [Nσ]-point FFTs in-
stead of one N-point FFT. Yet its capability to implement zooming with arbitrary
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noninteger factors makes it an attractive option when accurate image zooming
with zoom-factor in the range 0.5–2 is required.

Using, for image rotation, of RotScDFT-based rotation algorithm has no ad-
vantage with respect to the three-step rotation algorithm that uses DFT/DCT-
based signal fractional shift. It might be useful only when both image rotation
and rescaling are needed or when image data are already given in Fourier spectral
domain, such as in NMR imaging.

Above-presented estimations of computational complexity of DFT/DCT-
based discrete sinc-interpolation resampling methods are estimations by the order
of magnitude. Exact figures of the computational complexity depend on particu-
lar software implementation, compiler efficiency and of the type of the computer
CPU. Certain insight into comparison of real processing speed for different in-
terpolation methods can be gained from the following data obtained in course
of above-described experiments with image rotation using different resampling
methods. Matlab m-file that implements the three-step rotation algorithm using a
DCT-based signal fractional shift Matlab dll-file subroutine, and a Windows exe-
file that implements Mems(5, 3, 1)-based rotation algorithm both run, on the same
computer, about 7 seconds for 100 rotations of 256×256 pixel images. The proper
Matlab program imrotate.m of Matlab image processing tool box runs, for bicubic
interpolation, slower (17.67 seconds for 60 rotations) than a Matlab m-file that im-
plements, using only standard Matlab means, three-step rotation algorithm with
DFT-based signal fractional shift (14.16 seconds for 60 rotations).

All described sinc-interpolation algorithms implement processing in DFT/
DCT domain. This provides to all of them an additional capability, not avail-
able in other convolution-based interpolation methods, the capability of simul-
taneous signal/image filtering (denoising, deblurring, enhancement, etc.) as it was
demonstrated in Figure 8.15 on the example of image rotation and rescaling us-
ing RotScDFT. There are also some specific application areas, such as magnetic
resonance imaging and digital holography where data are already given in Fourier
domain and where using above described algorithms is only natural and straight-
forward. A good example is numerical reconstruction of digitally recorded holo-
grams in which practically all reconstruction algorithms are using FFT and it is
very frequently necessary to maintain special image scaling conditions (see Chap-
ter 3).

8.5. Local (elastic) image resampling: sliding window
discrete sinc-interpolation algorithms

It frequently happens in signal and image resampling tasks that require arbitrary
different signal sample shifts for different samples. A typical example is image
resampling for stabilization of images observed through turbulent atmosphere,
which causes chaotic positioning of image samples with respect to their regular
equidistant positions [17]. In such cases, above-described discrete sinc-interpo-
lation algorithms have no efficient computational implementation. However, in
these applications they can be implemented in sliding window (see [6–8]).
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Figure 8.24. Windowed discrete sinc-functions for windows of 11 and 15 samples (top) and the cor-
responding interpolator frequency responses along with that of the ideal lowpass filter (bottom) for
signal 3x-zooming.

In signal interpolation in sliding window, only those shifted and interpolated
signal samples that correspond to the window central sample have to be com-
puted in each window position from signal samples within the window. Inter-
polation function in this case is a discrete sinc-function whose extent is equal
to the window size rather that to the whole signal size required for the perfect
discrete sinc-interpolation. Therefore, sliding window discrete sinc-interpolation
cannot provide the perfect interpolation, which above-described global discrete
sinc-interpolation does. Figure 8.24 illustrates frequency responses and PSF of the
corresponding interpolating lowpass filters of two different window sizes for sig-
nal 3x-zooming. As one can see from the figure, interpolation filter frequency
responses deviate from a rectangular function, a frequency response of the ideal
lowpass filter.

Such an implementation of the discrete sinc-interpolation can be regarded
as a special case of direct signal domain convolution interpolation methods. As it
follows from the above theory, it, in principle, has the highest interpolation ac-
curacy among all convolution interpolation methods with the same window size.
Additionally, it offers valuable options that are not available with other methods,
specifically:

(i) signal resampling with arbitrary shifts and simultaneous signal restora-
tion and enhancement and

(ii) local adaptive interpolation with “superresolution.”
For signal resampling with simultaneous restoration/enhancement, the slid-

ing window discrete sinc-interpolation should be combined with local adaptive
filtering. Local adaptive filters, in each position k of the window of W samples
(usually an odd number), compute transform coefficients {βr = T{an}}of the sig-
nal {an} in the window (n, r = 1, 2, . . . ,W) and nonlinearly modify them to obtain
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Figure 8.25. Flow diagram of signal resampling combined with denoising/enhancement.

(a) (b)

Figure 8.26. An example of image denoising and resampling from irregular to regular sampling grid:
(a) noisy image sampled in an irregular sampling grid; (b) denoised and resampled (rectified) image.

coefficients {α̂r(αr)}. These coefficients are then used to generate an estimate âk of
the window central pixel by inverse transform T−1

k {·} computed for the window
central pixel as

âk = T−1
k

{
α̂r
(
βr
)}

, (8.63)

such a filtering can be implemented in the domain of any transform though the
DCT has proved to be one of the most efficient (see Chapter 5). Therefore, one
can, in a straightforward way, combine the sliding window DCT domain discrete
sinc-interpolation signal resampling (8.20) and filtering for signal restoration and
enhancement:

{
a
p
k

} = ISDFT1/2,0
{
α̂DCT
r

(
αDCT
r

) · ηr(p)
}
. (8.64)

Figure 8.25 shows flow diagram of such a combined algorithm for signal restora-
tion/enhancement and fractional p-shift.

Figure 8.26 illustrates application of the combined filtering/interpolation for
image irregular to regular resampling combined with denoising. In this example,
left image is distorted by known displacements of pixels with respect to regu-
lar equidistant positions and by an additive noise. In the right image, these dis-
placements are compensated and noise is substantially reduced with the above-
described sliding window resampling/denoising algorithm.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


382 Discrete sinc-interpolation

Sliding
window

DCT

Discrete DCT-based
sinc-interpolator

Local spectrum
analyzer

Mixer

Input signal

Output
signal

Nearest neighbor
interpolator

Figure 8.27. Flow diagram of local adaptive resampling.

One can further extend the applicability of this method to make interpola-
tion kernel transform coefficients {ηr(p)} in (8.64) to be adaptive to signal local
features that exhibit themselves in signal local DCT spectra:

{
a
p
k

} = ISDFT1/2,0
{
α̂DCT
r

(
βDCT
r

) · ηr(p,
{
βDCT
r

})}
. (8.65)

The adaptivity may be desired in such applications as, for instance, resampling
images that contain gray tone images in a mixture with graphical data. While the
discrete sinc-interpolation is completely perfect for gray tone images, it may pro-
duce undesirable oscillating artifacts in graphics.

The principle of local adaptive interpolation is schematically presented on
Figure 8.27. It assumes that modification of signal local DCT spectra for signal re-
sampling and restoration in the above-described algorithm is supplemented with
the spectrum analysis for generating a control signal. This signal is used to se-
lect, in each sliding window position and depending on the window content, the
discrete sinc-interpolation or another interpolation method such as, for instance,
nearest neighbor one.

Figure 8.28 illustrates nonadaptive and adaptive sliding window sinc-inter-
polation on an example of a shift, by an interval equal 17.54 of discretization in-
tervals, of a test signal composed of a sinusoidal wave and rectangular impulses.
As one can see from the figure, nonadaptive sinc-interpolated resampling of such
a signal results in oscillations at the edges of rectangular impulses. Adaptive re-
sampling implemented in this example switches between the sinc-interpolation
and the nearest neighbor interpolation whenever energy of high-frequency com-
ponents of signal local spectrum exceeds a certain threshold level. As a result, rect-
angular impulses are resampled with “superresolution.” Figure 8.29 illustrates, for
comparison, zooming a test signal by means of the nearest neighbor, linear, and
bicubic spline interpolations and the above-described adaptive sliding window
DCT sinc-interpolation. One can see from these figures that interpolation artifacts
seen in other interpolation methods are absent when the adaptive sliding widow
interpolation is used.

Nonadaptive and adaptive sliding window sinc-interpolation are also illus-
trated and compared in Figure 8.30 for rotation of an image that contains gray
tone and graphic components. One can clearly see oscillations at sharp boundaries

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


L. Yaroslavsky 383
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Signal shifted 16.54 pixels: nonadaptive
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1

50 100 150 200 250

Signal shifted 16.54 pixels: adaptive; threshold= 0.03

Figure 8.28. Fractional shift of a signal (upper plot) by nonadaptive (middle plot) and adaptive (bot-
tom plot) sliding window DCT sinc-interpolations. One can notice disappearance of oscillations at the
edges of rectangular impulses when interpolation is adaptive.

of black and white squares in the result of rotation without adaptation. Adaptive
sinc-interpolation does not show these artifacts because of switching between the
sinc-interpolation and the nearest neighbor interpolation at the sharp boundaries.

Algorithmic implementation of sliding window DFT and DCT discrete sinc-
interpolation methods is based on recursive algorithms for computing the DFT
and DCT in sliding window described in Appendix E. Consider first computa-
tional complexity of sliding window DFT 1D discrete sinc-interpolation. Let Nw

be the size of the sliding window. From the symmetry consideration, Nw should
be an odd number. As it is shown in Appendix E, (E.3), signal spectrum α{k}r ,
r = 0, 1, . . . ,Nw − 1, in kth position of the sliding window is computed from spec-
trum α{k−1}

r in the previous window position as

α(k)
0 = α(k−1)

0 + ak−1+(Nw+1)/2 − ak−1−(Nw−1)/2,

α(k)
r = [

α(k−1)
r + ak−1+(Nw+1)/2 − ak−1−(Nw−1)/2

]
exp

(
− i2π

r

Nw

)
.

(8.66)
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(a) (b)

(c) (d)

(e) (f)

Figure 8.29. Signal zooming with nonadaptive and adaptive discrete sinc-interpolation. First row: a
model of a continuous signal (a) and its sampled version (b). Second row: initial signal reconstructed
by nearest neighbor (c) and linear (d) interpolation. Third row: signal reconstruction using nonadap-
tive (e) and adaptive (f) discrete sinc-interpolation. One can see that smooth sinusoidal signal and
rectangular impulses are reconstructed with much less artifacts when adaptive interpolation is used.

It is convenient to compute signal local DC component α{k}0 separately from
other spectral coefficients as it is shown in (8.66). As for the other coefficients, only
first (Nw−1)/2 have to be computed, as, for real valued signals, the rest (Nw−1)/2
of the coefficients are complex conjugate to them. These computations require
(Nw − 1)/2 multiplications of complex numbers and (Nw − 1)/2 additions plus 2
additions for computing α{k}0 which amounts to total 2(Nw − 1) of real number
multiplications and 3(Nw + 1)/2 additions.
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(a) (b)

(c)

Figure 8.30. Rotation of an image (a) with sliding window nonadaptive (b) and adaptive DCT sinc-
interpolations (c).

For signal p-shift, these coefficients have to be, according to (8.20), multiplied

by exp(i2πpr/N) which yields modified coefficients α̃(k)
r ,

α̃(k)
r = [

α(k−1)
r + ak−1+(Nw+1)/2 − ak−1−(Nw−1)/2

]
exp

(
− i2π

1− p

Nw
r
)

, (8.67)

that are to be used for reconstruction of the window central sample with index
(Nw + 1)/2 by the inverse DFT as

ãk = 1
N

Nw−1∑
r−1

α̃(k)
r exp

(
− i2π

Nw + 1
2Nw

r
)

= 1
N

[ (Nw−1)/2∑
r−1

α̃(k)
r exp

(
− iπ

Nw + 1
Nw

r
)

+
Nw−1∑

r−(Nw+1)/2

α̃(k)
r exp

(
− iπ

Nw + 1
Nw

r
)]
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= 1
N

[ (Nw−1)/2∑
r−1

α̃(k)
r (−1)r exp

(
− iπ

r

Nw

)

+
(Nw−1)/2∑

r−1

α̃(k)
Nw−1(−1)N−r exp

(
− iπ

Nw − r

Nw

)]

= 1
N

[ (Nw−1)/2∑
r−1

α̃(k)
r (−1)r exp

(
− iπ

r

Nw

)
+

(Nw−1)/2∑
r−1

(
α̃(k)
r

)∗
(−1)r exp

(
iπ

r

Nw

)]

= 2
N

(Nw−1)/2∑
r−1

(−1)r Re

[
α̃(k)
r exp

(
− iπ

r

Nw

)]
.

(8.68)

The reconstruction, therefore, requires additional 2× (Nw − 1)/2 = (Nw − 1) real
multiplications and (Nw − 1)/2 additions plus one addition for adding local dc
component plus one multiplication by 1/N . Table 8.1 provides summary of com-
putational complexity of sliding window DFT signal resampling.

Computational complexity of the sliding window DCT sinc-interpolation can
be evaluated using data provided in Appendix E and taking into account that, for
sliding window processing, only window central sample is evaluated and signal dc
component is not modified. Therefore, reconstruction formula given by (8.29) is
transformed into

a
(p)
(Nw−1)/2 =

Nw−1∑
n=0

an sincd
[
K ;N ;

Nw − 1
2

− n− p
]

= ISDFT1/2,0
{

DCT
{
ak
} · {ηr(p)

}}
= 1√

2N

[
αDCT

0 + 2
Nw−1∑
r=1

αDCT
r ηre

r cos
(
π

2
r
)
− 2

Nw−1∑
r=1

αDCT
r ηim

r sin
(
π

2
r
)]

= 1√
2N

[
αDCT

0 + 2
(Nw−1)/2∑

r=1

(−1)rαDCT
2r ηre

2r − 2
(Nw−1)/2∑

r=1

(−1)r−1αDCT
2r−1η

im
2r−1

]
.

(8.69)

According to this formula, only terms {ηre
2r} and {ηim

2r−1} of spectrum modification
coefficients have to be computed, and the reconstruction process requires 2(Nw −
1)/2 = Nw − 1 multiplications and 2[(Nw − 1)/2 − 1] + 1 = Nw − 1 additions.
Total computational complexity of DCT sliding window signal resampling can be
evaluated from data presented in Table 8.2.
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Table 8.1. Number of operations per output sample for sliding window DFT signal discrete sinc in-
terpolation resampling in the window of Nw samples.

Additions Multiplications
Additional operations
when look-up-table is
not available

Computation of local spectra 3(Nw + 1)/2 2(Nw − 1) (Nw − 1)

Spectrum modification (Nw − 1)/2 (Nw − 1) (Nw − 1)

Reconstruction (Nw + 1)/2 (Nw − 1) (Nw − 1)

Total 5(Nw + 1)/2 2(Nw − 1) 3(Nw − 1)

Table 8.2. Computational complexity per output sample for sliding window DCT signal resampling.

Multiplications Additions
Additional operations
when look-up-table is
not available

Computation of local spectra 2(Nw − 1) 5Nw − 3 2(Nw − 1)

Spectrum modification Nw − 1 — —

Reconstruction — Nw − 1 —

Total 3(Nw − 1) 6Nw − 4 2(Nw − 1)

8.6. Conclusion

In this chapter, we described a family of fast transform-based methods and corre-
sponding efficient computational algorithms for discrete sinc-interpolation in dig-
ital signal and image processing and showed that they provide, for a finite number
of signal samples, virtually error-free interpolation and, therefore, they outper-
form, in this respect, other known convolutional interpolation methods such as
spline ones and alike that implement digital convolution in signal domain rather
than in Fourier/DCT transform domain. We demonstrated how methods of dis-
crete sinc-interpolation can be used in different applications and provided nu-
merical estimations and experimental data that evidence that described discrete
sinc-inerpolation methods are quite competitive, in terms of their computational
complexity, with other methods. In addition, we described sliding window discrete
sinc-interpolation methods for signal and image resampling in arbitrary nonuni-
form sampling grid. Being comparable, in their interpolation accuracy and com-
putational complexity, with other convolutional methods for the same window
size, they offer options of adaptive interpolation and simultaneous signal/image
space-variant restoration not available with other methods.

Computational efficiency of the interpolation error-free discrete sinc-inter-
polation algorithms is rooted in the use of fast Fourier and fast DCT transforms.
Perhaps, the best concluding remark of this discussion of the discrete sinc-inter-
polation methods and their applications would be mentioning that fast Fourier
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transform algorithm was invented two hundred years ago by Carl Friedrich Gauss
exactly for the purpose of facilitating numerical interpolation of sampled data of
astronomical observation (see [19, 20]).

Appendices

A. Complex conjugate symmetry for SDFT of real sequences

Let {ηr} be SDFT(u, 0) of a real sequence {hn = h∗n }:

hn = 1√
N

N−1∑
r=0

ηr exp
[
− i2π

(n + u)r
N

]
. (A.1)

Then,

h∗n =
1√
N

N−1∑
r=0

η∗r exp
[
i2π

(n + u)r
N

]
= 1√

N

N−1∑
r=0

η∗N−r exp
[
i2π

(n + u)(N − r)
N

]

= 1√
N

N−1∑
r=0

η∗N−r exp(i2πu) exp
[
− i2π

(n + u)r
N

]
.

(A.2)

Therefore, for real sequences {hn = h∗n }, the following SDFT(u, 0) complex con-
jugate symmetry rule holds:

ηr = η∗N−r exp(i2πu). (A.3)

In particular, when u = −(N − 1)/2,

ηr = η∗N−r exp
(
iπ(N − 1)

) =
⎧⎪⎨⎪⎩
η∗N−r , N-odd number,

−η∗N−r , N-even number.
(A.4)

B. Point spread functions of optimal resampling filters

By definition (8.15) and with an account for (8.17), point spread function of the

optimal resampling filter h
(intp)
n (δx̃) is SDFT(−(N−1)/2, 0) of samples {η(intp)

r,opt (δx̃)}
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of its continuous frequency response. From (8.20), for odd number of signal sam-
ples N , we have

h
(intp)
n (δx̃) = 1√

N

N−1∑
r=0

η
(intp)
r,opt (δx̃) exp

[
− i2π

n− (N − 1)/2
N

r
]

= 1√
N

{ (N−1)/2∑
r=0

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]

+
N−1∑

r=(N+1)/2

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]}

= 1√
N

{ (N−1)/2∑
r=0

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]

+
(N−1)/2∑
r=1

η
(intp)
N−r,opt exp

[
− i2π

n− (N − 1)/2
N

(N − r)
]}

= 1√
N

{ (N−1)/2∑
r=0

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]

+
(N−1)/2∑
r=1

η
(intp)
N−r,opt exp

[
iπ(N − 1)

]
exp

[
i2π

n− (N − 1)/2
N

r
]}

= 1√
N

{ (N−1)/2∑
r=0

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]

+
(N−1)/2∑
r=1

η
∗(intp)
r,opt exp

[
iπ(N − 1)

]
exp

[
i2π

n− (N − 1)/2
N

r
]}

= 1
N

{ (N−1)/2∑
r=0

exp
(
i2π

δx̃

NΔx

)
exp

[
− i2π

n− (N − 1)/2
N

r
]

+
(N−1)/2∑
r=1

exp
(
− i2π

δx̃

NΔx

)
exp

[
i2π

n− (N − 1)/2
N

r
]}

= 1
N

{ (N−1)/2∑
r=0

exp
[
− i2π

n− (N − 1)/2− δx̃Δx

N
r
]

+
(N−1)/2∑
r=1

exp
[
i2π

n− (N − 1)/2− δx̃/Δx

N
r
]}

. (A.1)
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Denote temporarily

ñ = n− N − 1
2

− δx̃

Δx
. (A.2)

Then,

h
(intp)
n (δx̃) = 1

N

{
exp

[− iπ(ñ/N)(N + 1)
]− 1

exp
[− i2π(ñ/N)

]− 1

+
exp

[
iπ(ñ/N)(N + 1)

]− exp
[
i2π(ñ/N)

]
exp

[
i2π(ñ/N)

]− 1

}

= 1
N

{
exp(−iπñ)− exp

(
iπ(ñ/N)

)
exp

(− iπ(ñ/N)
)− exp

(
iπ(ñ/N)

)
+

exp(iπñ)− exp
(
iπ(ñ/N)

)
exp

(
iπ(ñ/N)

)− exp
(− iπ(ñ/N)

)}

= 1
N

− exp(−iπñ) + exp
(
iπ(ñ/N)

)
+ exp(iπñ)− exp

(
iπ(ñ/N)

)
exp

(
iπ(ñ/N)

)− exp
(− iπ(ñ/N)

)
= 1

N

sin(πñ)
sin

(
π(ñ/N)

) = sincd
[
N ,π

(
n− N − 1

2
− δx̃

Δx

)]
. (A.3)

From (8.21), for even number of signal samples N , we have

h
(intp)
n (δx̃) = 1√

N

N−1∑
r=0

η
(intp)
r,opt (δx̃) exp

[
− i2π

n− (N − 1)/2
N

r
]

= 1√
N

{ N/2−1∑
r=0

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]

+
N−1∑
r=N/2

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]}

=
N−1∑
r=N/2

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]

= 1√
N

{ N/2−1∑
r=0

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]

+
N/2∑
r=1

η
(intp)
N−r,opt exp

[
− i2π

n− (N − 1)/2
N

(N − r)
]}
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= 1√
N

{ N/2−1∑
r=0

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]

+
N/2∑
r=1

η
(intp)
N−r,opt exp

[
iπ(N − 1)

]
exp

[
i2π

n− (N − 1)/2
N

r
]}

= 1√
N

{ (N−1)/2∑
r=0

η
(intp)
r,opt exp

[
− i2π

n− (N − 1)/2
N

r
]

+
N/2∑
r=1

(− η
∗(intp)
r,opt

)
exp

[
iπ(N − 1)

]
exp

[
i2π

n− (N − 1)/2
N

r
]}

= 1
N

{ N/2−1∑
r=0

exp
(
i2π

δx̃

NΔx

)
exp

[
− i2π

n− (N − 1)/2
N

r
]

+
N/2−1∑
r=1

exp
(
− i2π

δx̃

NΔx

)
exp

[
i2π

n− (N − 1)/2
N

r
]

+ η
(intp)
N/2,opt exp

[
iπN

n− (N − 1)/2
N

]}

= 1
N

{ N/2−1∑
r=0

exp
[
− i2π

n− (N − 1)/2− δx̃/Δx

N
r
]

+
N/2−1∑
r=1

exp
[
i2π

n− (N − 1)/2− δx̃/Δx

N
r
]

+ η
(intp)
N/2,opt exp

[
iπN

n− (N − 1)/2
N

]}

= 1
N

{ N/2−1∑
r=0

exp
(
− i2π

ñ

N
r
)

+
(N−1)/2∑
r=1

exp
(
i2π

ñ

N
r
)

+ η
(intp)
N/2,opt exp

(
iπ

δx̃

Δx

)
exp

[
iπN

n− (N − 1)/2− δx̃/Δx

N

]}

= 1
N

{
exp(−iπñ)− 1

exp
(− i2π(ñ/N)

)− 1
+

exp(−iπñ)− exp
(
i2π(ñ/N)r

)
exp

(
i2π(ñ/N)

)− 1

+ η
(intp)
N/2,opt exp

(
iπ

δx̃

Δx

)
exp(iπñ)

}
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= 1
N

{
exp

(− iπ
(
(N − 1)/N

)
ñ
)− exp

(
iπ(ñ/N)

)
exp

(− iπ(ñ/N)
)− exp

(
iπ(ñ/N)

)
+

exp
(
iπ
(
(N − 1)/N

)
ñ
)− exp

(
iπ(ñ/N)r

)
exp

(
iπ(ñ/N)

)− exp
(− iπ(ñ/N)

)
+ η

(intp)
N/2,opt exp

(
iπ

δx̃

Δx

)
exp(iπñ

)}

= 1
N

{
exp

(
iπ
(
(N − 1)/N

)
ñ
)− exp

(
iπ(ñ/N)r

)
exp

(
iπ(ñ/N)

)− exp
(− iπ(ñ/N)

)
− exp

(− iπ
(
(N − 1)/N

)
ñ
)

+ exp
(
iπ(ñ/N)

)
exp

(
iπ(ñ/N)

)− exp
(− iπ(ñ/N)

)
+ η

(intp)
N/2,opt exp

(
iπ

δx̃

Δx

)
exp(iπñ)

}

= 1
N

{
exp

(
iπ
(
(N − 1)/N

)
ñ
)− exp

(− iπ
(
(N − 1)/N

)
ñ
)

exp
(
iπ(ñ/N)

)− exp
(− iπ(ñ/N)

)
+ ηN/2 exp

(
iπ

δx̃

Δx

)
exp(iπñ)

}

= 1
N

{
sin

(
π
(
(N − 1)/N

)
ñ
)

sin
(
π(ñ/N)

) + η
(intp)
N/2,opt exp

(
iπ

δx̃

Δx

)
exp(iπñ

)}
.

(A.4)
Case 0:

η
(intp)
N/2,opt = 0, h

(intp 0)
n (δx̃) = sincd

{
N ;N − 1;π

[
n− N − 1

2
− δx̃

Δx

]}
. (A.5)

Case 2:

η
(intp)
N/2,opt = −i2 sin

(
π
δx̃

Δx

)
,

h
(intp 0)
n (δx̃) = sincd

{
N ;N + 1;π

[
n− N + 1

2
− δx̃

Δx

]}
,

(A.6)

where

sincd{N ;M; x} = 1
N

sin(Mx/N)
sin(x/N)

. (A.7)
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Proof of Case 2. Find η
(intp 2)
N/2,opt that satisfy the condition

sin
(
π
(
(N − 1)N

)
ñ
)

sin
(
π(ñ/N)

) + η
(intp 2)
N/2,opt exp

(
iπ

δx̃

Δx

)
exp(iπñ) = sin

(
π
(
(N + 1)/N

)
ñ
)

sin
(
π(ñ/N)

) .

(A.8)

From (A.8),

η
(intp)
N/2,opt=

sin
(
π
(
(N+1)/N

)
ñ
)−sin

(
π
(
(N−1)/N

)
ñ
)

sin
(
π(ñ/N)

) exp(−iπñ) exp
(
−iπ δx̃

Δx

)

= 2 cos(πñ) exp(−iπñ) exp
(
− iπ

δx̃

Δx

)

= 2 cos(πñ) exp
[
− iπ

(
n− N − 1

2

)]

= 2 cos
[
π
(
n− N − 1

2
− δx̃

Δx

)]
exp

[
− iπ

(
n− N − 1

2

)]

= 2 cos
[
π
(
n− N

2
+

1
2
− δx̃

Δx

)]
exp

[
− iπ

(
n− N

2
+

1
2

)]

= −i2 cos
[
π
(
n− N

2

)
+ π

(
1
2
− δx̃

Δx

)]
cos

[
π
(
n− N

2

)]

= −i2 cos
[
πn + π

(
1
2
− δx̃

Δx

)]
cos(πn),

(A.9)

where n = n−N/2 is an integer number. Therefore,

η
(intp 2)
N/2,opt = −i2 cos

[
πn + π

(
1
2
− δx̃

Δx

)]
(−1)n

= −i2 cos(πn) cos
[
π
(

1
2
− δx̃

Δx

)]
(−1)n

= −i2 cos
[
π
(

1
2
− δx̃

Δx

)]
(−1)2n = −i2 sin

(
π
δx̃

Δx

)
.

(A.10)

C. PSF of signal zooming by means of zero-padding of its DCT spectrum

Consider analytical expressions that describe signal zooming by means of zero-
padding its DCT spectrum. Let αDCT

r be DCT spectrum of signal {ak},

αDCT
r = 2√

N

N−1∑
k=0

ak cos
[
π

(k + 1/2)r
N

]
= 1√

2N

2N−1∑
k=0

ãk exp
[
i2π

(k + 1/2)r
2N

]
,

(C.1)
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where k = 0, . . . ,N − 1 and

ãk =
⎧⎨⎩ak, k = 0, . . . ,N − 1,

a2N−1−k, k = N , . . . ,LN − 1.
(C.2)

Form a zero pad spectrum,

α̃DCT,L
r =

⎧⎨⎩αDCT
r , r = 0, . . . ,N − 1,

0, r = N , . . . ,LN − 1.
(C.3)

Being a spectrum of DCT, this spectrum has an odd-symmetry property

α̃DCT,L
r = −α̃DCT,L

2LN−r ; α̃DCT,L
LN = 0. (C.4)

Compute inverse DCT of the zero pad spectrum, using representation of DCT
through SDFT(1/2, 0) and its symmetry property (C.4):

˜̃αk = 1√
2LN

2LN−1∑
r=0

α̃DCT,L
r exp

[
− i2π

(k + 1/2)
2LN

r
]

= 1√
2LN

{ N−1∑
r=0

αDCT
r exp

[
− i2π

(k + 1/2)
2LN

r
]

+
2LN−1∑

r=2LN−N+1

α̃DCT
r exp

[
− i2π

(k + 1/2)
2LN

r
]}

= 1√
2LN

{ N−1∑
r=0

αDCT
r exp

[
− i2π

(k + 1/2)
2LN

r
]

+
N−1∑
r=1

α̃DCT
2LN−r exp

[
− i2π

(k + 1/2)
2LN

(2LN − r)
]}

= 1√
2LN

{
αDCT

0 +
N−1∑
r=1

αDCT
r exp

[
− i2π

(k + 1/2)
2LN

r
]

−
N−1∑
r=1

αDCT
r exp

[
− i2π

(k + 1/2)
2LN

(2LN − r)
]}

= 1√
2LN

{
αDCT

0 +
N−1∑
r=0

αDCT
r exp

[
− i2π

(k + 1/2)
2LN

r
]

+
N−1∑
r=0

αDCT
r exp

[
i2π

(k + 1/2)
2LN

r
]}

. (C.5)
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Replace in this formula αDCTr with its expressions through SDFT(1/2, 0) in the
right part of (C.1) and obtain

˜̃ak= 1√
2LN

{
αDCT

0 +
N−1∑
r=1

1√
2N

2N−1∑
n=0

ãn exp
[
i2π

(n + 1/2)r
2N

]
×exp

[
− i2π

(k + 1/2)
2LN

r
]

+
N−1∑
r=1

1√
2N

2N−1∑
n=0

ãn exp
[
i2π

(n + 1/2)r
2N

]
exp

[
i2π

(k + 1/2)
2LN

r
]}

= αDCT
r√
2LN

+
1√

2LN

N−1∑
r=1

1√
2N

2N−1∑
n=0

ãn

{
exp

[
iπ
(
n + 1/2− (k + 1/2)/L

)
r

N

]

+ exp
[
iπ

(
n + 1/2 + (k + 1/2)/L

)
r

N

]}
.

(C.6)

Denote, for brevity, ñ = n + 1/2 and k̃ = k + 1/2. Then, obtain

˜̃ak = αDCT
r√
2LN

+
1√

2LN

N−1∑
r=1

1√
2N

×
2N−1∑
n=0

ãn

{
exp

[
iπ
(
ñ− k̃/L

)
r

N

]
+ exp

[
iπ
(
ñ + k̃/L

)
r

N

]}

= αDCT
r√
2LN

+
1√

2LN

×
N−1∑
r=1

1√
2N

[ N−1∑
n=0

ãn

{
exp

[
iπ
(
ñ− k̃/L

)
r

N

]
+ exp

[
iπ
(
ñ + k̃/L

)
r

N

]}

+
2N−1∑
n=N

ãn

{
exp

[
iπ
(
ñ− k̃/L

)
r

N

]
+ exp

[
iπ
(
ñ + k̃/L

)
r

N

]}]

= αDCT
r√
2LN

+
1√

2LN

×
N−1∑
r=1

1√
2N

[ N−1∑
n=0

ãn

{
exp

[
iπ
(
ñ− k̃/L

)
r

N

]
+ exp

[
iπ
(
ñ + k̃/L

)
r

N

]}

+
N−1∑
n=0

ã2N−1−n
{

exp
[
iπ
(
2N − ñ− k̃/L

)
r

N

]

+ exp
[
iπ
(
2N − ñ + k̃/L

)
r

N

]}]
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= αDCT
r√
2LN

+
1√

2LN

×
N−1∑
r=1

1√
2N

[ N−1∑
n=0

an

{
exp

[
iπ
(
ñ− k̃/L

)
r

N

]
+ exp

[
iπ
(
ñ + k̃/L

)
r

N

]}

+
N−1∑
n=0

ã2N−1−n
{

exp
[
− iπ

(
ñ + k̃/L

)
r

N

]

+ exp
[
− iπ

(
ñ− k̃/L

)
r

N

]}]

= αDCT
r√
2LN

+
1

2N
√
L

N−1∑
n=0

an

{ N−1∑
r=1

exp
[
iπ
(
ñ− k̃/L

)
r

N

]

+
N−1∑
r=1

exp
[
iπ
(
ñ + k̃/L

)
r

N

]

×
N−1∑
r=1

exp
[
− iπ

(
ñ + k̃/L

)
r

N

]

+
N−1∑
r=1

exp
[
− iπ

(
ñ− k̃/L

)
r

N

]}

=
N−1∑
r=1

exp
[
− iπ

(
ñ + k̃/L

)
r

N

]
+

N−1∑
r=1

exp
[
− iπ

(
ñ− k̃/L

)
r

N

]

= αDCT
r√
2LN

+
1

2N
√
L

×
N−1∑
n=0

an

{
exp

[
iπ(ñL− k̃)/L

]− exp
[
iπ(ñL− k̃)/LN

]
exp

[
iπ(ñL− k̃)/LN

]− 1

+
exp

[
(ñL + k̃)/L

]− exp
[
iπ(ñL + k̃)/LN

]
exp

[
π(ñL + k̃)/LN

]− 1

+
exp

[− π(ñL + k̃)/L
]− exp

[− π(ñL + k̃)/LN
]

exp
[− π(ñL + k̃)/LN

]− 1

+
exp

[− iπ(ñL− k̃)/L
]− exp

[− iπ(ñL− k̃)/LN
]

exp
[− iπ(ñL− k̃)/LN

]
− 1

}

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


L. Yaroslavsky 397

= αDCT
0√
2LN

+
1

2N
√
L

N−1∑
n=0

an

{
sin

[
π
(
(N + 1)/2NL

)
(ñL− k̃)

]
sin

[
π(ñL− k̃)/2NL

] exp
[
iπ(ñL− k̃)

2L

]

+
sin

[
π
(
(N+1)/2NL

)
(ñL+k̃)

]
sin

[
π(ñL+k̃)/2NL

] exp
[
iπ(ñL+k̃)

2L

]

+
sin

[
π
(
(N+1)/2NL

)
(ñL+k̃)

]
sin

[
π(ñL+k̃)/2NL

] exp
[
− iπ(ñL+k̃)

2L

]

+
sin

[
π
(
(N+1)/2NL

)
(ñL−k̃)

]
sin

[
π(ñL−k̃)/2NL

] exp
[
− iπ(ñL−k̃)

2L

]}
.

(C.7)

From this, we finally obtain

˜̃ak = αDCT
0√
2LN

+
1

N
√
L

N−1∑
n=0

an

{
sin

[
π
(
(N+1)/2NL

)
(ñL−k̃)

]
sin

[
π(ñL−k̃)/2NL

] cos
[
π(ñL− k̃)

2L

]

+
sin

[
π
(
(N+1)/2NL

)
(ñL + k̃)

]
sin

[
π(ñL+k̃)/2NL

] cos
[
π(ñL + k̃)

2L

]}
.

(C.8)

By analogy with DFT zero-padding, one can improve convergence of DCT
zero-padding PSF by halving DCT spectral coefficients that correspond to the
highest frequency. For signals ofN samples, these are coefficients with indicesN−2
and N − 1. To find an analytical expression for this case, we first compute, using
(C.7) and (C.8), L-zoomed signal for the case when those coefficients are zeroed:

˜̃ak = αDCT
r√
2LN

+
1

2N
√
L

×
N−1∑
n=0

an

{ N−3∑
r=1

exp
[
iπ
(
ñ− k̃/L

)
r

N

]
+

N−3∑
r=1

exp
[
iπ
(
ñ + k̃/L

)
r

N

]

+
N−3∑
r=1

exp
[
− iπ

(
ñ + k̃/L

)
r

N

]
+

N−3∑
r=1

exp
[
− iπ

(
ñ− k̃/L

)
r

N

]}

= αDCT
0√
2LN

+
1

N
√
L

×
N−1∑
n=0

an

{
sin

[
π
(
(N − 1)/2N

)
(ñ− k̃/L)

]
sin

[
π(ñ− k̃/L)/2N

] cos
[
π(N − 2)/N

(
ñ− k̃/L

)
2

]

+
sin

[
π
(
(N − 1)/2N

)
(ñ + k̃/L)

]
sin

[
π(ñ + k̃/L)/2N

] cos
[
π(N − 2)/N

(
ñ + k̃/L

)
2

]}
.

(C.9)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.7.html

http://www.amazon.com/dp/9775945550

http://www.hindawi.com/spc.7.html
http://www.amazon.com/dp/9775945550


398 Discrete sinc-interpolation

PSF Walsh; L = 8

(a)

PSF Haar; L = 8

(b)

Figure D.1. Point spread functions of signal 8x-zooming by means of zero-padding its Walsh spec-
trum (a) and Haar spectrum (b) for five different positions of the signal impulse.

Then L-zoomed signal obtained by zero-padding signal DCT spectrum and halv-
ing its highest frequency components is defined by the equation

˜̃ak= αDCT
0√
2LN

+
1

N
√
L

N−1∑
n=0

an

{
sin

[
π
(
(N+1)/2NL

)
(ñL−k̃)

]
sin

[
π(ñL−k̃)/2NL

] cos
[
π(ñL− k̃)

2L

]

+
sin

[
π
(
(N+1)/2NL

)
(ñL+k̃)

]
sin

[
π(ñL+k̃)/2NL

] cos
[
π(ñL + k̃)

2L

]

+
sin

[
π
(
(N−1)/2NL

)
(ñL−k̃)

]
sin

[
π(ñL−k̃)/2NL

] cos
[
π
N−2
2NL

(ñL−k̃)
]

+
sin

[
π
(
(N−1)/2NL

)
(ñL+k̃)

]
sin

[
π(ñL+k̃)/2NL

] cos
[
π
N−2
2NL

(ñL+k̃)
]}

.

(C.10)

D. Signal zooming by means of zero-padding their Walsh
and wavelet transforms

In this appendix, we consider point spread functions of signal zooming by means
of zero-padding of their spectra in Walsh, Haar, and wavelet transform domain.
Obviously, point spread functions of zero-padding in transform domain depend
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(a) Binom-9 (b) Qmf-9

(c) Binom-13 (d) Qmf-13

Figure D.2. Point spread functions of signal zooming by means of zero-padding its wavelet spectra
(bold circles) compared with those for DFT zero-padding (dots).

on transform basis functions. For transforms with binary or ternary basis func-
tions, such as Walsh transform and Haar transform, one cannot expect anything
but a rectangular point spread function which describes the nearest neighbor in-
terpolation. Experiments confirm this guess (see Figure D.1). Curiously enough,
zero-padding Walsh and Haar spectra turn out to be “quasi”-shift invariant inter-
polation processes, which is of course not the case for general signal filtering by
modification of their Walsh and Haar spectra.

Wavelet transforms are good practical candidates for image zooming by zero-
padding its transform when zooming is required for images presented in a com-
pressed form such as in JPEG2000 image compression standard. Point spread func-
tions of such a zooming are determined by the type of wavelets used. Figure D.2 il-
lustrates point spread functions for 4 types of wavelets: Binom-9, Binom-13, Qmf-
9, and Qmf-13, and compares them with discrete sinc-function sincd(±1,N , x).

E. Sliding window DFT and DCT/DcST recursive algorithms

Let us consider DFT of two adjacent (k−1)th and kth fragments {ak−1−fix((Nw−1)/2),
. . . , ak−1+fix(Nw/2)} and {ak−fix((Nw−1)/2), . . . , ak+fix(Nw/2)} of a signal {ak} in sliding
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window of Nw samples

α(k−1)
r =

Nw−1∑
n=0

ak−1−fix((Nw−1)/2)+n exp
(
i2π

nr

Nw

)
,

α(k)
r =

Nw−1∑
n=0

ak−fix((Nw−1)/2)+n exp
(
i2π

nr

Nw

)
,

(E.1)

where fix(x) is integer part of x and normalization factor 1/
√
N is neglected. Spec-

trum {α(k)
r } in kth position of the sliding window can be computed from spectrum

{α(k−1)
r } in (k − 1)th window position in the following way:

α(k)
r =

Nw−1∑
n=0

ak−fix((Nw−1)/2)+n exp
(
i2π

nr

Nw

)

=
Nw∑
n=1

ak−1−fix((Nw−1)/2)+n exp
(
i2π

(n− 1)r
Nw

)

=
[ Nw−1∑

n=0

ak−1−fix((Nw−1)/2)+n exp
(
i2π

nr

Nw

)

+
(
ak−1−fix((Nw−1)/2)+Nw − ak−1−fix((Nw−1)/2)

)]
exp

(
− i2π

r

Nw

)

=
(
α(k−1)
r + ak−1−fix((Nw−1)/2)+Nw − ak−1−fix((Nw−1)/2)

)
exp

(
− i2π

r

Nw

)
.

(E.2)

Equation (E.2) describes the recursive algorithm for computing DFT signal spec-
trum in sliding window of Nw samples. For signals whose samples are real num-
bers, only first (Nw + 1)/2 coefficients have to be computed. The rest (Nw − 1)/2
can be found from the symmetry property αr = α∗N−r of DFT of real numbers.
Therefore, (Nw − 1)/2 multiplications of complex numbers and (Nw + 1)/2 addi-
tions plus 2 additions are required for computing {α{k}r } which amounts to total
3(Nw + 1)/2 additions and 2(Nw − 1) of real number multiplications provided
{sin(2π(r/Nw))} and {cos(2π(r/Nw))} coefficients are taken from a look-up table,
which practically always can be done. Otherwise, additional (Nw − 1) operations
for computing sine-cosine coefficients are required.

When sliding window DFT algorithms are used for local adaptive filtering
and resampling as described in Chapter 5, inverse DFT is required for computing
window central pixel. Using the above-mentioned symmetry property of DFT of
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real numbers, one can show that required inverse can be computed as

ãk=
Nw−1∑
r−1

α̃(k)
r exp

(
−i2πNw+1

2Nw
r
)

=
[ (Nw−1)/2∑

r−1

α̃(k)
r exp

(
−iπ Nw+1

Nw
r
)

+
Nw−1∑

r−(Nw+1)/2

α̃(k)
r exp

(
−iπ Nw+1

Nw
r
)]

=
[ (Nw−1)/2∑

r−1

α̃(k)
r (−1)r exp

(
−iπ r

Nw

)
+

(Nw−1)/2∑
r−1

α̃(k)
Nw−1(−1)N−r exp

(
−iπ Nw−r

Nw

)]

=
[ (Nw−1)/2∑

r−1

α̃(k)
r (−1)r exp

(
−iπ r

Nw

)
+

(Nw−1)/2∑
r−1

(
α̃(k)
r

)∗
(−1)r exp

(
iπ

r

Nw

)]

= 2
(Nw−1)/2∑

r−1

(−1)r Re
[
α̃(k)
r exp

(
−iπ r

Nw

)]
.

(E.3a)

The reconstruction, therefore, requires additional (Nw + 1)/2 additions and
2 × (Nw − 1)/2 = (Nw − 1) real multiplications provided {sin(π(r/Nw))} and
{cos(π(r/Nw))} coefficients are taken from a look-up table.

In order to evaluate total computational complexity of the filtering in DFT do-
main in sliding window such as described in Chapter 5, additional (Nw − 1)/2 op-
erations on complex numbers are required for modification of the window spec-
tral coefficients according to the filtering. For signal p-shift resampling, discussed
in Section 8.2.3, the spectrum modification is multiplying spectral coefficients by
exp(−i2πpr/Nw) that can be included in the inverse transform

2
N

(Nw−1)/2∑
r−1

(−1)r Re
[
α̃(k)
r exp

(
− iπ

1 + 2p
Nw

r
)]

. (E.3b)

However, in this case, keeping coefficients {sin(π((1+2p)/Nw)r)} and {cos(π((1+
2p)/Nw)r)} is not always possible if the required shift is different for different win-
dow position. The results of evaluation of the computational complexity are sum-
marized in Table E.1 separately for general local adaptive filtering and or signal
p-shift.

The DCT and DcST in a running window can be computed in a similar way.
For adjacent (k − 1)th and kth signal fragments, their DCT and DcST spectra

{α(k−1)
r } and {α(k)

r } are, correspondingly, real and imaginary parts of auxiliary
spectra

α̃(k−1)
r = 1√

Nw

N−1∑
n=0

ak−1−fix((Nw−1)/2)+n exp
[
iπ

(n + 1/2)r
Nw

]
,

α̃(k)
r = 1√

Nw

N−1∑
n=0

ak−fix((Nw−1)/2)+n exp
[
iπ

(n + 1/2)r
Nw

]
.

(E.4)
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Table E.1. Number of operations per output sample for sliding window DFT filtering in the window
of Nw samples.

Additions Multiplications
Additional operations
when look-up-table is
not available

Computation of local spectra 3(Nw + 1)/2 2(Nw − 1) (Nw − 1)

Reconstruction (Nw + 1)/2 (Nw − 1) (Nw − 1)

Spectrum

modification
Filtering (Nw − 1)/2 complex number operations

p-shift (Nw − 1)/2 (Nw − 1) (Nw − 1)

Total
Filtering Additional (Nw − 1)/2 complex number operations

p-shift 5(Nw + 1)/2 2(Nw − 1) (Nw − 1)

Spectrum {α̃(k)
r } can be represented through spectrum {α̃(k−1)

r } as follows:

α̃(k)
r = α̃(k−1)

r exp
(
− iπ

r

Nw

)
+
[

(−1)rak−1−fix((Nw−1)/2)+Nw − ak−1−fix((Nw−1)/2)

]
exp

(
− iπ

r

2Nw

)
.

(E.5)

Recursive computations according to (E.5) require 4(Nw − 1) multiplication
and 6Nw − 3 addition operations for both DCT and DcST transform in sliding
window of Nsamples.

Extension of these algorithms to the recursive computation of 2D DFT, DCT,
and DcST is straightforward owing to the separability of the transforms.

As one can see, in the recursive algorithm for computing DCT and DcST in
sliding window described by (E.5), DCT and DcST are inseparable:

α(k) DCT
r = Real

{
α̃(k)
r

} = α(k−1) DCT
r C1 + α(k−1) DST

r S1 + ΔakC2, (E.6)

α(k) DcST
r = Imag

{
α̃(k)
r

} = α(k−1) DcST
r C1 − α(k−1) DCT

r S1 − ΔakS2, (E.7)

where

C1 = cos
(
π

r

Nw

)
, C2 = cos

(
π

r

2Nw

)
,

S1 = sin
(
π

r

Nw

)
, S2 = sin

(
π

r

2Nw

)
,

Δa(k)
r = (−1)rak−1−fix((Nw−1)/2)+Nw − ak−1−fix((Nw−1)/2).

(E.8)

Many applications require computing only the DCT in sliding window. In
these cases, computations of both DCT and DcST according to (E.5) are redun-
dant. This redundancy associated with the need to compute the DcST for recursive
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computing the DCT can be eliminated in an algorithm that uses DCT spectrum
found on two previous window positions (see [18]). To derive this algorithm, com-

pute DFTs ADCT
s and ADcST

s of {α(k) DCT
r } and {α(k) DcST

r }, respectively, over index k
assuming that the number of signal samples is Nk. According to the shift theorem
of the DFT, obtain, for ADCT

s and ADcST
s from (E.6) and (E.7),

ADCT
s = ADCT

s C1Z + ADcST
s S1Z + ΔAsC2, (E.9)

ADcST
s = ADcST

s C1Z − ADCT
s S1Z − ΔAsS2, (E.10)

where s is index in the DFT domain, ΔAs is DFT of Δa(k)
r , and Z = exp(i2π(s/

Nk))—the spectral shift factor that corresponds to signal shift one sample back.
Express, using (E.7), ADcST

s through ADCT
s and substitute it into (E.9) and (E.10).

Then, obtain

ADCT
s

[
1− C1Z

]2 = −ADCT
s S2

1Z
2 + ΔAsS2S1Z + ΔAsC2

(
1− C1Z

)
, (E.11)

from which it follows that

ADCT
s = 2C1A

DCT
s Z − (

C2
1 + S2

1

)
ADCT
s Z2 − (

C2C1 − S2S1
)
ΔAsZ + C2ΔAs,

(E.12)

or, as C2
1 + S2

1 = 1 and C2C1 − S2S1 = C2,

ADCT
s = 2C1A

DCT
s Z − ADCT

s Z2 + C2
(
ΔAs − ΔAsZ

)
. (E.13)

Finally, taking inverse DFT of both parts of (E.13) and using the fact that spectral
multiplicands Z and Z2 correspond to signal shifts one and two samples back,
respectively, obtain for the sliding window DCT that

α(k) DCT
r = 2α(k−1) DCT

r cos
(
π

r

Nw

)
− α(k−2) DCT

r

+
(
Δa(k)

r − Δa(k−1)
r

)
cos

(
π

r

2Nw

)
.

(E.14)

Similar recursive relationship can be derived for the sliding window DcST:

α(k) DcST
r = 2α(k−1) DcST

r cos
(
π

r

Nw

)
− α(k−2) DcST

r

− (
Δa(k)

r + Δa(k−1)
r

)
sin

(
π

r

2Nw

)
.

(E.15)

Computations according to (E.14) and (E.15) require only 2(Nw − 1) multiplica-
tion and 5(Nw − 1) + 2 addition operations per output signal sample provided

local dc (α(k) DCT
0 , α(k) DcST

0 ) coefficients are computed separately with recursive al-
gorithm that requires 2 additions per sample and sine and cosine coefficients are
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404 Discrete sinc-interpolation

Table E.2. Computational complexity per output sample for sliding window DCT/DcST processing.

Multiplications Additions
Additional operations
when look-up-table is
not available

Computation

of local spectra

DCT&DcST 4(Nw − 1) 6Nw − 3 2(Nw − 1)

DCT
Filtering Nw − 1 5(Nw − 1)/2 + 2 Nw − 1

p-shift 2(Nw − 1) 5Nw − 3 2(Nw − 1)

Spectrum

modification
Filtering Nw − 1 — —

p-shift Nw − 1 — —

Reconstruction
Filtering — (Nw − 1)/2 + 1

p-shift — Nw − 1 —

Total
Filtering — — —

p-shift 3(Nw − 1) 6Nw − 4 —

taken from a look-up-table. Note that, when local DCT coefficients are used for
local adaptive filtering, only coefficients with even indices are used. Therefore,
in this case only (Nw − 1) multiplications and 5(Nw − 1)/2 + 2 additions are re-
quired. Table E.2 summarizes above estimates of the computational complexity of
DCT/DcST domain processing in sliding window.
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Symbols
0-paths, 60

c-paths, 60

A
accuracy, 250

bias, 250

variance, 250

adjoint pseudopolar Fourier transform, 157

adjoint Radon transform, 165

affine DFT, 93, 106, 139

aliasing, 287, 288, 292, 293, 295, 297, 298, 314

aliasings, 295

angular spectrum propagation, 98, 113

anisotropic, 276

gradient, 276

approximation order, 292, 303

approximation constant, 305, 310, 320

approximation error, 292, 302–305, 325,
328, 331

approximation error kernel, 325

arithmetic transform, 63, 66, 67

autocorrelation function, 71–73

B
B-splines, 306, 311, 313, 315, 319, 322,

325, 328, 332

modified, 311, 313, 315, 319, 322, 325,
328, 332

basis, 300, 301, 305–307, 309, 315, 317, 318

biorthogonal, 301

dual, 301

generating, 300

piecewise polynomial, 305

Riesz, 301, 307

truncated power, 306, 309, 315, 317, 318

basis function, 285, 286, 290, 302, 305, 309

Lth-order, 302

noninterpolating, 309

of minimal support, 285, 286, 305

piecewise polynomial, 286, 305

symmetric, 290, 309

BDD, 71, 75
binary decision diagrams, 63
blind deblurring, 206
blurring, 295, 297

C
canonical discrete Fourier transform,

93, 94, 139
canonical discrete Fresnel transform, 93, 109,

113, 139
cardinal sampling, 102, 107, 109, 362
Cartesian frequency grid, 145, 154, 158
Cartesian grid, 143, 150, 152, 154, 158
characteristic function, 72
chirp Z-transform, 195–197
chirp z-transform, 105
concentric squares grid, 144, 150, 151
condition number, 157
conformity principle, 99, 100
conjugate-gradient, 144, 157
continuous frequency response, 341, 344, 349
convolution reconstruction algorithm,

114, 126
convolutional discrete Fresnel transform,

113, 140
cost of a node, 60
cross section, 147, 159
CT, 145, 147, 148, 159, 160, 184
cubic (bicubic) interpolation, 349

D
DCT-based filtered back projection

algorithm, 377
DCT-based ramp-filter, 377
decision diagram, 60, 61, 66, 71, 76, 80
depth of a decision diagram, 60
DFT, 144, 145, 152, 155, 166, 177, 179, 184,

190, 191, 194
DFT-based differentiation and integration

algorithms, 370
diffraction transform, 146, 197, 198
direct inversion, 145, 158
directional Laplacian, 211, 227
discrete cosine transform, 104, 133, 139, 201,

210, 234
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discrete cosine-sine transform, 104, 139
discrete frequency response, 342, 344, 347
discrete Kirchhoff-Rayleigh-Sommerfeld

transform, 140
discrete ramp-filter, 369
discrete sinc-function, 339, 341, 345, 346, 357,

358, 361, 380
discrete sinc-interpolation, 337, 338, 347,

349–358, 360, 363, 365, 366, 369, 370,
377, 379, 380, 382

discretization basis functions, 99

E
edge preserving property, 214
edge-valued binary decision diagrams, 63
elastic image resampling, 379
empirical Wiener filter, 206, 219
empirical Wiener filtering, 201, 202, 234
estimate, 249, 265

aggregation, 265
derivative, 249
kernels, 249
signal, 249

EVBDD, 63

F
fan-beam projections, 146, 198
Farrow structure, 318
fast multipole method (FMM), 145
FFT, 144, 146, 152, 154, 155, 168, 196–198
filter, 291

fractional delay, 291
interpolation, 291
reconsruction, 291

filtered back projection method, 377
focal plane invariant discrete Fresnel

transform, 110
Fourier, 143, 144, 151, 174
Fourier integral transform, 94, 98, 109
Fourier reconstruction algorithm, 109,

122, 123, 125–128, 140
Fourier slice theorem, 145–149, 162, 163,

165–167, 169, 173–175, 185, 190, 191,
193, 194

Fourier transform, 144–152, 155, 158, 160,
162, 167, 168, 173, 176, 179, 185, 190,
195, 196, 198

fractional interval, 291
fractional discrete Fourier transform, 105
fractional Fourier transform, 144, 150, 154,

155, 177, 179
fractional spectrum filter, 206

Fresnel integral transform, 94, 98
frincd-function, 111, 112, 125, 140
function space, see space

G
generalized BDD reduction rules, 70
Gibbs effects, 295
Gram operator, 144, 145

H
Haar functions, 57–65, 67–69, 76, 81–84,

86, 88
Haar spectral diagrams, 60, 63
Haar spectral transform decision diagrams,

69, 70, 81, 88
Haar spectral transform multivalued decision

tree, 82
Haar spectral tree, 64
Haar Transform, 210, 219, 222
Haar transform, 57, 58, 60–63, 69, 231, 234
hard thresholding, 213
HST, 64, 68
HSTDD, 61, 69, 71, 72, 75–80, 88
HSTMVDT, 83, 87
hybrid filtering method, 202
hybrid wavelet-SWDCT processing

method, 227
hybrid wavelet/SWTD filtering, 226
hyperplanes, 146

I
ICI rule, 260, 262–264

differentiation, 262
directional estimates, 264
implementation, 263

image, 265, 271, 274
denoising, 265
differentiation, 271, 274

image processing, 265
directional denoising, 265

image resampling, 337, 350, 379, 387
imaging, 295
interpolation, 285, 288, 289, 296, 298,

305, 306, 309
at uniform grid, 306
convolution-based, 285, 305
generalized, 296
in frequency domain, 298
in signal domain, 289

interpolation artifacts, 294
interpolation constraint, 289
interpolation error kernel, 296
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interpolator, 293, 299, 305, 307, 312, 330
B-spline, 299
Lth order, 307
cubic convolution, 299, 312
finitely supported, 299
ideal, 305
infinitely supported, 293
linear, 299
sinc, 299, 330
symmetrical, 299

intersection of confidence intervals method,
211

K
kernel, 251, 288, 290, 292, 294

design, 251
differentiating, 251
finitely supported, 294
ideal, 292
interpolating, 288
nonideal, 294
noninterpolating, 290
sinc, 292
smoothing, 251

kernels, 263
anisotropic, 263
directional, 263

Kirchhoff-Rayleigh-Sommerfeld integral, 94,
97, 98

L
least squares, 301, 304
Lepski’s approach, 257
line integral, 147, 160
linear (bilinear) interpolation, 349
linear filtering in transform domain, 202
local adaptive interpolation, 380, 382
local criteria, 208
local polynomial approximation, 242, 246

high-order, 242
zero-order, 246

M
Markov process, 328
mathematical hologram, 96
MTBDD, 64–67, 73, 76–78
multiterminal decision diagrams, 63, 82
mutual correspondence principle, 99

N
nearest neighbor, 295
nearest neighbor interpolation, 349, 382, 383
nonband-limited, 298

numerical differentiation and integration,
347, 367, 369, 371, 372, 377

numerical differentiation and integration
methods, 375, 377

O
O-MOMS, 310, 330
off-axis recording hologram, 96
onion-peeling, 145, 158
optimal resampling filter, 344
optimization, 314, 315

minimax, 314
overall frequency response, 340, 342
overall point spread function, 340
overlap-and-add filtering, 213

P
parallel projection, 146, 198
partial discrete Fresnel transform, 110
partition of unity, 304, 313
passband, 315
phase-shifting holography, 96, 130
piecewise polynomials, 306
point spread function of the numerical recon-

struction of holograms, 118, 121
polynomial degree, 310
preconditioner, 145, 157, 158
pseudopolar FFT, 150, 198
pseudopolar Fourier transform, 144, 145, 149,

151, 153–160, 168, 175–177
pseudopolar grid, 144, 145, 150–154, 167,

174–177
PSF of sampled hologram reconstruction,

118, 123, 127

R
Radon transform, 145–150, 159–162,

166–169, 172–174, 176, 179, 185, 198
rate of decay, 304
reconstruction basis functions, 99, 116
reconstruction kernel, see kernel
regridding, 143
rejective filter, 214
resample, 151, 155, 177, 179
resamples, 145, 146, 158
resampling, 146, 153–155, 158, 163, 167
ringing, 295
rotated and scaled discrete Fourier

transform, 365
rotated and scaled RotDFT, 107
rotation, 320
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S
sampling, 286
sampling interval, 99, 116, 121, 128, 129
Scalar filtering, 203, 204, 208, 209
scaled basis functions, 202
scaled DFT, 104, 105, 139
scaled discrete Fourier transform, 363
ScDFT-based image rescaling algorithm, 364
shadowgram, 147, 159
shift basis functions, 99, 202
shifted DFT, 93, 118, 139, 361, 363–365
shifted discrete Fresnel transform, 109
signal convolution in DCT domain, 361
signal fractional shift, 359, 361, 366, 378
signal time-frequency representation, 231
sinc-function, 347, 349, 380
sincd-function, 104, 111, 112
size of a decision diagram, 60
sliding window DCT domain discrete

sinc-interpolation, 381
sliding window discrete sinc-interpolation,

337, 380, 387
sliding window transform domain filtering,

201, 210, 211, 213, 223, 225
smoothing parameter, 249

bandwidth, 249
soft thresholding, 224
softened thresholding, 213
space, 300, 307

shift-invariant, 300
spline-like, 307

spectral transform decision diagrams, 67, 69
spectrum zero padding, 338, 355, 357–361,

364, 367, 377, 378, 393, 397–399
spline interpolation, 338, 346, 349–351
splines, 307
splines of minimal support, 305
STDD, 76
step function, 328
stopband, 314
strang-Fix conditions, 304
structure of decision diagrams, 60
subband decomposition, 201, 202, 227, 228

T
Toeplitz, 145
total autocorrelation function, 71–73
total squared error, 328
translation invariant wavelet denoising, 224
translation operator, 163
trigonometric interpolation, 145, 150,

160, 163
trigonometric polynomial, 166, 167, 175,

181–183, 191, 193, 194

U
unaliased fractional Fourier transform, 154,

155

V
VCHSTDT, 86–88
vector space, see space
Vilenkin-Chrestenson transform, 84, 85
Vilenkin-Chrestenson-Haar spectral

transform decision tree, 85
Vilenkin-Chrestenson-Haar transform, 87

W
Walsh transform, 67, 84
Walsh-Hadamard Transform, 210
wavelet shrinkage, 202
wavelet transform, 222
wavelet transforms, 201
white noise, 328
width, 60
Wiener scalar filter, 205
window functions, 245
window size, 242, 254

adaptive, 254
windowed sinc-function, 349
windowing, 244

X
X-ray transform, 145, 146, 149, 184, 185,

187–193, 195–197
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