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Preface

Multimedia is becoming an integral part of our daily life. It is a means for us to
communicate important information with each other, as well as a way to express
our creative sides. The information and art contained inside media have economic
value, personal value, and often broader impacts on the general welfare of our
society. Consequently, multimedia is a form of digital information that must be
protected.

This book is about protecting the economic and sensitive nature of multime-
dia. Since the Internet has become increasingly widespread, and now reaches into
our everyday actions, it is easy to foresee that our modern communication net-
works will become the means for distributing multimedia content. This distribu-
tion will take many forms, ranging from a deceptively simple download-and-play
model where a single consumer is the end-target for that content to streaming
modes of operation where content is being enjoyed simultaneously by many con-
sumers. Regardless of how you look at it, the future of multimedia is closely tied to
the pervasiveness of our communication infrastructure. It therefore seems natural
to protect multimedia by securing its distribution across these networks, that is,
by employing the methods of network security.

Although securing the network and protecting the data crossing the network
from eavesdropping is certainly essential for protecting multimedia, it is nonethe-
less a generic problem with generic solutions. Network security methods are im-
portant to many other applications, such as electronic commerce and computer se-
curity, in addition to being important to multimedia security. However, this book,
Multimedia Fingerprinting Forensics for Traitor Tracing, is not about securing the
communication infrastructure that will deliver multimedia.

Rather, this book focuses on the issue of protecting multimedia content when
it is outside the realm of cryptography and network security. It is now relatively
easy for adversaries to access multimedia content after it has been decrypted. Ad-
versaries may now alter and repackage digital content. Therefore, ensuring that
media content is employed by authorized users for its intended purpose, regard-
less of how it was delivered, is becoming an issue of eminent importance for both
governmental security and commercial applications. As such, this book is about
issues that are unique to multimedia and focuses specifically on how multimedia,
unlike generic data types, can be protected by using fingerprint signals that are in-
visibly embedded inside the multimedia to trace and deter unauthorized content
redistribution. That is, this book is about the rather nascent field of multimedia
forensics, where the goal is to track and identify entities involved in the illegal
manipulation and unauthorized usage of multimedia content. Ultimately, a solid
foundation for media forensics will deter content fraud.
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xii Preface

This book is targeted at an audience that is familiar with the fundamentals
of multimedia signal processing and will teach the reader about the tools needed
to build, analyze, and deploy solutions that will protect a variety of multimedia
types. It, therefore, provides foundational material intended to assist the digital
rights management (DRM) engineer understand technologies that complement
traditional cryptographic security methods.

In this book, we will review a few major design methodologies for collusion-
resistant fingerprinting of multimedia and highlight common and unique issues of
various different fingerprinting techniques. The goal is to provide a broad overview
of the recent advances in fingerprinting for tracing and identifying colluders. We
will first provide background on robust data embedding, upon which multime-
dia fingerprinting system is built. We will then introduce the basic concepts of
fingerprinting and collusion and provide a discussion on the various goals asso-
ciated with fingerprint design and colluder tracing. Detailed discussions are then
provided on two major classes of fingerprinting strategies, namely, orthogonal fin-
gerprinting and correlated fingerprinting, where the latter involves the design of
suitable codes that are employed with code modulation to create the fingerprints.
As part of our discussion, we will arrive at a unified view of fingerprint design that
covers orthogonal fingerprints, coded fingerprints, and other correlated finger-
prints. After concluding the discussion of fingerprint design methodologies, we
will explore two applications of fingerprinting. We will explore the migration of
multimedia forensic technologies to networks, whereby the fingerprinting process
will be integrated in core multicast functionality to provide DRM solution suitable
for streaming delivery of content. Next, we will examine the protection of a type of
multimedia content that has, until recently, been left unprotected by multimedia
security solutions. In particular, we will explore the design of fingerprints for digi-
tal curves and maps and exploit the unique properties of digital curves in order to
devise fingerprinting solutions.

We would like to thank Ms. Hongmei Gou, a Ph.D. student in the Univer-
sity of Maryland, for her contribution and involvement in preparing the draft of
Chapter 8. The results presented in this book have been, in part, supported by the
National Science Foundation and the Air Force Research Laboratories. We would
like to thank these organizations for the support to explore and develop this excit-
ing research area.

K. J. Ray Liu
Wade Trappe
Z. Jane Wang

Min Wu
Hong Zhao
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1
Introduction

The ubiquity of high-bandwidth communication technologies, in combination
with well-developed multimedia standards, has led to the proliferation of mul-
timedia content in both the government and commercial sectors. We are witness-
ing the integration of next-generation multimedia standards, such as MPEG-4
[1, 2, 3, 4] and MPEG-7 [5], into software and hardware. As a result of this in-
tegration, users are able to readily create, manipulate, and combine multimedia
content, such as audio clips and segments of video.

Multimedia data has become the mode by which we communicate with each
other. We share digital photos with childhood friends whom we have not seen in
years, and we share home videos of our children with our parents. Video confer-
ences and the sharing of recorded presentations allow both corporate and gov-
ernmental sectors to increase their productivity. It is now easier for artists to cre-
ate their own cinema or record the performance of their garage-operated band.
The combination of the availability of multimedia software and hardware with the
availability of the Internet and the Web has encouraged artists, professional and
amateur alike, to share their creative expressions. Ultimately, this has led to the
creation of a digital marketplace.

Whether you examine the role of multimedia to convey information between
different branches of the government, or you examine the role of multimedia in
the digital marketplace, the picture is the same: the promise of multimedia is great,
but its successful adoption stands on a dangerous precipice right now as the very
technologies which facilitate its success also threaten its success. The combination
of multimedia technologies and a pervasive communication infrastructure intro-
duces an explosion of threats to the sharing of multimedia content. The tools that
allowed users to create content, also allow them to duplicate or forge content. The
medium that allowed users to share their expressions also facilitates the sharing of
illicit or fraudulent content.

The alteration, repackaging, and redistribution of multimedia content pose a
serious threat to both governmental security and commercial markets. The ability
to securely and reliably exchange multimedia information is a strategic impera-
tive in order for governments to operate smoothly. In order to facilitate the global
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2 Introduction

cooperation necessary to foster international business and to battle international
threats, like terrorism, it is necessary that the respective government agencies share
information. It is already common for video and imaging information associated
with a particular military conflict zone to be gathered by an agency in one country
and shared with agencies in an ally country. This sharing of information, though,
to foreign agencies means that there is no direct mechanisms for accountability,
and no definite guarantee that shared content will not be leaked. In order to pre-
vent information from leaking out of an authorized circle, it is essential that gov-
ernment agencies have the forensic capability to track and identify entities involved
in unauthorized redistribution of multimedia information.

In addition to the demands from a national security point of view, preventing
the leakage of multimedia information is also crucial to the global economy. Let us
examine the US copyright industries as an example. The US copyright industries,
which include prerecorded CD/DVDs and tapes, as well as videos, motion pictures,
and periodicals, account for about 5.2% of US Gross Domestic Product (GDP),
or $531.1 billion, and are responsible for close to 6% of all US employment [6,
7]. The copyright industries, however, are experiencing a substantial decline in
income and job positions, which is largely attributed to piracy. For example, US
music sales by unit were reported to have dropped 31% from mid 2000 to 2003.
The affected sectors include not only the retail stores, but also CD/DVD plant
employees and workers from every aspect of the complex business of making and
distributing multimedia content. The negative impact on the local and national
economy is reflected by the significant reduction in the tax base of local and federal
governments.

Given the popularity and economic value of media, such as music and video,
it is not surprising that altered content is now distributed over the Internet for
unauthorized purposes. The legal warfare that erupted around Napster, Kazaa, and
DVD decryption and the recent delays in the introduction of rewritable DVDs to
the consumer market serve as evidence of the important issues and powerful emo-
tions at the core of this problem. For both the commercial and government sectors,
unauthorized distribution of content may have very serious economic and politi-
cal consequences. Therefore, before multimedia technologies can safely be used as
a means to exchange information, or as the basis for establishing a viable digital
marketplace aiming to share content with an eager consumer base, mechanisms
must be in place to ensure that content is used for its intended purpose by legit-
imate users who have appropriate usage rights. In response, the past decade has
witnessed the birth of an emerging market for digital rights management (DRM)
technologies that protect the commercial rights and enforce the usage policies of
content creators and distributors. The need for techniques that protect the digi-
tal rights of multimedia has become a critical issue for the multimedia commu-
nity, and recent attention in international standards groups, such as MPEG-21
and SDMI [8, 9, 10], has shifted towards integrating security into the multimedia
framework.

There are two fundamental and complementary approaches to address
the problem of unauthorized distribution of information. First, media may be
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Introduction 3

encrypted to prevent an unauthorized user from accessing the content [11, 12, 13,
14, 15, 16]. Second, one can attempt to identify who has had access to the infor-
mation and whether it has been altered so that appropriate penalties can be meted
out for illegal behavior. The application of access control to multimedia markets
has proven problematic as the protection provided by encryption disappears when
the content is no longer in the protected domain. It is feasible for users to access
clear text representations prior to playing the media. Users can then redistribute
unencrypted representations and subvert the digital rights of the original media
distributors.

The second approach, which is the focus of this book, can be referred to gener-
ically as multimedia forensics. Multimedia forensics combines digital domain evi-
dence to demonstrate that multimedia content has been altered, to indicate how
these alterations were made, and to identify who participated in the alterations.
Multimedia forensics opens up uncharted territory for the field of media security
since introducing mechanisms that hold consumers accountable for their behavior
requires interdisciplinary techniques that build upon the synergies between signal
processing, watermarking, coding, security, and communication theory.

Much like the fingerprint is a key tool for performing forensics of a crime
scene, the fundamental tool for media forensics is a special type of digital fin-
gerprint suitable for multimedia content. Digital fingerprinting is a technology
for enforcing digital rights policies whereby unique labels, known as digital fin-
gerprints, are inserted into content prior to distribution to assist in investigating
how unauthorized content was created, and what entities were involved in form-
ing the fraudulent media. As illustrated in Figure 1.1, unique fingerprints are as-
signed to each intended recipient. In order for media fingerprinting to be a pow-
erful forensic tool, it is essential that these fingerprints be difficult to remove. Fin-
gerprints may be embedded into multimedia through robust watermarking tech-
niques [17, 18, 19, 20, 21, 22], and a substantial amount of literature has been
devoted to combating a variety of signal processing attacks mounted by an indi-
vidual adversary on a single copy of a watermarked signal [23, 24, 25, 26, 27, 28].

Unfortunately, these robust watermarking techniques are not enough to pro-
vide the ability to trace an entity involved in the distribution of fraudulent content.
In fact, robust embedding techniques are merely a necessary first step that protects
against attacks mounted by an individual. Guaranteeing the appropriate use of
multimedia content is not simply a traditional security issue with a single adver-
sary. The global nature of the Internet has brought adversaries closer to each other,
and it is now easy for a group of users with differently marked versions of the same
content to work together and collectively mount attacks against fingerprints em-
bedded inside of media data. These attacks, known as collusion attacks, provide
a particularly cost-effective method for attenuating or removing each member’s
fingerprints—thereby making it difficult to detect any of the colluders involved.
If we use an improperly designed embedding and identification scheme, then we
open ourselves up to being vulnerable to small coalition of traitors working to-
gether to create a new version of the content with no detectable traces of the dig-
ital fingerprints. Thus, collusion poses a real threat to protecting media data and
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Figure 1.1. Using embedded fingerprinting for tracing users.

enforcing usage policies. It is desirable, therefore, to design fingerprints that resist
collusion and identify the colluders.

This book is focused on exploring the task of creating and embedding mul-
timedia fingerprints that are capable of resisting collusion, as well as on the chal-
lenge of developing efficient and effective techniques for identifying those enti-
ties involved in collusion. We will begin our study of multimedia fingerprints by
first reviewing the basics of robust data embedding and watermarking techniques
which may be used to insert fingerprints into multimedia. Next, we will intro-
duce the problem of collusion and present both linear and nonlinear collusion
strategies that adversaries might employ to subvert multimedia fingerprinting. Af-
ter introducing collusion threats, we examine orthogonal embedding strategies,
which are a very popular technique for marking multimedia content. Due to their
prevalence, it is important that we understand their ability to resist collusion at-
tacks, and we therefore present a thorough statistical analysis of the collusion re-
sistance of orthogonal fingerprints. Following our discussion of orthogonal fin-
gerprints, we propose group-oriented fingerprinting, which is a strategy whereby
we take advantage of a priori knowledge of potential collusion patterns amongst
the consumers in order to improve the design of the fingerprints. We then in-
troduce a more general framework for building fingerprints in which we design
a new family of codes, known as anticollusion codes, that are used in conjunc-
tion with code modulation to build collusion-resistant fingerprints. In addition to
presenting the design of these collusion-resistant fingerprints, we present several
algorithms for identifying colluders. We then address the secure and efficient dis-
tribution of fingerprint multimedia over networks, and investigate how to multi-
cast fingerprinted video to multiple users without revealing the secrecy of the mul-
timedia content as well as that of the embedded fingerprints. Finally, we present
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Introduction 5

a new robust curve fingerprinting algorithm to trace and track topographic maps
as well as writings/drawings from pen-based inputs. The protection of such doc-
uments has increasing importance to emerging digital operations in government,
military, intelligence, and commerce.
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2
Preliminaries on data embedding

This chapter reviews the basics of robust data embedding. After a brief overview
on digital watermarking and data embedding technologies, we steer our attention
to a popular class of robust embedding techniques known as the spread-spectrum
embedding. The detailed formulation on the embedding and detection aspects of
the spread-spectrum technique establishes a foundation to unveil our technical
discussions on multimedia fingerprinting in the subsequent chapters.

2.1. Content protection via digital watermarking

Multimedia content has both commercial and personal value that must be pro-
tected before one can share his/her work, or businesses can be founded to distrib-
ute and add value to their creations. Prior to digital multimedia content being put
onto the network for delivery, the data can be modified to help protect the intellec-
tual property of the content’s creators and service providers. Encryption and data
embedding are two complementary techniques for protecting multimedia content
that have different goals. The primary goal behind encryption is confidentiality
[29, 30, 31], that is, to provide access control so that only authorized users with
the correct decryption keys can access the content. The protection provided by
encryption terminates after decryption. Complementing this functionality, data
embedding or digital watermarking associates a set of secondary data with the
host media in a seamless way [17, 18]. The term “digital watermark” comes from
an analogy to its analog counterpart: as an art of paper making, paper watermarks
usually indicate the origin and the ownership, and/or establish the integrity and
prevent counterfeiting. Similarly, digital watermarking has been considered in sev-
eral real-world applications related to multimedia content protection and security.
These include copy prevention for DVD and digital music, the assertion of owner-
ship, the fingerprinting and tracing of content recipients, and the authentication
of the content. While the protection provided by watermarks is usually passive, the
embedded watermarks can travel with the host media and assume their protection
function even after decryption. This capability of associating additional data with
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8 Preliminaries on data embedding

the digital multimedia content in a seamless way is so unique that few conventional
protection tools for generic data, such as cryptographic encryption, can offer it.

Digital watermarking technologies, or more generally, the data embedding
technologies, can be applied for a number of applications, each of which has its
own design requirements in terms of the imperceptibility, the robustness, and the
embedding payload measured in terms of how many bits are embedded. As the
embedding process more or less changes the original multimedia signal (known as
the host signal), it is important in a number of applications to confine the changes
to below the perceivable levels of human in order to preserve the commercial and
aesthetic values of the host multimedia signal. In the following, we briefly review
a few major applications and approaches of data embedding for multimedia.

2.1.1. Major applications and design requirements

Ownership protection. In this application, a watermark signal is secretly selected
by the copyright holder to represent his/her ownership, and is imperceptibly em-
bedded in the multimedia source. As pirates are highly motivated to remove the
copyright watermark, the embedding should survive common processing and re-
sist intentional attacks so that the owner can demonstrate the presence of this wa-
termark in case of dispute to verify his/her ownership. The detection should have
as little ambiguity and false alarm as possible. In most scenarios, the total number
of bits that can be embedded and extracted reliably does not have to be high.

Authentication or tampering detection. In this application, we embed a set of sec-
ondary data in the multimedia source beforehand, and later use it to determine
whether the host media is tampered or not. The robustness against removing the
watermark or making it undetectable is not a major concern as this clearly sig-
nals the occurrence of tampering and there is no strong incentive to do so from
an attacker’s point of view. The main threat is the forging of a valid authentica-
tion watermark in an unauthorized or tampered multimedia signal, which must
be prevented. In many practical applications, it is also desirable to locate the tam-
pered regions and distinguish some noncontent changes (such as those incurred
by moderate lossy compression) from other changes (such as content tampering).
In general, the embedding payload should be sufficiently high to accommodate
these needs. The detection must be performed without using the original unwa-
termarked copy, because either this original is unavailable or its integrity has not
been established yet. This kind of detection is known as noncoherent detection or
blind detection.

Digital fingerprinting. As we have explained in the introductory chapter, a water-
mark in this application serves as a fingerprint to help trace the originator or recip-
ients of a particular copy of multimedia content. The robustness against removal
and the ability to convey a nontrivial number of bits are necessary requirements. In
addition, digital fingerprinting techniques should also be robust against collusion
when users having access to the same host image embedded with different finger-
print IDs get together and try to remove the fingerprints through such operations
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Content protection via digital watermarking 9

as averaging. To assure the reliable tracing of true traitors and avoid framing in-
nocents, we must carefully design how to construct, embed, and detect fingerprint
signals. This suggests that there are more considerations than those that the robust
embedding technologies offered in the existing digital watermarking literature. We
will devote our attention to these issues in the rest of this book.

Copy control and access control. The embedded watermark in this application rep-
resents certain copy control or access control policy. A watermark detector is of-
ten integrated in a recording or playback system. Upon detection, the policy is
enforced by directing certain hardware or software actions such as enabling or
disabling a recording module. The robustness against removal, the ability of blind
detection, and the capability of conveying a nontrivial number of bits are required.
Two examples from the past standardization efforts are the DVD copy control [32]
and the Secure Digital Music Initiatives (SDMI) activities [9].

Annotation. The embedded watermark in this application is expected to convey
as many bits as possible without the use of original unmarked copy in detection.
While the robustness against intentional attack is not required, many scenarios
may prefer a certain degree of robustness against common processing such as lossy
compression. More generally, data embedding is a tool to convey side information
while retaining the original appearance. This property has been found useful in
multimedia communications [33, 34, 35] to achieve additional functionalities, or
improve security and performance.

2.1.2. Basic embedding approaches

A typical data hiding framework is illustrated in Figure 2.1. Starting with an orig-
inal digital media (I0), which is also known as the host media or cover work, the
embedding module inserts in it a set of secondary data (b), which is referred to
as embedded data or watermark, to obtain the marked media (I1). The insertion
or embedding is done such that I1 is perceptually identical to I0. The difference
between I1 and I0 is the distortion introduced by the embedding process. In most
cases, the embedded data is a collection of bits, which may come from an encoded
character string, from a pattern, or from some executable agents, depending on
the application.

The embedded data b will be extracted from the marked media I1 by a de-
tector, often after I1 has gone through various processing and attacks. The input
to the detector is referred to as test media (I2), and the extracted data from I2 is
denoted by b̂. The difference between I2 and I1 is called noise. In such applications
as ownership protection, fingerprinting, and access control, accurate decoding of
hidden data from distorted test media is preferred. In other applications such as
authentication and annotation, robustness is not critical.

The embedding of one bit in host media is basic to every data hiding system.
Almost all embedding approaches belong to one of two general types. Below we
examine them in more detail.
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Host
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hidden (b)
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data (b̂)

101101 . . .

“Hello, World”

101101 . . .
“Hello, World”

Embed

Customized player

Play/record/. . .

Extract

Marked media (I1)

Compress

Process/
attack

Test media (I2)

Figure 2.1. General framework of data hiding systems.

Bits to be
embedded
{bi} Modulation

I0
Host media

Noise

Channel

Marked media
I1 Test media

I2

(a)

Bits to be
embedded
{bi} Mapping

I0
Host media

Noise

Channel
Marked media

I1
Test media

I2

(b)

Figure 2.2. Channel models for (a) Type-I and (b) Type-II embedding.

In Type-I embedding, the secondary data, possibly encoded, modulated,
and/or scaled, is added to the host signal, as illustrated in Figure 2.2a. The addi-
tion can be performed in a specific domain or on specific features. To embed one
bit b, the difference between the marked signal I1 and the original host signal I0 is
a function of b, that is, I1−I0 = f (b). Although it is possible to detect b directly
from I1 [36], the knowledge of I0 helps enhance detection performance. Additive
spread-spectrum watermarking [23, 24] is an example of Type-I, at which we will
take a closer look in the next section.

In Type-II embedding, the signal space is partitioned into subsets, each of
which is mapped by a function g(·) to the set of values taken by the secondary
data, as illustrated in Figure 2.2b. The marked value I1 is then chosen from the
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subset that maps to b, so that the relationship of b = g(I1) is deterministically en-
forced. To minimize perceptual distortion, I1 should be as close to I0 as possible.
A simple example is odd-even embedding, whereby a closest even number is used
as I1 to embed a “0” and a closest odd number is used to embed a “1.” The em-
bedded bit is extracted simply by checking the odd-even parity, which does not
require the knowledge of original I0. There can be other constraints imposed on
I1 for robustness considerations. For example, the enforcement can be done in a
quantized domain with a step size Q [18, 37]. The odd-even enforcement can also
be extended to higher dimensions involving features computed from a set of host
components.

Under blind detection where the host signal is not available at the detector
and becomes a major source of noise for Type-I embedding, the number of bits
that can be reliably embedded by Type-II is much higher than that of Type-I
when the noise is not strong [18, 38, 39]. On the other hand, Type-I is com-
monly used for robust embedding with strong noise (especially when noise be-
comes much stronger than the watermark) as well as for nonblind detection. Mo-
tivated by Costa’s information-theoretical result [40], distortion compensation
has been proposed to be incorporated into quantization-based enforcement em-
bedding [39, 41, 42], where the enforcement is combined linearly with the host
signal to form a watermarked signal. The optimal scaling factor is a function of
WNR and will increase the number of bits that can be embedded. This distortion-
compensated embedding can be viewed as a combination of Type-I and Type-II
embedding.

2.2. Robust additive spread-spectrum embedding

With a big picture in mind, we now zoom in to the problem of robust embedding,
which serves as an important building block for embedding fingerprints into the
multimedia content.

Fingerprinting multimedia requires the use of robust data embedding meth-
ods that are capable of withstanding attacks that adversaries might employ to re-
move the fingerprint. Although there are many techniques that have been pro-
posed for embedding information in multimedia signals [17], in the sequel we
will use the spread-spectrum additive embedding technique for illustrating the
embedding of fingerprint signals into multimedia. Spread-spectrum embedding
has proven robust against a number of signal processing operations (such as lossy
compression and filtering) and attacks [23, 24]. With appropriately chosen fea-
tures and additional alignment procedures, the spread-spectrum watermark can
survive moderate geometric distortions, such as rotation, scale, shift, and cropping
[43, 44]. Further, information-theoretic studies suggest that it is nearly capacity
optimal when the original host signal is available in detection [38, 39]. The combi-
nation of robustness and capacity makes spread-spectrum embedding a promising
technique for protecting multimedia. In addition, as we will see in later chapters,
its capability of putting multiple marks in overlapped regions also limits the effec-
tive strategies mountable by colluders in fingerprinting applications.
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(a) (b) (c)

Figure 2.3. The original flower garden image, the watermarked version, and the watermark embed-
ded, respectively. The watermark shown is the amplified difference between the original and the water-
marked versions by a factor of 5, with mid-level gray denoting zero amplitude and black/white denoting
large amplitude.

2.2.1. Overview of spread-spectrum embedding

Spread-spectrum embedding borrows ideas from spread-spectrum modulation
[45]. The basic process of spread-spectrum embedding consists of four steps. The
first step is to identify and compute features that will carry watermark signals.
Depending on the application and design requirements, the features can be sig-
nal samples, transform coefficients (such as DCT and DFT coefficients), or other
functions of the media content. Next, we generate a watermark signal and tune
its strength to ensure imperceptibility. Typically, we construct the watermark to
cover a broad spectrum as well as a large region of the content, resulting in a wa-
termark that resembles noise. A third step is to add the watermark to the fea-
ture signal. Finally, we replace the original feature signal with the watermarked
version and convert it back to the signal domain to obtain a watermarked signal.
The detection process for spread-spectrum watermarks begins with extracting fea-
tures from a media signal in question. Then the similarity between the features
and a watermark is examined to determine the existence or absence of the wa-
termark in the media signal. Typically, a correlation similarity measure is used,
often in conjunction with preprocessing (such as whitening) and normalization
[17].

An example of spread-spectrum watermarking for image is provided in
Figure 2.3. Messages are mapped to a noise-like watermark pattern shown in
Figure 2.3c, where the pixels with mid-level gray indicate zero amplitude in the
corresponding part of the watermark, and the brighter or darker pixels indicate
large positive or negative amplitude, respectively. We can see that the amplitude of
the watermark signal is closely related to Figure 2.3a, the original image to be wa-
termarked. The watermark corresponding to the smooth area of the image (such
as sky) is weaker, while that to the texture area (such as the flower bed) is stronger.
The watermark is added to the original image to produce the watermarked ver-
sion as shown in Figure 2.3b. The small strength of the watermark coupled with
the noisy nature and perceptual shaping helps the spread-spectrum watermark be
imperceptible to eyes.
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2.2.2. Distortion and attacks against robust embedding

Many robust embedding tasks are in a competitive environment, where an adver-
sary has the incentive to render the embedded data undetectable. Understanding
the threats and analyzing effective attacks play an important role in identifying
the weaknesses and limitations of the existing watermarking schemes, as well as
in suggesting directions for further improvement. More importantly, it helps us
have a realistic understanding of what aspect of the problem can be solved by data
embedding technologies and what should be taken care of by other means such as
an appropriate business model and policy.

Common signal processing, such as lossy compression, lowpass filtering, and
histogram-based enhancement, may be unavoidable during the life span of the
multimedia content. These processing methods distort the data embedded in mul-
timedia signal in such a way that is often modeled as additive noise. As we will see
in the next subsection, detecting watermark under these distortions can be for-
mulated using classical signal detection theory. As long as the distortion is not too
severe and the watermark is sufficiently long, the embedded data can be detected
with high probability [23].

Geometric transformations, such as rotations, scale, translation, and nonlin-
ear warping, are notorious attacks against spread-spectrum embedding. Surviving
them is particularly challenging when the original unwatermarked image is not
available at the detector. This is mainly due to the misalignment introduced by the
geometric attacks between the embedded watermark in an image in question and
the reference watermark presented to a detector. Because spread-spectrum water-
marks generally have low autocorrelation at nonzero shift and taking correlation is
the popular way to detect these watermarks, the misalignment will be likely to ren-
der low detection statistics from the popular correlator-type detectors. Among the
three basic geometric distortions, namely, rotation, scaling, and translation, the
resilience against translation is the easiest to achieve. For example, Fourier mag-
nitude domain is known to be invariant with respect to the shift in time or spatial
domain, so embedding in this domain will be resilient against small shifts.1 On
the other hand, combating rotation and scaling is more sophisticated. Common
approaches to building geometric resilient watermarks include embedding an in-
visible registration pattern [46, 47], using salient features from a host signal as
reference [48], or embedding watermark in some resilient domains. The domain
in the latter category can be a canonical, normalized space based on moments [49],
or feature domain exploiting Fourier properties [43].

To illustrate the effect of various distortions on watermark, we have imple-
mented a spread-spectrum embedding similar to the one in [23] but embedded
the watermark in the magnitude of discrete Fourier transform (DFT) coefficients
rather than the DCT coefficients. For a 512 × 512 Lena image, the PSNR of the
watermarked image with respect to the original is 42.88 dB. The detection results
on the marked Lena image are shown in Table 2.1. We can see that minor rotation

1Larger shifts are likely to incur cropping, which may reduce the detection statistics.
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14 Preliminaries on data embedding

Table 2.1. Detection statistics of spread-spectrum watermarking on a 512 × 512 Lena image in DFT
magnitude domain under various distortions.

Test condition Detection statistics Test condition Detection statistics

With no distortion 13.54 With no wmk 1.31

Right shift 5 pixels 13.23 Rotate 1-degree 1.09

JPEG Q = 70% 12.35 Scale down by 5% 0.58

JPEG Q = 30% 8.30 — —

and scaling are powerful enough to render the watermark undetectable. On the
other hand, the watermark can survive strong compression and translation, with
detection statistics well above the threshold that is usually set between 3 and 6,
corresponding to a false alarm probability of 10−3 to 10−10.

Let us focus now on the possible distortions and attacks for fingerprinting
applications, where the embedded data serves as identifying IDs to help trace the
originator or recipients of a particular copy of multimedia content. As a traitor has
incentive to remove the identifying fingerprint before leaking the content, the fin-
gerprint should first of all be embedded in a robust way and can survive a number
of distortions and attacks, such as compression and filtering. Geometric attacks,
however, are not a major concern, as it is often reasonable to have the original
image available to detector for fingerprinting applications [23, 44, 50]. The ratio-
nale for this nonblind detection assumption is that the fingerprint verification is
usually handled by the content owner or by an authorized central server, who can
have access to the original host signal and use it in detection to answer the pri-
mary question of whose fingerprint is in the suspicious document. As we will see
later in this chapter, having original unmarked copy in the detection gives a high
power ratio between watermark and noise, which allows for high resistance against
noise and attacks. Further, using the original unmarked copy as a reference copy,
the detector can register a test copy that suffers from geometric distortions, and
the geometric distortion can be substantially inverted. A thorough study in [44]
as well as in Chapter 8 has shown that the alignment error of inverting geometric
attacks is very small and will not significantly deter the detection performance.

With many users receiving the same multimedia content but embedded with
different data, new issues arise in fingerprinting applications. A group of users
can work together, examine their different copies, create a new signal that may
no longer be tied to any of the colluders. We will present a detailed discussion in
Chapter 3 regarding this multiuser collusion attacks. It is worth mentioning that
another class of collusion attacks, which is sometimes referred to as intracontent
collusion, may be mounted against the embedded data by replacing each segment
of the content signal with another seemingly similar segment from different spatial
or temporal regions of the content. As an example, an adversary may produce an
attacked signal by integrating information from consecutive frames to remove wa-
termarks from a video sequence [51]. Such intracontent collusion should be taken
into account in designing robust embedding. We will not further elaborate on this
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issue in the current book. Interested readers may refer to [51, 52, 53] for detailed
discussions.

We now take a closer look at the mathematical formulation on embedding
and detection.

2.2.3. Mathematical formulation

Suppose that the host signal is a vector denoted as x and that we have a fam-
ily of watermarks {w j} that are fingerprints associated with the different users
who purchase the rights to access x. Before the watermarks are added to the host
signal, every component of each w j is scaled by an appropriate factor, that is,
s j(l) = α(l)wj(l), where we refer to the lth component of a vector w j by wj(l).
One possibility for α(l) is to use the just-noticeable-difference (JND) from human
visual system models [24]. Corresponding to each user is a marked version of the
content y j = x + s j .

The content may experience additional distortion before it is tested for the
presence of the watermark s j . This additional noise could be due to the effects of
compression, or from attacks mounted by adversaries in an attempt to hinder the
detection of the watermark. We represent this additional distortion by z. There
are therefore two possible sources of interference hindering the detection of the
watermark: the underlying host signal x and the distortion z. For simplicity of
notation, we gather both of these possible distortions into a single term denoted
by d. As we will discuss later, in some detection scenarios, it is possible for d to
only consist of z. A test content y that originates from user j, thus can be modeled
by

y = s j + d. (2.1)

The watermarks {w j} are often chosen to be orthogonal noise-like signals
[23], or are represented using a basis of orthogonal noise-like signals {ui} via

w j =
B∑
i=1

bi jui, (2.2)

where bi j ∈ {0, 1} or bi j ∈ {±1}. We will present detailed discussions on different
ways to construct watermarks for fingerprinting purposes in later chapters.

The detection of additive watermarks can be formulated as a hypothesis test-
ing problem, where the embedded data is considered as the signal that is to be
detected in the presence of noise. For the popular spread-spectrum embedding
[23, 24], the detection performance can be studied via the following simplified
antipodal model:

H0 : y(l) = −s(l) + d(l) (l = 1, . . . ,L) if b = −1,

H1 : y(l) = +s(l) + d(l) (l = 1, . . . ,L) if b = +1,
(2.3)
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b = −1 b = 1

TN

(a)

Absence Presence

TN

(b)

Figure 2.4. Illustration of the distribution of watermark detection statistics under i.i.d. Gaussian
noise: (a) antipodal modulation with b ∈ {±1}; (b) on-off keying with b ∈ {−1, +1}.

where {s(l)} is a deterministic spreading sequence (often called the watermark),
b is the bit to be embedded and is used to antipodally modulate s(l), d(l) is the
total noise, and N is the number of samples/coefficients used to carry the hidden
information.

If d(l) is modeled as i.i.d. Gaussian N (0, σ2
d ), the optimal detector is a (nor-

malized) correlator [54] with a detection statistic TN given by

TN = yTs/
√
σ2
d · ‖s‖2, (2.4)

where y = [y(1), . . . , y(L)]T , s = [s(1), . . . , s(L)]T , and ‖s‖ is the Euclidean norm
of s. Under the i.i.d. Gaussian assumption for d(l), TN is Gaussian distributed with
unit variance and a mean value

E
(
TN
) = b ·

√√√√‖s‖2

σ2
d

. (2.5)

If b is equally likely to be “−1” and “+1,” it is often known as the antipodal modu-
lation. In this case, the optimal (Bayesian) detection rule is to compare TN with a
threshold of zero to decide H0 againstH1, and the probability of error is Q(E(TN )),
where Q(x) is the probability P(X > x) of a Gaussian random variable X ∼
N (0, 1). This detection rule is illustrated in Figure 2.4a. The error probability
can be reduced by raising the watermark-to-noise ratio (WNR) ‖s‖2/(Lσ2

d ), or
increasing the length L of the spreading sequence per bit. The maximum water-
mark power is generally determined by perceptual models so that the changes
introduced by the watermark are below the just-noticeable-difference (JND) [24],
which we will discuss more in Section 2.2.5. Assuming that both {s(l)} and {d(l)}
are zero mean, σ2

d is estimated from the power of y(l) and s(l), for example, via
σ̂2
d = (‖y‖2 − ‖s‖2)/L.

The i.i.d. Gaussian noise assumption is critical for the optimality of a corre-
lator-type detector, but it may not reflect the statistical characteristics of the ac-
tual noise and interference. For example, the noise and interference in different
frequency bands can differ. In such a scenario, we should first normalize the ob-
servations {y(l)} by the corresponding noise standard deviation to make the noise
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distribution i.i.d. before taking the correlation [55]. That is,

T′N =
L∑
l=1

y(l) · s(l)
σ2
d(l)

/

√√√√√ L∑
l=1

s2(l)
σ2
d(l)

, (2.6)

E
(
T′N
) = b

√√√√√ L∑
l=1

s2(l)
σ2
d(l)

. (2.7)

This can be understood as a weighted correlator with more weight given to less
noisy components. Similarly, colored Gaussian noise needs to be whitened before
correlation [17]. In reality, the interference from the host signal as well as the noise
introduced by many attacks and distortions are often non-Gaussian and nonsta-
tionary. Under these scenarios, an optimal detector can be derived by using a non-
Gaussian and/or a nonstationary noise model in the classic detection framework
[54]. For example, generalized matched filters have been proposed as watermark
decoders for the generalized Gaussian channel model [56, 57]. Channel estima-
tion has also been used in conjunction with the generalized matched filter against
fading and geometrical distortions with unknown parameters [56].

Another model, used often for conveying ownership information [23, 24],
leads to a similar hypothesis testing problem described by

H0 : y(l) = d(l) (l = 1, . . . ,L) if watermark is absent,

H1 : y(l) = s(l) + d(l) (l = 1, . . . ,L) if watermark is present.
(2.8)

This is often referred to as on-off keying (OOK). The detection statistic is the same
as shown in (2.4) for additive white Gaussian noise (AWGN) or (2.6) for inde-
pendent Gaussian noise with nonidentical variance, and the distribution of the
detection statistic under each hypothesis is shown in Figure 2.4b. The threshold
for distinguishing the two hypotheses is a classic detection problem, for which we
can use a Bayesian rule or a Neyman-Pearson rule [54]. The probability of detec-
tion errors can be obtained accordingly.

2.2.4. Alternative detection statistics

As we can see from the previous subsection, watermark detection can be formu-
lated as hypothesis testing [58, 59], which is commonly handled by evaluating the
similarity between the estimated watermark sequence and each watermark in the
database through a correlation-based statistic. The correlation statistics are simple
to implement and optimal when the noise is additive white Gaussian. In the wa-
termarking literature and practice, several correlation-based statistics have been
employed. They share a kernel term measuring the total correlation 〈y, s〉, and
usually differ in how they are normalized. To facilitate the evaluation of detec-
tion performance, we often normalize the detection statistic to make it have unit
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variance and follow approximately a Gaussian distribution under distortions and
attacks. There are several ways to do so [60], for example, through normalizing
by the product of the noise’s standard deviation and the watermark’s L2 norm as
seen in the TN statistic in (2.4), or through a logarithm-based transformation to
be introduced next.

Z statistic for detection

A nonlinear function of the sample correlation coefficient from the mathematical
statistics literature [61] was introduced to the watermarking community by Stone
and colleagues of the NEC Research Institute [62]. This is often referred to as the
Fisher’s Z statistic. Among several correlation-based statistics to be compared in
Chapter 3, the Z statistic shows excellent robustness against different collusion
attacks and does not require the explicit estimation of the noise’s variance.

The Z statistic originated from the statistical problem of sampling a bivariate
normal population [61], that is, to obtain i.i.d. samples from a pair of random
variables that are jointly Gaussian distributed, with correlation coefficient ρ un-
known to the observers. Let r be the sample correlation coefficient computed from
L pairs of sample data. The following function of r,

1
2

log
1 + r

1− r
, (2.9)

has been shown to asymptotically follow a normal distribution when L→∞ [61],
with the mean approximating (1/2) log((1 + ρ)/(1− ρ)) and the variance approxi-
mating 1/(L− 3). Thus the Z statistic defined below follows a unit-variance Gauss-
ian distribution:

Z �
√
L− 3
2

log
1 + r

1− r
∼ N

(√
L− 3
2

log
1 + ρ

1− ρ
, 1

)
. (2.10)

The approximation is found excellent with as few as 10 pairs of samples.
A simplified model considers that the corresponding components of an ex-

tracted signal in question and a particular-user Alice’s watermark are i.i.d. samples
from a bivariate normal population. When the extracted watermark does not have
Alice’s contribution, the expected correlation coefficient is zero, and the Z statis-
tic will approximately follow a Gaussian distribution with a zero mean and a unit
variance. When the test signal has Alice’s contribution, the Z statistic will have
a large positive mean determined by the correlation coefficient ρ. To derive the
expression for ρ, we define a random variable Y � W +D and the extracted water-
mark consists of i.i.d. samples from Y . Here W is a zero-mean Gaussian random
variable representing Alice’s watermark, and N is a zero-mean Gaussian random
variable representing noise. The correlation coefficient of this bivariate normal
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population (W ,Y) is

ρ = cov(W ,Y)√
Var(W) ·Var(Y)

(2.11)

= Var(W) + cov(W ,D)√
Var(W)

[
Var(W) + Var(D) + 2 cov(W ,D)

] . (2.12)

When W and N are uncorrelated, the correlation coefficient becomes

ρ =
√

Var(W)
Var(W) + Var(D)

=
√

1
1 + 1/WNR

, (2.13)

where the watermark-to-noise ratio WNR � Var(W)/Var(D). In Figure 2.5a, we
plot the mean of the Z statistic computed using the derived ρ for different WNR
and L.

Now knowing the distribution of the Z statistic under the presence and ab-
sence of Alice’s watermark, we can compute the probabilities of detection Pd and
false alarm Pf a for different decision thresholds. A threshold of 3 gives a false alarm
probability of about 10−3, while a threshold of 6 corresponds to 10−9. The tradeoff

between Pd and Pf a can be visualized in terms of receiver operating character-
istic (ROC) curves, as shown in Figure 2.5b for different L at a fixed WNR and
Figure 2.5c for different WNR at a fixed L.

Denoting the average values of the components in y and s as µ̃ and µ, respec-
tively, we compute the sample correlation coefficient r between y and s by

r =
∑L

i=1

(
yi − µ̃

)(
si − µ

)√∑L
j=1

(
yj − µ̃

)2 ∑L
k=1

(
sk − µ

)2
. (2.14)

When the noise introduced by attacks does not follow a Gaussian distribution
and/or the noise samples are mutually correlated, the Z statistics with the true
traitors may be different from the unit-variance Gaussian distribution, but experi-
mental studies in watermarking and fingerprinting scenarios show that the differ-
ence is small. The actual distribution of the Z statistics and the detection perfor-
mance in terms of the detection probability and the false alarm probability can be
measured through experiments.

q statistic

We have seen that the correlation 〈Y ,W〉 consists of the sum of the product be-
tween the corresponding components from the test signal Yi and the watermark
signal Wi. Treating the product as a random variable, we can arrive at the third
way of normalizing the variance, which we will call as the q statistic [36]:

q(i) =
√
NMy√
V 2

y

, (2.15)
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Figure 2.5. Z statistics and ROC curves: (a) mean of Z statistics for different WNR and L, (b) ROC
curves for different L at WNR = 0 dB, and (c) ROC curves for different WNR at L = 700.
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where

My =
N∑
j=1

YjW
(i)
j

N
, V 2

y =
N∑
j=1

(YjW
(i)
j −My)2

N − 1
. (2.16)

It is easy to see that My and V 2
y are the sample mean and sample variance of

{YjW
(i)
j }.

The three detection statistics introduced so far, namely, the TN , Z, and q, all
have the correlation between the extracted watermark Y and the original water-
mark W(i) as the kernel term. They differ primarily in the way of normalization.
In practice, the noise introduced by attacks and other processing, along with the
interference from the host signal if it is not available in the detection, may substan-
tially alter the distribution and make it deviate from zero-mean Gaussian distri-
bution, for example, the mean can be shifted from zero and the distribution could
become bimodal. As a result, the three statistics may exhibit different performance
and additional preprocessing may be needed. We will elaborate more on this issue
in the context of nonlinear collusion in Chapter 3.

2.2.5. Exploiting human visual properties

Properties of the human visual system (HVS) play a crucial role to simultaneously
ensure the robustness and imperceptibility of the embedded data [23, 24, 63]. In
a classic paper on spread-spectrum watermarking, Cox et al. [23] pointed out
the importance to embed watermark in perceptually significant components to
achieve robustness and made use of the perceptual tolerance of minor changes to
embed watermark in those significant components. Rules and quantitative mod-
els of HVS can be used to determine the just-noticeable-difference (JND) for each
feature to be watermarked (which can be a pixel, a coefficient, or other quanti-
ties chosen by the embedding algorithm). The JND can be used to locally adjust
the strength of the watermark. It can also help us determine which feature can be
changed and which cannot. For example, we often consider features that already
have very small values as unembeddable to avoid introducing excessive relative
changes in those features.

In the implementation in the initial work by Cox et al. [23], the watermark is
embedded in the DCT domain of the image and a simplified scaling model is used
to set the watermark power about a magnitude lower than that of the cover image.
More specifically, each of n watermarked coefficients {v′i } is generated from the
original unmarked one {vi} by

v′i = vi + αi ·wi (2.17)

with the watermark strength αi = 0.1 · |vi|. By more explicitly utilizing human
visual models known as frequency-domain masking, Podilchuck and Zeng [24]
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Figure 2.6. Standard table in JPEG image compression consisting of quantization step size for each
DCT coefficient in an 8× 8 block.

and Swanson et al. [63] embed watermarks in block-DCT domain and use mask-
ing models to tune the watermark strength in each block. The masking model
is based on the following observations of the human visual system: first, differ-
ent frequency bands have different just-noticeable levels, and generally the JND in
high-frequency bands is higher than that in low bands; second, in a specific fre-
quency band, a stronger signal can be modified by a larger amount than a weak
signal without introducing artifacts. Because the blocks with edges and textures
have larger coefficient values (in magnitude) than the smooth blocks, the JND of
the nonsmooth blocks obtained by this model is generally larger than that of the
smooth ones. Similar masking effect in the spatial domain has also been explored
[63].

It is worth mentioning that the block-DCT domain is a popular embedding
domain in literature, for it is compatible with the commonly used image and video
compression techniques such as JPEG, MPEG, and H.26x, making it possible to
perform compressed domain embedding and to make use of various techniques
already developed for that domain (such as the human visual model for JPEG
compression [64, 65]). For example, a simple approach to approximate the JND
for each coefficient in an 8× 8 block is to use half of the size of quantization table
used in moderate JPEG compression. Figure 2.6 shows the reference table sug-
gested in the JPEG standard (corresponding to quality factor 50%) [66, 67]. We
can also scale the table for more or less stringent control on perceptual distortion,
or use it as a baseline and perform further adjustment according to local image
characteristics. This latter aspect is another advantage for choosing block-based
domain in embedding, allowing for fine-tuning watermark strength at each local
region to achieve a good tradeoff between imperceptibility and robustness against
distortion. A main perceptual problem with block-DCT domain embedding is the
ringing artifacts introduced on edges when the high-valued mid-frequency coeffi-
cients are modified substantially during the embedding process. This problem can
be mitigated through distinguishing edge and texture blocks so as to refine the JND
and prevent the features in the edge blocks from being over-modified [18, 68].
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2.3. Employing spread-spectrum embedding in fingerprinting

A straightforward way of applying spread-spectrum watermarking to fingerprint-
ing is to use mutually orthogonal watermarks as fingerprints to identify each user
[69, 70]. In practical implementation, the orthogonality may be approximated by
using random number generators to produce independent watermark signals for
different users. The orthogonality allows for distinguishing the fingerprints to the
maximum extent. The simplicity of encoding and embedding orthogonal finger-
prints makes them attractive to identification applications that involve a small
group of users. One drawback of orthogonal fingerprints is that the amount of
fingerprints is limited by the amount of orthogonal signals that can be created.
Building nonorthogonal fingerprints becomes necessary in such practical scenar-
ios as supporting more fingerprints than the dimensionality of the feature signal
or limiting the number of orthogonal basis signals for reducing computation and
bookkeeping costs.

A second option for using spread-spectrum watermarking is to employ code
modulation. As we will discuss further in Chapter 6, code modulation allows fin-
gerprint designers to design more fingerprints for a given fingerprint dimension-
ality by constructing each user’s fingerprint signal as a linear combination of or-
thogonal noise-like basis signals. Code modulation has the potential to provide a
compact way to represent fingerprints. As we will see, systematically constructing
them with high tracing capability and collusion resistance for multimedia data is
a challenging research issue.

One important application of fingerprinting is identifying a user who is re-
distributing marked content y j by detecting the watermark associated with the
user to whom y j was sold. By identifying a user, the content owner may be able
to more closely monitor future actions of that user, or gather evidence supporting
that user’s illicit usage of the content. There are two different detection strate-
gies that might arise in fingerprinting applications. They are differentiated by the
presence or lack of the original content in the detection process. We will refer to
nonblind detection as the process of detecting the embedded watermarks with the
assistance of the original content x, and refer to blind detection as the process of de-
tecting the embedded watermarks without the knowledge of the original content
x. Nonblind fingerprint detection requires that the entity performing detection
first identify the original version corresponding to the test image from a database
of unmarked original images. This database can often be very large and requires
considerable storage resources. In the nonblind fingerprint detection, the distor-
tion can be modeled as d = z. Blind detection, on the other hand, offers more
flexibility in detection, such as distributed detection scenarios. It does not require
vast storage resources, and does not have the computational burden associated
with image registration from a large database. This is particularly attractive for
enabling fingerprint detection by distributed verification engines. However, unlike
the nonblind detection scenario, in the blind detection scenario, the host signal is
unknown to the detector and often serves as a noise source that hinders the ability
to detect the watermark. In this case, the distortion can be modeled as d = x + z.
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Note that as we have reviewed in the previous section, there are other types
of watermarking schemes that do not suffer from interference from unknown host
signals [18, 39]. Many of these schemes can be viewed as selecting between the in-
dices of a few alternative quantizers. Unlike the additive spread-spectrum embed-
ding, quantization-based embedding offers limited capability to simultaneously
embed different signals over the same signal segment. As such, the effect of collu-
sion would be largely influenced by the upper-level coding, which can have limited
collusion resistance for multimedia applications compared with a joint coding and
embedding framework built upon spread-spectrum embedding [71]. The appro-
priateness of quantization-based embedding for fingerprinting and its anticollu-
sion capabilities remain to be further investigated. In this book, we will focus on
multimedia fingerprinting built upon the robust spread-spectrum embedding. We
will look at two paradigms, namely, a signal processing centered approach and a
joint coding and embedding approach.

For concept-proving purposes, we consider the simple noise model of inde-
pendent Gaussian noise and use the correlator with normalized noise variance
as described in (2.6). This simplification allows us to focus on the unique issues
of fingerprint encoding and colluder detection for the anticollusion fingerprint-
ing problem. From a layered viewpoint on data hiding systems [18], the modules
of fingerprint encoding and colluder detection are built on top of the modules
of one-bit watermark embedding and detection. The design and optimization of
the former and latter modules have some degree of independence in system de-
velopment. We can replace the simplified model used here with more sophisti-
cated single-watermark detectors considering more realistic noise such as those in
[56, 57] to improve the performance in the watermark detection layer and in turn
enhance the overall performance.
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3
Collusion attacks

Conventional embedding and watermarking techniques are typically concerned
with robustness against a variety of attacks mounted by an individual. However,
protecting the sanctity of digital fingerprints is no longer a traditional security is-
sue with a single adversary. The global nature of the Internet has not only brought
media closer to the consumers, but it has also brought adversaries closer to the me-
dia. It is now easy for a group of users with differently marked versions of the same
content to come together and work together to mount attacks against the finger-
prints. These attacks, known as collusion attacks, provide a cost-effective method
for removing an identifying fingerprint and poses a significant threat to multime-
dia fingerprinting. For an improperly designed fingerprint, it is possible to gather
a small coalition of colluders and sufficiently attenuate each of the colluders’ iden-
tifying fingerprints to produce a new version of the content with no detectable
traces. Thus, to design fingerprints that can resist collusion and identify the col-
luders, it is important to first model and analyze collusion and understand this
new challenge in multimedia fingerprinting.

There are several types of collusion attacks that may be used against multi-
media fingerprints. One method is simply to synchronize the media signals and
average them, which is an example of the linear collusion attack. Another collu-
sion attack, referred to as the copy-and-paste attack, involves users cutting out
portions of each of their media signals and pasting them together to form a new
signal. Other attacks may employ nonlinear operations, such as taking the maxi-
mum or median of the values of corresponding components of individual copies.

To uncover the underlying complexities governing the effect of nonlinear col-
lusion attacks, this chapter conducts both analytical and experimental studies on
the behavior of nonlinear collusion attacks. This study will serve as a guideline for
later chapters where we jointly consider the issue of designing fingerprints, embed-
ding fingerprints, and devising appropriate detection schemes that have the ability
to robustly resist a broader spectrum of collusion attacks. We will build upon the
discussion about using orthogonal modulation for fingerprinting that was pro-
vided in the previous chapter, and will focus our analysis of nonlinear collusion
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exclusively on orthogonal multimedia fingerprints. The analysis that we provide
can be extended to code-modulated and other correlated fingerprint schemes.

In this chapter, we first take the role of the attackers and examine different
types of collusion attacks that may be employed in an attempt to remove the fin-
gerprints and make it difficult for the information protector to trace content leak-
age. We then shift our role to designer/detector and analyze the performance of
several commonly used detection statistics [36, 54, 62] in the literature under col-
lusion attacks. The analysis of different detection statistics provides a guideline for
the selection of the detector in a multimedia forensic system.

3.1. Introduction to collusion attacks

3.1.1. Linear collusion attacks

Linear collusion is one of the most feasible collusion attacks that may be em-
ployed against multimedia fingerprints. Given several differently marked copies
of the same content, the colluders linearly combine all the copies to generate a col-
luded copy. In a K-colluder linear collusion attack, the fingerprinted signals {yi}
are combined according to

∑K
i=1 λiyi, where the weights {λi} satisfy

∑K
i=1 λi = 1 to

maintain the average intensity of the original multimedia signal. With orthogonal
fingerprinting, for colluder i who is assigned the weight λi, the energy of his fin-
gerprint is reduced by a factor of λ2

i . When λi is smaller, the trace of colluder i’s
fingerprint is weaker and colluder i is less likely to be caught by the detector.

In multiuser collusion, since no colluder would like to take more of a risk
than any other colluder, they usually agree to distribute the risk of being detected
evenly among themselves and apply fair collusion. A simple way to achieve the
fairness of collusion is to average all the fingerprinted signals with an equal weight
for each user and let λi = 1/K for all i. Figure 3.1 shows an example of collusion
by averaging with three colluders and all three fingerprints are averaged with the
same weight 1/3.

In [69], the collusion attack was modeled by averaging the fingerprinted sig-
nals followed by an additive noise to further hinder the detection. Their work
showed that O(N/ logN) adversaries are sufficient to defeat the underlying wa-
termarks, where N is the total length of the fingerprint. Similar results were also
presented in [70]. In [72], a more general linear attack was considered, where the
colluders employ multiple-input single-output linear shift-invariant (LSI) filter-
ing plus additive Gaussian noise to thwart the fingerprints. Under the assumption
that all fingerprints are independent and have identical statistical characteristics, it
was shown that the optimal LSI attack involves each user weighting their marked
document equally prior to the addition of additive noise.

Another type of fair collusion, referred to as the cut-and-paste attack, involves
users cutting out portions of each of their media signals and pasting them together
to form a new signal. Figure 3.2 shows an example of the cut-and-paste attack
with two colluders: Alice and Chris. The colluded copy in Figure 3.2 is generated
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Originally
fingerprinted

copies

Collusion by
averaging

Colluded copy

1/3

Alice Bob Chris

Figure 3.1. Collusion by averaging.

Originally
fingerprinted

copies

Cut-and-paste
attack

Colluded copy

Alice Chris

Figure 3.2. Collusion by cut and paste.

by copying the left half of Alice’s fingerprinted signal and taking the right half of
Chris’ copy.

When the fingerprint is spread throughout the entire host signal by such tech-
niques as spread-spectrum embedding and detected through some form of corre-
lation processing, the cut-and-paste collusion attack has an effect that is similar to
averaging collusion. In particular, in both cases, the energy of each contributing
fingerprint is reduced by a factor corresponding to the amount of copies involved
in the collusion. As an example, if Alice contributes half of her samples to a cut-
and-paste collusion, the energy of Alice’s fingerprint in the colluded copy is only
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Figure 3.3. Examples of nonlinear collusion attacks.

half of her overall fingerprint energy. Therefore, in terms of the effect on the fin-
gerprint energy reduction and the impact on the probability of being detected, we
may consider cut-and-paste collusion analogous to average-based collusion when
considering spread-spectrum embedding.

3.1.2. Nonlinear collusion attacks

Linear collusion by averaging is a simple and effective way for a coalition of users to
attenuate embedded fingerprints. Averaging, however, is not the only form of col-
lusion attacks available to a coalition of adversaries. In fact, for each component of
the multimedia signal, the colluders can output any value between the minimum
and maximum corresponding values, and have high confidence that the spurious
value they get will be within the range of the just-noticeable-different since each
fingerprinted copy is expected to have high perceptual quality.

An important class of nonlinear collusion attacks is based upon such opera-
tions as taking the maximum, minimum, and median of corresponding compo-
nents of the colluders’ fingerprinted copies. Figure 3.3 shows examples of different
types of nonlinear collusion and their effects with three colluders, Alice, Bob, and
Chris. For one pixel at the nth row and the mth column in the image, assume that
it takes the values 172, 173, and 176 in the three copies corresponding to the three
colluders. When generating the colluded copy, for the pixel at row n and column
m, the colluders can take the minimum of the three values, which gives 172; and
they can also use the maximum or the medium of the corresponding pixels in the
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three copies, which are 176 and 173, respectively. During collusion, the colluders
can also combine these basic operations to generate a colluded copy. As an exam-
ple, for that pixel at row n and column m in the colluded copy, the colluders can
take the average of the maximum and the minimum, which is 174. The colluders
repeat this process for every pixel in the image and generate the colluded copy.

A few nonlinear attacks were studied in [62]. For uniformly distributed finger-
prints, nonlinear collusion attacks were shown to defeat the fingerprinting system
more effectively than the averaging collusion [62]. Simulation results in [62] also
showed that normally distributed fingerprints are more robust against nonlinear
collusion attacks than uniform fingerprints, but an analytical study on the Gauss-
ian fingerprints’ performance was not provided. In addition to the robustness
against collusion attacks, when compared with discrete watermarks and uniform
watermarks, Gaussian watermarks have the advantage that they do not provide
the attackers with the positions and the amplitudes of the embedded watermarks
under statistical and histogram attacks [73]. Therefore, to improve the robustness
of the embedded fingerprints against collusion as well as statistical and histogram
attacks, Gaussian distributed fingerprints should be used in multimedia finger-
printing systems, and it is important to provide both analytic and experimental
studies on the behavior of nonlinear attacks on Gaussian fingerprints.

3.2. Introduction to order statistics

Before jumping into the discussion on nonlinear collusion attacks, we will first
introduce order statistics and review the results from that area that enables the
statistical analysis of nonlinear collusion.

The research on order statistics focuses on properties and applications of or-
dered random variables and their functions. If n random variables X1, X2, . . . ,Xn

are sorted in ascending order of the magnitude and labeled as follows:

X1:n ≤ X2:n ≤ · · · ≤ Xn:n, (3.1)

then Xi:n is called the ith-order statistics in a sample of size n [74].
We are particularly interested in the minimum

Xmin � X1:n = min
(
X1,X2, . . . ,Xn

)
(3.2)

which returns the smallest value of X1, X2, . . . ,Xn; the maximum

Xmax � Xn:n = max
(
X1,X2, . . . ,Xn

)
(3.3)

which returns the largest value of the n random variables; and the median

Xmed �


X(n+1)/2:n if n is odd,

1
2

(
Xn/2:n + X(n/2)+1:n

)
if n is even.

(3.4)
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3.2.1. Distribution of order statistics

Assume that X1, X2, . . . ,Xn are i.i.d. (independent and identically distributed) ran-
dom variables and they have probability density function (pdf) f (x) and cumu-
lative distribution function (cdf) F(x). Let Fmin(x) � P[Xmin ≤ x] denote the
cumulative distribution function of Xmin, and we have

Fmin(x) = P
[

min
(
X1,X2, . . . ,Xn

) ≤ x
]

= 1− P
[

min
(
X1,X2, . . . ,Xn

)
> x

]
= 1− P

[
X1 > x,X2 > x, . . . ,Xn > x

]
.

(3.5)

Since X1, . . . ,Xn are independently and identically distributed,

Fmin(x) = 1−
n∏
i=1

P
[
Xi > x

] = 1− [1− F(x)
]n
. (3.6)

The probability density function of Xmin is

fmin(x) = dFmin(x)
dx

= n f (x)
[
1− F(x)

]n−1
. (3.7)

In general, the probability density function of the ith-order statistics is

fXi:n(x) = n!
(i− 1)!(n− i)!

[
F(x)

]i−1[
1− F(x)

]n−i
f (x), (3.8)

for i = 1, 2, . . . ,n [74].

3.2.2. Joint distribution of two different order statistics

Let us define FXmin,Xmax (x′, x′′) � P[Xmin ≤ x′, Xmax ≤ x′′] as the joint cumulative
distribution function (jcdf) of Xmin and Xmax. When x′ < x′′,

P
[
Xmin ≤ x′, Xmax ≤ x′′

]
= P

[
Xmax ≤ x′′

]− P
[
Xmin > x′, Xmax ≤ x′′

]
= P

[
X1 ≤ x′′, . . . ,Xn ≤ x′′

]− P
[
x′ < X1 ≤ x′′, . . . , x′ < Xn ≤ x′′

]
= [

F(x′′)
]n − [F(x′′)− F(x′)

]n
.

(3.9)

When x′ ≥ x′′,

P
[
Xmin ≤ x′, Xmax ≤ x′′

] = P
[
Xmax ≤ x′′

] = [
F(x′′)

]n
. (3.10)
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Therefore, from (3.9) and (3.10),

FXmin,Xmax (x′, x′′) =

[
F(x′′)

]n − [F(x′′)− F(x′)
]n

if x′ < x′′,[
F(x′′)

]n
otherwise,

(3.11)

and the joint probability density function (jpdf) of Xmin and Xmax is

fXmin,Xmax (x′, x′′) = ∂FXmin,Xmax (x′, x′′)
∂x′∂x′′

=
n(n− 1) f (x′) f (x′′)

[
F(x′′)− F(x′)

]n−2
if x′ < x′′,

0 otherwise.
(3.12)

In general, for the ith-order statistics Xi:n and the jth-order statistics Xj:n,
where 1 ≤ i < j ≤ n, their joint probability density function is

fXi:n,Xj:n(x′, x′′) = n!
(i− 1)!( j − i− 1)!(n− j)!

[
F(x′)

]i−1[
F(x′′)− F(x′)

] j−i−1

× [1− F(x′′)
]n− j

f (x′) f (x′′)
(3.13)

for x′ < x′′. Detailed derivation is available in [74].

3.2.3. Joint distribution of order statistics and
the unordered random variables

In this section, we consider the joint probability density function of the order sta-
tistics Xj:n and the unordered random variable Xi.

Let us define fXmin,Xi(x
′, x) as the joint probability density function of Xmin and

Xi. From [74], fXmin,Xi(x
′, x) breaks up into three nonoverlapping regions x > x′,

x = x′, and x < x′:

fXmin,Xi(x
′, x) =


(n− 1)

[
1− F(x′)

]n−2
f (x) f (x′) if x > x′,[

1− F(x′)
]n−1

f (x′) if x = x′,
0 otherwise.

(3.14)

Similarly, the joint density function between Xmax and Xi is

fXmax,Xi(x
′, x) =


(n− 1)

[
F(x′)

]n−2
f (x) f (x′) if x < x′,[

F(x′)
]n−1

f (x′) if x = x′,
0 otherwise.

(3.15)
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For Xj:n and Xi where 1 < j < n, their joint density function is

fXj:n,Xi(x
′, x) =



(n− 1)

(
n− 2
j − 2

)[
F(x′)

] j−2[
1− F(x′)

]n− j
f (x) f (x′) if x < x′,(

n− 2
j − 1

)[
F(x′)

] j−1[
1− F(x′)

]n− j
f (x′) if x = x′,

(n− 1)

(
n− 2
j − 1

)[
F(x′)

] j−1[
1− F(x′)

]n− j−1
f (x) f (x′) if x > x′.

(3.16)

For Xmin, Xmax, and Xi, by extending (3.14) and (3.15), their joint probability
density function is

fXmin,Xmax,Xi(x
′, x′′, x)

=


(n− 1) f (x′) f (x′′)

[
F(x′′)− F(x′)

]n−2
if x = x′,

(n− 1) f (x′) f (x′′)
[
F(x′′)− F(x′)

]n−2
if x = x′′,

(n− 1)(n− 2) f (x′) f (x′′) f (x)
[
F(x′)− F(x′′)

]n−3
if x′ < x < x′′,

0 otherwise.
(3.17)

When n is odd and l = (n − 1)/2 is an integer, the joint density function of
Xmin, Xmed, and Xi is

fXmin,Xmed,Xi(x
′, x′′, x)

=



2l

(
2l − 1

l

)
f (x′) f (x′′)

[
F(x′′)− F(x′)

]l−1[
1− F(x′′)

]l
if x = x′,

2l

(
2l − 1

l

)
f (x′) f (x′′)

[
F(x′′)− F(x′)

]l−1[
1− F(x′′)

]l
if x = x′′,

2l(2l − 1)

(
2l − 2

l

)
f (x′) f (x′′) f (x)

[
F(x′′)− F(x′)

]l−2[
1− F(x′′)

]l
if x′ < x < x′′,

2l(2l − 1)

(
2l − 2
l − 1

)
f (x′) f (x′′) f (x)

[
F(x′′)− F(x′)

]l−1[
1− F(x′′)

]l−1

if x > x′′,

0 otherwise.
(3.18)
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When n is odd and l = (n − 1)/2 is an integer, the joint density function of
Xmed, Xmax, and Xi is

fXmed,Xmax,Xi(x
′, x′′, x)

=



(n− 1)

(
2l − 1

l

)
f (x′) f (x′′)

[
F(x′′)− F(x′)

]l−1
Fl(x′′)

if x = x′,

(n− 1)

(
2l − 1

l

)
f (w′) f (w′′)

[
F(w′′)− F(w′)

]l−1
Fl(w′′)

if x = x′′,

(n− 1)(n− 2)

(
2l − 2
l − 1

)
f (x′) f (x′′) f (x)

[
F(x′′)− F(x′)

]l−1
Fl−1(x′′)

if x < x′,

(n− 1)(n− 2)

(
2l − 2

l

)
f (x′) f (x′′) f (x)

[
F(x′′)− F(x′)

]l−2
Fl(x′′)

if x′ < x < x′′,

0 otherwise.
(3.19)

3.3. Multimedia fingerprinting system model

3.3.1. Fingerprinting systems and collusion attacks

If we look at both the digital fingerprinting process and the collusion attack process
collectively, then the complete system may be viewed as consisting of three main
parts: fingerprint embedding, collusion attacks, and fingerprint detection. We now
look at each of these components individually.

Fingerprint embedding. At the content owner’s side, for each user in the system,
he generates a unique fingerprint of the same size as the host signal. Due to its ro-
bustness against many attacks by a single adversary, spread-spectrum embedding
[23, 24] is applied to hide fingerprints in the host signal and human visual models
are used to guarantee the imperceptibility of the embedded fingerprints. Finally,
the content owner distributes the fingerprinted copies to the corresponding users.

Assume that there are a total of M users in the system. Given a host signal rep-
resented by a vector x of length N , assume that si is the fingerprint for the ith user
where i = 1, 2, . . . ,M, and it has length N . In orthogonal fingerprint modulation,
the M fingerprints are generated independently. The fingerprinted copy yi that is
distributed to the ith user is generated by

yi( j) = x( j) + JND( j) · si( j), (3.20)
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where yi( j), x( j), and si( j) are the jth components of the fingerprinted copy, the
original signal, and the fingerprint, respectively. JND here is the just-noticeable-
difference from human visual models [24] to control the energy of the embedded
fingerprints so as to ensure their imperceptibility.

Collusion attacks. To examine families of nonlinear collusion, the averaging-based
collusion attack is used as the benchmark to measure the effectiveness of collusion.
The set of typical nonlinear collusion that are considered includes

(i) minimum/maximum/median attack: under these attacks, the colluders
create an attacked signal, in which each component is the minimum,
maximum, and median, respectively, of the corresponding components
of the fingerprinted signals associated with the colluders;

(ii) minmax attack: each component of the attacked signal is the average of
the maximum and minimum of the corresponding components of the
fingerprinted signals;

(iii) modified negative attack: each component of the attacked signal is the
difference between the median and the sum of the maximum and mini-
mum of the corresponding components of the fingerprinted signals;

(iv) randomized negative attack: each component of the attacked signal takes
the value of the maximum of the corresponding components of the
fingerprinted signals with probability p, and takes the minimum with
probability 1− p.

In order to make it easier to acquire analytical insight, we typically assume that the
nonlinear collusion attacks are performed in the same domain of features as the
fingerprint embedding process. Further, we note that it is possible to evaluate the
performance for these attacks when the attack domain and the embedding domain
differ by performing experimental studies.

Assume that K out of M users collude and SC = {i1, i2, . . . , iK} is the set con-
taining the indices of the colluders. The fingerprinted copies that are received by
these K colluders are {yk}k∈SC . The colluders generate the jth component of the
attacked copy y( j) using one of the following collusion functions:

average attack : yave( j) =
∑
k∈SC

yk( j)
K

,

minimum attack : ymin( j) = min
({

yk( j)
}
k∈SC

)
,

maximum attack : ymax( j) = max
({

yk( j)
}
k∈SC

)
,

median attack : ymed( j) = med
({

yk( j)
}
k∈SC

)
,

minmax attack : yMinMax( j) = ymin( j) + ymax( j)
2

,

modified negative attack : yModNeg( j) = ymin( j) + ymax( j)− ymed( j),

randomized negative attack : yRandNeg( j) =
ymin( j) with prob. p,

ymax( j) with prob. 1− p.

(3.21)
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In (3.21), min({yk( j)}k∈SC ), max({yk( j)}k∈SC ), and med ({yk( j)}k∈SC ) return the
minimum, the maximum, and the median values of {yk( j)}k∈SC , respectively. The
colluded copy is y = [y(1), y(2), . . . , y(N)]. For the fingerprint embedding and
collusion attack model in this section, applying the collusion attacks to the fin-
gerprinted copies is equivalent to applying the collusion attacks to the embedded
fingerprints. For example,

ymin( j) = min
({

yk( j) + JND( j) · sk( j)
}
k∈SC

)
= x j + JND j ·min

({
sk( j)

}
k∈SC

)
.

(3.22)

Fingerprint detection and colluder identification. In many fingerprinting applica-
tions, the original signal is often available at the detector, and therefore, a non-
blind detection scenario is feasible. Since a nonblind detection process operates
at a higher effective watermark-to-noise ratio, it is preferable for the colluder de-
tection scheme to use nonblind detection whenever possible. The nonblind detec-
tor first removes the host signal from the test copy before colluder identification.
Then, it extracts the fingerprint from the test copy, measures the similarity be-
tween the extracted fingerprint and each of the original fingerprints, compares
with a threshold, and outputs the estimated identities of the colluders.

Under the nonlinear collusion attacks in (3.21), the extracted fingerprint is

w = g
({

sk
}
k∈SC

)
, (3.23)

where g(·) is a collusion function defined in (3.21). To test the presence of the
original fingerprint si in the extracted fingerprint w, we use the three detection
statistics discussed in Chapter 2: TN , z, and q. Note that all three detection statistics
are correlation-based in which the correlation between the extracted fingerprint w
and the original fingerprint si is the kernel term, and they differ primarily in the
way of normalization.

3.3.2. Performance criteria

To measure the effectiveness of collusion attacks in removing multimedia finger-
prints and study the performance of detection statistics under collusion, the fol-
lowing set of criteria are used:

(i) Pd: the probability of capturing at least one colluder,
(ii) Pf p: the probability of falsely accusing at least one innocent user,

(iii) γc: the fraction of colluders that are successfully captured,
(iv) γi: the fraction of innocent users that are falsely accused.

Different sets of criteria address different scenarios in multimedia fingerprinting
and emphasize different requirements of various applications. We will discuss dif-
ferent scenarios of digital fingerprinting and the corresponding performance cri-
teria in detail in Chapter 4.
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When considering the perceptual quality of a fingerprinted copy or the col-
luded copy, one of the commonly used objective measurements on perceptual dis-
tortion is the mean square error (MSE) and equivalently the PSNR for image ap-
plications. A major weakness of MSE is that it ignores the unique characteristic of
multimedia data: minor perturbations on the data values will not cause noticeable
distortion as long as they do not exceed the just-noticeable-difference [24]. Further-
more, MSE only measures the average energy of the noise introduced and does not
consider the local constraints on each noise component.

For a colluded copy y, assume that n = y − x is the distortion introduced by
collusion when compared with the host signal x. Taking JND into consideration,
two new measurements were defined in [60]:

(i) FJND � ∑N
j=1 I[|n( j)|>JND( j)]/N , and

(ii) the redefined mean square error MSEJND � ∑N
j=1 n( j)

′2, where n′j is
defined as

n′j =


n( j) + JND( j) if n( j) < − JND( j),

0 if − JND( j) ≤ nj ≤ JND( j),

n( j)− JND( j) if n( j) > JND( j).

(3.24)

MSEJND calculates the power of the noise components that introduce perceptual
distortion and FJND reflects the percentage of the noise components that exceed
JND. A large MSEJND or a large FJND indicates large perceptual distortion intro-
duced.

3.4. Statistical analysis of collusion attacks

This section analyzes the statistical behavior of the detection statistics under dif-
ferent collusion attacks.

3.4.1. Analysis of collusion attacks

As discussed in Section 3.3, when measuring the similarity between the extracted
fingerprint w and the original fingerprint si, all three statistics are correlation
based, and the common kernel term is the linear correlation:

T′N (i) � 1
N

〈
w, si

〉 = 1
N

N∑
j=1

g
({

yk( j)
}
k∈Sc

)
· si( j), (3.25)

where N is the length of the fingerprint. For different collusion attacks, T′N (i) fol-
lows different distributions. This section analyzes the statistical behavior of this
correlation term under different collusion attacks.
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Under the assumption that {sk( j), k = 1, . . . ,M} j=1,...,N are i.i.d. distributed
with zero mean and variance σ2

W , {g({sk( j)}k∈Sc) · si( j)} j=1,...,N are also i.i.d.
distributed. From the central limit theorem, if {g({sk( j)}k∈Sc) · si( j)} j=1,...,N have
finite mean µT′N (i) and finite variance σ2

T′N (i), then T′N (i) can be approximated as
follows:

T′N (i) ∼ N

(
µT′N (i),

σ2
T′N (i)

N

)
. (3.26)

Therefore, the problem is reduced to finding µT′N (i) = E[g({sk( j)}k∈Sc) · si( j)] and
σ2
T′N (i) = var[g({sk( j)}k∈Sc) · si( j)]. For a given K and a given collusion function
g(·), due to the symmetry of g({sk( j)}k∈Sc) · si( j) with respect to the user index
i, the terms {g({sk( j)}k∈Sc) · si( j)} for all i ∈ Sc have the same mean and vari-
ance, and similarly, {g({sk( j)}k∈Sc) · si( j)} for all i /∈ SC have the same mean and
variance.

For i ∈ SC , define

µg,H1 � E
[
g
({

sk( j)
}
k∈Sc

)
· si( j)

]
,

σ2
g,H1

� var
[
g
({

sk( j)
}
k∈Sc

)
· si( j)

]

= E
[(

g
({

sk( j)
}
k∈Sc

)
· si( j)

)2
]
− (µg,H1

)2
.

(3.27)

For i /∈ SC , because {si( j)}Mi=1 are i.i.d. distributed with zero mean and vari-
ance σ2

W , we have

µg,H0 � E
[
g
({

sk( j)
}
k∈Sc

)
· si( j)

]
= E

[
g
({

sk( j)
}
k∈Sc

)]
E
[

si( j)
] = 0,

σ2
g,H0

� var
[
g
({

sk( j)
}
k∈Sc

)
· si( j)

]
= E

[(
g
({

sk( j)
}
k∈Sc

)
· si( j)

)2
]

= E
[(

g
({

sk( j)
}
k∈Sc

))2
]
σ2
W.

(3.28)

Therefore, E[g({sk( j)}k∈Sc) · si( j)], E[(g({sk( j)}k∈Sc) · si( j))2] for i ∈ SC , and
E[(g({sk( j)}k∈Sc))2] are needed for analyzing the correlation term under each col-
lusion attack.
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Under the averaging attack, for a guilty colluder i ∈ SC , since {sk( j)}k∈SC are
independent of each other with zero mean and variance σ2

W ,

E

[(
1
K

∑
k∈SC

sk( j)

)
· si( j)

]

= 1
K
E
[(

si( j)
)2
]

+
1
K

∑
k∈SC , k �=i

E
[

sk( j) · si( j)
] = 1

K
σ2
W ,

E

( 1
K

∑
k∈SC

sk( j) · si( j)

)2


= 1
K2

E

[ ∑
k∈SC

(
sk( j) · si( j)

)2
]

+
2
K2

∑
k �=l, k,l∈SC

E
[

sk( j) · sl( j) ·
(

si( j)
)2
]

= 1
K2

E
[(

si( j)
)4
]

+
1
K2

∑
k∈SC , k �=i

E
[(

sk( j)
)2(

si( j)
)2
]

= 1
K2

E
[(

si( j)
)4
]

+
K − 1
K2

σ4
W.

(3.29)

In addition, under the averaging collusion,

E

( 1
K

∑
k∈SC

sk( j)

)2


= 1
K2

E

[ ∑
k∈SC

(
sk( j)

)2
]

+
2
K2

∑
k �=l, k,l∈SC

E
[

sk( j)sl( j)
] = 1

K
σ2
W.

(3.30)

Under the minimum attack, the second moment of wmin( j) is

E
[(

wmin( j)
)2
]
=
∫∞
−∞

w2 fwmin( j)(w)dw, (3.31)

where fwmin( j)(w) is the probability density function of wmin( j). It can be calculated
from order statistics, and detailed derivation of fwmin( j)(w) is in Section 3.2.

For a guilty colluder i ∈ SC , fwmin( j), si( j)(w
′,w), the joint pdf of wmin( j) and

si( j), breaks into two nonzero regions: w > w′ and w = w′ from order statis-
tics [74]. Therefore, given fwmin( j), si( j)(w

′,w) as shown in (3.14) in Section 3.2,
E[WminW (i)] is equal to

E
[

wmin( j) · si( j)
] = E

[
wmin( j) · si( j)

]
1 + E

[
wmin( j) · si( j)

]
2, (3.32)
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where

E
[

wmin( j) · si( j)
]

1 =
∫∞
−∞

w
′2 fwmin( j), si( j)(w

′,w = w′)dw′,

E
[

wmin( j) · si( j)
]

2 =
∫∞
−∞

w′
∫∞
w′
w fwmin( j), si( j)(w

′,w > w′)dw dw′.
(3.33)

Similarly,

E
[(

wmin( j) · si( j)
)2
]
= E

[(
wmin( j) · si( j)

)2
]

1
+ E

[(
wmin( j) · si( j)

)2
]

2
, (3.34)

where

E
[(

wmin( j) · si( j)
)2
]

1
=
∫∞
−∞

w
′4 fwmin( j), si( j)(w

′,w = w′)dw′,

E
[(

wmin( j) · si( j)
)2
]

2
=
∫∞
−∞

w
′2
∫∞
w′
w2 fwmin( j), si( j)(w

′,w > w′)dw dw′.
(3.35)

The analysis of the maximum and median attacks follows the same approach,
and the probability density functions are in Section 3.2.

Under the minmax attack wMinMax( j) � (1/2)(wmin( j) + wmax( j)), for a guilty
colluder i ∈ SC ,

E
[

wMinMax( j) · si( j)
]

= E
[(

1
2

wmin( j) +
1
2

wmax( j)
)
W (i)

]
= 1

2
E
[

wmin( j) · si( j)
]

+
1
2
E
[

wmax( j) · si( j)
]
,

E
[(

wMinMax( j) · si( j)
)2
]

= E

[(
1
2

wmin( j) +
1
2

wmax( j)
)2(

si( j)
)2
]

= 1
4
E
[(

wmin( j) · si( j)
)2
]

+
1
4
E
[(

wmax( j) · si( j)
)2
]

+
1
2
E
[

wmin( j) ·wmax( j) · (si( j)
)2
]
.

(3.36)

In addition, under the minmax attack,

E
[(

wMinMax( j)
)2
]

= E

[(
1
2

wmin( j) +
1
2

wmax( j)
)2
]

= 1
4
E
[(

wmin( j)
)2
]

+
1
4
E
[(

wmax( j)
)2
]

+
1
2
E
[

wmin( j) ·wmax( j)
]
.

(3.37)
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The results from the previous analysis on the minimum and maximum attacks
can be applied to (3.38). For a guilty colluder i ∈ SC , E[wmin( j)·wmax( j)(si( j))2]
can be calculated by

E
[

wmin( j) ·wmax( j)
(

si( j)
)2
]

=
∫∫∫

w′w′′w2 fwmin( j), wmax( j), si( j)(w
′,w′′,w)dw dw′′ dw′,

(3.38)

where fwmin( j), wmax( j), si( j)(w
′,w′′,w) is the joint pdf of wmin( j), wmax( j), and si( j)

as shown in (3.18) in Section 3.2. To calculate the correlation between wmin( j) and
wmax( j),

E
[

wmin( j) ·wmax( j)
]

=
∫∞
−∞

∫∞
w′
w′w′′ fwmin( j), wmax( j)(w′,w′′)dw′′ dw′,

(3.39)

where fwmin( j), wmax( j)(w′,w′′) is joint probability density function of wmin( j) and
wmax( j) and is in (3.12) in Section 3.2.

The analysis of the modified negative (modneg) attack is similar to that of the
minmax attack, and the probability density functions are available in Section 3.2.

Assume that the parameter p in the randomized negative (randneg) attack is
independent of the fingerprints {si( j)}. Therefore, under the randomized negative
attack, the colluded fingerprint can be written as

wRandNeg( j) = wmin( j) · Bp + wmax( j) · (1− Bp
)
, (3.40)

where Bp is a Bernoulli random variable with parameter p and is independent of
{si( j)}. For a guilty colluder i ∈ SC , themth moment (m = 1, 2, . . .) of wRandNeg( j)·
si( j) is

E
[(

wRandNeg( j) · si( j)
)m]

= E
[
E
[(

wRandNeg( j) · si( j)
)m|Bp

]]
= p · E[(wmin( j) · si( j)

)m]
+ (1− p) · E[(wmax( j) · si( j)

)m]
,

(3.41)

and the mth moment (m = 1, 2, . . .) of WRandNeg is

E
[(

wRandNeg( j)
)m]

= E
[
E
[(

wRandNeg( j)
)m|Bp

]]
= p · E

[(
wmin( j)

)m]
+ (1− p) · E

[(
wmin( j)

)m]
.

(3.42)
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From all the above analysis, the correlation kernel term T′N (i) can be approx-
imated by the following Gaussian distribution:

T′N (i) ∼


N

(
0,

σ2
g,H0

N

)
if i /∈ SC ,

N

(
µg,H1 ,

σ2
g,H1

N

)
if i ∈ SC.

(3.43)

3.4.2. Analysis of detection statistics

From (3.43), the detection statistics TN (i) can be approximated by a Gaussian ran-
dom variable

TN (i) = NT′N (i)√∥∥si
∥∥2

∼


N

(
0,

σ2
g,H0

σ2
W

)
if i /∈ SC ,

N

(√
Nµg,H1

σW
,

σ2
g,H1

σ2
W

)
if i ∈ SC.

(3.44)

The Z statistics can be approximated by a Gaussian random variable N (µZ(i),
1) with mean

µZ(i) = 1
2

√
N − 3 log

1 + E
[
ρ(i)

]
1− E

[
ρ(i)

] . (3.45)

E[ρ(i)] is the mean of ρ(i) defined in (2.12) and is the estimated correlation coef-
ficient of the extracted fingerprint w and the original fingerprint si [62]. So

Z(i) ∼


N
(

0, 1
)

if i /∈ SC ,

N

(
1
2

√
N − 3 log

1 + E
[
ρ(i)

]
1− E

[
ρ(i)

] , 1

)
if i ∈ SC ,

(3.46)

where for i ∈ SC ,

E
[
ρ(i)

] ≈ cov
[
g
({

sk
}
k∈SC

)
, si
]

√
σ2
Wσ2

g,w

= µg,H1√
σ2
Wσ2

g,w

. (3.47)

σ2
g,Y is the variance of the extracted fingerprint.

The q statistics normalize the correlation term with the unbiased estimate of
its variance, and therefore,

q(i) ∼


N
(

0, 1
)

if i /∈ SC ,

N

√Nµg,H1√
σ2
g,H1

, 1

 if i ∈ SC.
(3.48)
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3.4.3. System performance analysis

Analysis of Pd, Pf p, E[Fd], and E[F f p]. In the system model in Section 3.3 with
a total of M users and K colluders, given a signal to be tested and given one de-
tection statistics, K out of the M statistics {TN (i)}i=1,...,M are normally distributed
with a positive mean and the others are normally distributed with a zero mean, as
analyzed in the previous section.

Take the TN statistics as an example, define

µ1 �
√
Nµg,H1

σW
,

σ2
1 �

σ2
g,H1

σ2
W

,

σ2
0 �

σ2
g,H0

σ2
W

.

(3.49)

If {TN (i)}i=1,...,M are uncorrelated with each other or the correlation is very small,
then for a given threshold h, Pd and Pf p can be aproximated by

Pd = P
[

max
i∈SC

TN (i) > h
]

= 1− P
[
TN
(
i1 ∈ SC

) ≤ h, . . . ,TN
(
iK ∈ SC

) ≤ h
]

≈ 1−
[

1−Q
(
h− µ1

σ1

)]K
,

Pf p = P
[

max
j /∈SC

TN ( j) > h
]

= 1− P
[
TN
(
j1 /∈ SC

) ≤ h, . . . ,TN
(
jM−K /∈ SC

) ≤ h
]

≈ 1−
[

1−Q
(
h

σ0

)]M−K
,

(3.50)

respectively, where Q(x) = ∫∞
x (1/

√
2π)e−t2/2dt is the Gaussian tail function.

To calculate γc and γi, we define the indication function I(i) as

I(i) =


1 if TN (i) ≥ h,

0 if TN (i) < h.
(3.51)
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Therefore, γc and γi can be approximated by

γc = E

[∑
i∈Sc I(i)
K

]
=
∑
i∈SC

P
[
TN (i) > h

]
K

≈ Q
(
h− µ1

σ1

)
,

γi = E

[∑
j /∈Sc I( j)
M − K

]
=
∑
j /∈SC

P
[
TN ( j) > h

]
M − K

≈ Q
(
h

σ0

)
,

(3.52)

respectively.
The analysis of Pd, Pf p, γc, and γi for the Z and q statistics are the same.

Perceptual quality. In the system model in Section 3.3, the distortion introduced
to the host signal by the colluded fingerprint is n( j) = JND( j) · g({sk( j)}k∈SC ),
j = 1, 2, . . . ,N . Given the collusion attack g(·) and the number of colluders K , if
A � g({sk( j)}k∈SC ) has the pdf fg,K (w), MSEJND can be simplified to

MSEJND ≈ N × E
[(|A| − 1

)2 | |A| > 1
]

= N
∫ −1

−∞
(w + 1)2 fg,K (w)dw + N

∫∞
1

(w − 1)2 fg,K (w)dw,
(3.53)

and E[FJND] is set as follows:

E
[
FJND

] = P
[|A| > 1

] = ∫ −1

−∞
fg,K (w)dw +

∫∞
1

fg,K (w)dw. (3.54)

3.5. Collusion attacks on Gaussian-based fingerprints

It has been shown in [62] that the uniform fingerprints can be easily defeated
by nonlinear collusion attacks, and the simulation results there also showed that
the Gaussian fingerprints are more resistant to nonlinear collusion attacks than
the uniform fingerprints. However, no analytic study was provided in the litera-
ture on the resistance of Gaussian fingerprints to nonlinear collusion attacks. This
section studies the effectiveness of nonlinear collusion attacks on Gaussian-based
fingerprints.

3.5.1. Unbounded Gaussian fingerprints

Statistical analysis. First, the resistance of unbounded Gaussian fingerprints to
collusion attacks is studied. As before, assume that there are a total of M users
and the fingerprints {si( j)} are i.i.d. Gaussian with zero mean and variance σ2

W .
Usually σ2

W ≈ 1/9 is used to ensure that around 99.9% of fingerprint components
are in the range of [−1, 1] and are imperceptible after being scaled by a JND factor.

Under the assumption that the Bernoulli random variable Bp in the random-
ized negative attack is independent of the zero-mean Gaussian fingerprints,

E
[(

wRandNeg( j)
)2
]
= E

[(
wmin( j)

)2
]
= E

[(
wmax( j)

)2
]

(3.55)
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for all possible p ∈ [0, 1]. Consequently,

σ2
RandNeg,w = E

[(
wRandNeg( j)

)2
]
− (E[wRandNeg( j)

])2

≤ E
[(

wmin( j)
)2
]

,
(3.56)

and the upper bound of the variance in (3.56) is achieved when p = 0.5 and
E[wRandNeg( j)] = 0. From (3.50) and (3.52), the larger the variance, the more
effective the attack. Consequently, p = 0.5 is considered which corresponds to the
most effective attack.

Given the analysis in the previous section, the parameters µg,H1 , σ2
g,H1

, σ2
g,H0

,
and σ2

g,w can be calculated for Gaussian distribution with zero mean and variance

σ2
W . Due to the existence of the Q(·) terms in the probability density functions, an-

alytical expressions are not available. The recursive adaptive Simpson quadrature
method [75] can be used to numerically evaluate the integrals with an absolute
error tolerance of 10−6 and the results for σ2

W = 1/9 are plotted in Figure 3.4.
From Figure 3.4, for a given number of colluders K , µg,H1 are the same for

all collusion attacks and equal to σ2
W/K . Different collusion attacks have different

σ2
g,H1

, σ2
g,H0

, and σ2
g,w. The relationship of σ2

g,H1
and σ2

g,H0
for different collusion

attacks are

σ2
RandNeg,H1

= σ2
min,H1

= σ2
max,H1

> σ2
ModNeg,H1

> σ2
ave,H1

≈ σ2
med,H1

≈ σ2
MinMax,H1

,

σ2
RandNeg,H0

= σ2
min,H0

= σ2
max,H0

> σ2
ModNeg,H0

> σ2
ave,H0

≈ σ2
med,H0

≈ σ2
MinMax,H0

,

(3.57)

and that of σ2
g,w is

σ2
RandNeg,w > σ2

ModNeg,w > σ2
min,w = σ2

max,w > σ2
ave,w ≈ σ2

med,w ≈ σ2
MinMax,w. (3.58)

Note that the extracted fingerprint w under the minimum or maximum attack is
not zero mean. σ2

g,H0
is proportional to the second moment of w, and is the largest

under the minimum, maximum, and randomized negative attacks. However, the
variance of w under the minimum or maximum attacks is small and comparable
with σ2

g,w under the average, median, and minmax attacks.
In order to compare the effectiveness of different collusion attacks, define

(i) “attack A > attack B”: attack A is more effective than attack B in defeating
the system,

(ii) “attack A = attack B”: attack A and attack B have the same performance
in defeating the system,

(iii) “attack A≈ attack B”: attack A and attack B have similar performance in
defeating the system.
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Figure 3.4. (a) µg,H1 , (b) σ2
g,H1

, (c) σ2
g,H0

, and (d) σ2
g,w of the unbounded Gaussian fingerprints with

σ2
W = 1/9.

From (3.50), (3.52), (3.57), and (3.58), with the TN statistics or the q statistics, dif-
ferent collusion attacks can be sorted in the descending order of their effectiveness
as follows:

Minimum = Maximum = RandNeg

> ModNeg > Average ≈ Median ≈ MinMax;
(3.59)
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and with the Z statistics, different attacks can be sorted in the descending order of
their effectiveness as follows:

RandNeg > ModNeg > Minimum = Maximum > Average ≈ Median ≈ MinMax .
(3.60)

Therefore, the randomized negative attack is the most effective attack.
To analyze the perceptual quality of the colluded copies under different

collusions, Figure 3.5 shows the MSEJND and E[FJND] of different collusion at-
tacks with i.i.d. N (0, 1/9) fingerprints. From Figure 3.5, although the minimum,
maximum, and randomized negative attacks are more effective in defeating the
fingerprinting system, they also introduce larger noticeable distortion that is pro-
portional to the number of colluders.

Simulation results. The simulation is set up as follows. Since the number of em-
beddable coefficients in 256 × 256 and 512 × 512 images is usually O(104), the
length of the fingerprints is assumed to be equal to 10 000. To accommodate a
total of M = 100 users, 100 different fingerprints of length 10 000 are generated
independently. Every fingerprint component is independent of each other and fol-
lows the N (0, 1/9) Gaussian distribution. The simulation results are based on a
total of 2000 simulation runs.

Figure 3.6 compare the performance of the TN statistics under different col-
lusion attacks. The performance of the q statistics is similar to that of TN and
omitted. The simulation results agree with the statistical analysis in Section 3.5.1.
From Figures 3.6a and 3.6b, with the TN or q statistics, the minimum, maximum,
and randomized negative attacks are the most effective attacks followed by the
modified negative attack. The average, median, and minmax attacks are the least
effective attacks.

In Figure 3.7, we compare the effectiveness of different collusions with the Z
statistics. From Figures 3.7a and 3.7b, with the Z statistics, the randomized neg-
ative attacks is the most effective attack followed by the modified negative attack.
The average, median, and minmax attacks have similar performance and they are
the least efficient attacks. The minimum and maximum attacks are the second least
effective attacks. This is in agreement with the analysis in the previous section.

We compare the performance of different statistics in Figure 3.8a. We only
plot the performance of the minimum and that of the modified negative attack
since the maximum attack yield the same result as the minimum attack and all
other attacks have a similar trend. From Figures 3.8a and 3.8b, the Z statistics are
more resistant to the minimum and maximum attacks than the TN and q statistics
while the three statistics have similar performance under other collusion attacks.

To summarize, from the colluders’ point of view, the best strategy for them is
to choose the randomized negative attack. From the detector’s point of view, the Z
statistics should be used to be more robust against the minimum and maximum
attacks.
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Figure 3.5. Perceptual quality of the attacked copy under different attacks with unbounded Gaussian
fingerprints. Here σ2

W = 1/9. (a) MSEJND /N . (b) E[FJND].

Figure 3.9 shows the attacked images after the average and the minimum at-
tacks with 75 colluders. Although the minimum, maximum, and randomized neg-
ative attacks are more effective, they also introduce much larger noticeable distor-
tion in the host image. This is because the fingerprints are not bounded, and in
fact, such unbounded fingerprints can introduce noticeable distortion in the fin-
gerprinted copies even when without collusion.
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Figure 3.6. (a) Pd and (b) γc of the TN statistics under different attacks with unbounded Gaussian
fingerprints. Here σ2

W = 1/9, M = 100, and N = 104. P f p = 10−2 in (a) and γi = 10−2 in (b).

3.5.2. Bounded Gaussian-like fingerprints

Compared with uniform fingerprints, Gaussian fingerprints improve the detec-
tor’s resistance to nonlinear collusion attacks [62] and are resilient to statistical
and histogram attacks [73]. Because Gaussian distribution is unbounded, it is pos-
sible that the embedded fingerprints exceed the JND and introduce perceptually
distinguishable distortion. However, imperceptibility is a requirement of digital
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Figure 3.7. (a) Pd and (b) γc of the Z statistics under different attacks with unbounded Gaussian
fingerprints. Here σ2

W = 1/9, M = 100, and N = 104. P f p = 10−2 in (a) and γi = 10−2 in (b).

fingerprinting and the owner has to guarantee the perceptual quality of the fin-
gerprinted copies. In order to remove the perceptual distortion while maintaining
the robustness against collusion attacks, we introduce the bounded Gaussian-like
fingerprints.

Assume that fX(·) and FX(·) are the probability density function and cumula-
tive distribution function of a Gaussian random variable with zero mean and vari-
ance σ2

W , respectively. The probability density function of a bounded Gaussian-like
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Figure 3.8. (a) Pd and (b) γc of different statistics under the minimum attack and modified negative
attack with unbounded Gaussian fingerprints. Here σ2

W = 1/9, M = 100, and N = 104. P f p = 10−2

in (a) and γi = 10−2 in (b).

distribution f̃X(·) is

f̃X(x) =


fX(x)
FX(1)− FX(−1)

if − 1 ≤ x ≤ 1,

0 otherwise.
(3.61)

Figure 3.10 shows an example of the probability density function of a bounded
Gaussian-like distribution.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9. Comparison of perceptual quality of the attacked images under different attacks with 75
colluders. Fingerprints are generated from unbounded Gaussian distribution with σ2

W = 1/9. (Left)
Lena. (Right) Baboon. (Top) The zoomed-in region of the original 256 × 256 images. (Middle) The
colluded images under the average attack. (Bottom) The colluded images under the minimum attack.

It can be shown that the variance of fingerprints following pdf (3.61) is σ2
W ,

and the embedded fingerprints introduce no perceptual distortion since MSEJND =
0 and FJND = 0. By bounding the fingerprints in the range of [−1, 1], the content
owner maintains the energy of the embedded fingerprints while achieving the im-
perceptibility.

For fingerprints following distribution (3.61), the analyses of the collusion
attacks and the detection statistics are similar to the unbounded case and thus
omitted. If different collusion attacks are sorted according to their effectiveness,
the result is the same as that of the unbounded Gaussian fingerprints.
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Figure 3.10. An example of the probability density function of a bounded Gaussian-like distribution.

The simulation of the bounded Gaussian-like fingerprints under collusion at-
tacks is set up similarly to that in Section 3.5.1. Assume that there are a total of
M = 100 users and the host signal has N = 104 embeddable coefficients. The i.i.d.
fingerprints are generated from the distribution (3.61) with σ2

W = 1/9.
Figures 3.11 and 3.12 show the performance of the TN and Z statistics, re-

spectively, under different attacks. The performance of the q statistics is similar to
that of TN . Figure 3.13 compares the performance of different detection statistics
under the minimum and the modified negative attack. The simulation results are
similar to those in the unbounded case. From the colluders’ point of view, the most
efficient attack is the randomized negative attack, and from the detector’s point of
view, the Z statistics are more robust.

3.6. Preprocessing of the extracted fingerprints

The three detection statistics in Section 3.3 are not specifically designed for col-
lusion scenarios, and therefore do not take into account the characteristics of the
newly generated copies after the collusion attacks. Intuitively, utilizing the statis-
tical features of the attacked copies may improve the detection performance, and
one of such features is the sample mean of the extracted fingerprint under the
collusion attacks. From the histogram plots of the extracted fingerprints under
different attacks as shown in Figure 3.14, different patterns of the sample means
of the extracted fingerprints can be observed: the extracted fingerprints have ap-
proximately zero sample mean under the average, median, minmax, and modified
negative attacks; the minimum attack yields a negative sample mean, and the max-
imum attack yields a positive sample mean; and under the randomized negative
attack, the histogram of the extracted fingerprint components have two clusters,
one with a negative mean and the other with a positive mean.

Recalling from Section 3.4.1 that σ2
g,H0

is proportional to the second moment
of the extracted fingerprint, subtracting the sample mean from the extracted fin-
gerprint will reduce its second-order moment, thus help improve the detection
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Figure 3.11. (a) Pd and (b) γc of the TN statistics under different attacks with bounded Gaussian-like
fingerprints. Here σ2

W = 1/9, M = 100, and N = 104. P f p = 10−2 in (a) and γi = 10−2 in (b).

performance. Similarly, the detection performance under the randomized nega-
tive attack can be improved by decreasing σ2

g,H0
and σ2

g,w.
Motivated by this analysis, a preprocessing stage before the detection process

was proposed in [76]: given the extracted fingerprint {g({sk( j)}k∈Sc)} j=1,...,N , the
detector first investigates its histogram. If a single nonzero sample mean is ob-
served, the detector subtracts it from the extracted fingerprint, and then applies
the detection statistics. If the fingerprint components are merged from two (or
more) distributions that have distinct mean values, the detector needs to cluster
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Figure 3.12. (a) Pd and (b) γc of the Z statistics under different attacks with bounded Gaussian-like
fingerprints. Here σ2

W = 1/9, M = 100, and N = 104. P f p = 10−2 in (a) and γi = 10−2 in (b).

components and then subtract from each colluded fingerprint component the
sample mean of the corresponding cluster. In the later case, the means can be esti-
mated using a Gaussian-mixture approximation, and the clustering is based on the
nearest-neighbor principle. Under the randomized negative attack, a simple solu-
tion is to first observe the bimodality in the histogram of {w( j)}, and then cluster
all negative components into one distribution and cluster all positive components
into the other distribution. Given the extracted fingerprint {w( j)} j=1,...,N , define

µneg � ∑
j w( j) · I[w( j) < 0]/

∑
l I[w(l) < 0] as the sample mean of the negative
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Figure 3.13. (a) Pd and (b) γc of different statistics under the minimum attack and modified negative
attack with bounded Gaussian-like fingerprints. Here σ2

W = 1/9, M = 100, and N = 104. P f p = 10−2

in (a) and γi = 10−2 in (b).

extracted fingerprint components where I[·] is the indication function, and define
µpos � ∑

j w( j) · I[w( j) > 0]/
∑

l I[w(l) > 0] as the sample mean of the positive
extracted fingerprint components. Then the preprocessing stage generates

w′( j) =


w( j)− µneg if w( j) < 0,

w( j)− µpos if w( j) > 0,
(3.62)
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Figure 3.14. Histograms of the extracted fingerprints under the (a) average, (b) minimum, and (c)
randomized negative attacks, respectively. The original fingerprints follow the distribution in (3.61)
with σ2

W = 1/9, N = 104, and K = 45.

and the detector applies the detection statistics to {w′( j)}Nj=1. The analysis of the
detection statistics with the preprocessing is the same as in Section 3.4 and is not
repeated.

The simulation is set up the same as before and the fingerprint components
are generated from the bounded Gaussian-like distribution (3.61) with σ2

W = 1/9.
Figure 3.15 compares the performance of the three detection statistics with and
without the preprocessing under the minimum attack. The detection performance
under the maximum attack is the same as that of the minimum attack and is not
shown here. In Figure 3.16, we compare the performance of the detection statis-
tics with and without preprocessing under the randomized negative attack. From
Figures 3.15 and 3.16, the preprocessing substantially improves the detection per-
formance of the detector, and the three statistics have similar performance under
the minimum, maximum, and randomized negative attacks.

Note that the estimated correlation coefficient ρ(i) in the Z statistics removes
the mean of the extracted fingerprint before calculating the correlation between
the extracted fingerprint and the original fingerprint. This explains why the Z sta-
tistics perform better than the TN and q statistics without preprocessing under the
minimum and maximum attacks, whereby the mean of the colluded fingerprint
components is substantially deviated from zero.
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Figure 3.15. Performance of the detection statistics under the minimum attack with and without
preprocessing. Fingerprints are generated from bounded Gaussian-like distribution (3.61) with σ2

W =
1/9, M = 100, and N = 104. In (a), P f p = 10−2 and we compare Pd with and without preprocessing.
In (b), γi = 10−2 and we plot γc with and without preprocessing.

3.7. Experiments with images

This section studies the performance of Gaussian-based fingerprints under dif-
ferent nonlinear collusion attacks on real images. Two 256 × 256 host images,
Lena and Baboon, are chosen and they have a variety of representative visual
features such as the texture, sharp edges, and smooth areas. The human-visual-
model-based spread-spectrum embedding in [24] is used and the fingerprints are
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Figure 3.16. Performance of the detection statistics under the randomized negative attack with and
without preprocessing. Fingerprints are generated from bounded Gaussian-like distribution (3.61)
with σ2

W = 1/9, M = 100, and N = 104. In (a), P f p = 10−2 and we compare Pd with and without
preprocessing. In (b), γi = 10−2 and we plot γc with and without preprocessing.

embedded in the DCT domain. The generated fingerprints follow the bounded
Gaussian-like distribution (3.61) with σ2

W = 1/9. Assume that the collusion at-
tacks are also in the DCT domain. At the detector’s side, a nonblind detection is
performed where the host signal is first removed from the colluded copy. Then the
detector applies the preprocessing to the extracted fingerprint if a nonzero sample
mean is observed. Finally, the detector uses the detection statistics to identify the
colluders.
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Figure 3.17. (a) Pd and (b) γc of Lena with the Z statistics under different collusion attacks. The
original fingerprints follow the distribution in (3.61) with σ2

W = 1/9 and M = 100. The length of the
embedded fingerprints is N = 13 691. In (a), P f p = 10−2 and simulation results are based on 10 000
simulation runs. In (b), γi = 10−2 and simulation results are based on 1 000 simulation runs.

Figures 3.17 and 3.18 show the simulation results of Lena and Baboon, respec-
tively. We only show the performance the Z statistics under different nonlinear
collusion attacks. The TN and q statistics have similar performance and are omit-
ted. Assume that there are a total of M = 100 users. The simulation results from
real images agree with the analysis in Section 3.4, and are comparable to the simu-
lation results in Sections 3.5 and 3.6. In addition, a better performance is observed
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Figure 3.18. (a) Pd and (b) γc of Baboon with the Z statistics under different collusion attacks. The
original fingerprints follow the distribution in (3.61) with σ2

W = 1/9 and M = 100. In (a) and (b),
the length of the embedded fingerprints is N = 13 691. The length of the embedded fingerprints is
N = 19 497. In (a), P f p = 10−2 and simulation results are based on 10 000 simulation runs. In (b),
γi = 10−2 and simulation results are based on 1000 simulation runs.

in the Baboon example than in Lena. This is because the length of the embedded
fingerprints in Baboon, which is N = 19 497, is larger than that in Lena, which
is N = 13 691. Different characteristics of the two images, for example, smooth
regions and the texture, also contribute to the difference in performance.
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3.8. Chapter summary

In this chapter, we have provided theoretical analysis detailing the effectiveness of
different collusion attacks against orthogonal fingerprints. We studied the percep-
tual quality of the attacked signals under different collusion attacks. We also stud-
ied several commonly used detection statistics and compared their performance
under these collusion attacks. Furthermore, we have proposed preprocessing tech-
niques that may be used specifically for collusion scenarios to improve the detec-
tion performance.

We began by first studying the effectiveness of the average collusion attack,
as well as various basic nonlinear collusion attacks, on unbounded Gaussian fin-
gerprints. From both our analytical and simulation results, we found that, for the
three detection statistics that commonly arise in the literature, the randomized
negative attack is the most effective attack against the fingerprinting system. We
showed that the Z statistics are more robust against the minimum and maximum
attacks than the other two statistics by implicitly removing the mean of the ex-
tracted fingerprint. We also showed that all three statistics have similar perfor-
mance under other collusion attacks. However, the unbounded Gaussian finger-
prints may exceed JND and introduce perceptual distortion in the host signal even
in the absence of collusion, and the minimum, maximum, and randomized nega-
tive attacks introduce much larger distortion in the attacked copies than others.

In order to remove the noticeable distortion introduced by the unbounded
fingerprints, we introduced a family of bounded Gaussian-like fingerprints, which
maintain desirable levels of robustness against the collusion attacks. With the
bounded Gaussian-like fingerprints, the randomized negative attack is still the
most effective attack, and the Z statistics are more robust against the minimum
and maximum attacks than the other two statistics we examined. The bounding
improves the perceptual quality of the fingerprinted copies and that of the attacked
copies. Consequently, both the fingerprint designer and the colluders do not in-
troduce noticeable distortion.

Observing that the extracted fingerprints under the minimum and the maxi-
mum attacks do not have a zero mean, the preprocessing stage removes the mean
from the extracted fingerprints before applying the detection statistics. We also ap-
plied preprocessing to the extracted fingerprints after the randomized negative at-
tacks, which have distinct bimodal distribution as opposed to the single modality
under other collusions. We showed that these preprocessing techniques improve
the detection performance, and all detection statistics give similar performance
after preprocessing.
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4
Orthogonal fingerprinting
and collusion resistance

We are interested in collusion-resistant fingerprinting technologies for protect-
ing multimedia data. An early milestone work was presented in [77], addressing
generic data fingerprinting using an underlying principle referred to as the mark-
ing assumption. However, multimedia data have very different characteristics from
generic data and the marking assumption may not hold when fingerprinting mul-
timedia data. In particular, fingerprints need to be embedded into media data.
These differences have a critical impact on fingerprinting design.

There have been many technologies proposed in the literature to embed and
hide fingerprints (watermarks) into different media. The combination of robust-
ness [23, 24] and capacity [38, 39] has made additive spread-spectrum embedding
a promising technique for protecting multimedia, and thus it was selected for our
investigations. Though most watermarking methods are easy to defeat by collu-
sion attacks, the spread-spectrum watermarking method proposed in [23], where
the watermarks have a component-wise Gaussian distribution and are statistically
independent, was argued to be highly resistant to collusion attacks [23, 70]. The
basic intuition of this natural strategy is that the randomness inherent in such
watermarks makes the probability of accusing an innocent user very unlikely. It
was shown that randomness is needed to obtain collusion-resistance [78]. There
are two main approaches to using spread spectrum for fingerprint embedding:
orthogonal modulation originally proposed in [23], and code modulation. As re-
viewed earlier, orthogonal modulation [79] is a popular technique for watermark-
ing and naturally lends itself to fingerprinting applications. The orthogonality or
independence allows distinguishing the fingerprints to the maximum extent. The
simplicity of encoding and embedding orthogonal fingerprints makes them attrac-
tive to applications involving a small group of users.

In order to facilitate the design of multimedia forensic systems for applica-
tions with different protection requirements, one critical research direction is eval-
uating the resistance performance of specific fingerprinting schemes when con-
sidering different types of attacks. Thus, it is essential to provide a fundamental
understanding and analysis of collusion resistance for a specific fingerprinting sys-
tem, where the main purpose is to study the relationships between the resistance

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


64 Orthogonal fingerprinting and collusion resistance

performance and other system parameters such as the length of the data to be
marked (N); the number of users accommodated in a fingerprinting system (n);
the WNR, and the number of colluding users (K). We are aware of only a few
previous works that focus on analyzing the collusion resistance of digital water-
marks. However, these works do not provide a precise analysis of the collusion re-
sistance of watermarks when employed with different possible detection schemes.
In this chapter we mainly address the fundamental analysis of collusion resistance
for multimedia forensic systems. Since it is easy to realize, analytically tractable,
and carries many of the basic features of a multimedia forensic system, we focus
our collusion resistance study with a fingerprinting system that employs orthogo-
nal Gaussian fingerprints.

Before examining the collusion-resistance performance of a specific finger-
printing system, we need to address three basic issues: one is to quantify the col-
lusion resistance of a fingerprinting system; another is to state the specific finger-
printing system (i.e., in terms of the two major components of a fingerprinting
system, the fingerprint design, and detection scheme); and the third one is to state
the system requirements under different collusion-attack model. In this chapter,
we present results quantifying the collusion resistance of a fingerprinting system
by evaluating how many colluders are allowed before the collusion undermines
the tracing capability of the system. In other words, we study the collusion resis-
tance of a fingerprinting system in terms of its tracing capability, which describes
how many colluders out of the total number of users are sufficient to bypass the
protection provided by a particular multimedia fingerprinting system. The main
goal is to analyze the relationships between the maximum allowable colluders by
a fingerprinting system, Kmax, and other parameters, such as the sample length,
the WNR, the total number of users, and the system performance requirements.
For instance, one popular form of performance requirement is represented by the
probability of a false negative (i.e., the detector fails to identify any of the collud-
ers) and the probability of a false positive (i.e., the detector falsely indicates that an
innocent user is a colluder). These relationship curves regarding tracing capabil-
ity and the system parameters provide important design guidelines for a forensic
system.

This chapter is organized as follows. We begin with the description of the col-
lusion problem of interest in Section 4.1. We introduce two detection schemes,
namely, the maximum detector and the thresholding detector, and also examine
the theoretical collusion resistance of orthogonal fingerprinting when considering
the average collusion attack. We represent the system performance by the prob-
ability of a false positive and the probability of a false negative. Since different
detection goals arise under different application scenarios, two more sets of per-
formance criteria are examined in Section 4.2. In Section 4.3, we further study
other types of collusion. Since the knowledge of the number of colluders is nor-
mally not available in practice, we propose in Section 4.4 a maximum-likelihood
(ML) approach to estimate the number of colluders K , and carry out simula-
tions. Experiments using real images are demonstrated in Section 4.5. In order to
overcome the linear complexity associated with traditional detection schemes for
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Figure 4.1. Model for collusion by averaging.

orthogonal modulation, in Section 4.6, we develop a tree-based detection scheme
that is able to efficiently identify K colluders with an amount of correlations that
is logarithmic in the number of basis vectors. Finally, we present chapter summary
in Section 4.7.

4.1. Collusion resistance analysis

In this chapter, we use independent normally distributed random values as finger-
prints. We first introduce the average collusion attack for these fingerprints. There
are different types of collusion attacks in the literature [62]. We start with average
collusion due to its popularity, its simple form, and its feasibility for analysis. We
will extend our study to other attacks later in Section 4.3.

Additive embedding is a widely used watermarking scheme, where a water-
mark signal s j is added to a host signal x. As shown in Figure 4.1, the content
owner has a family of watermarks, denoted by {s j}, which are used to mark copies
of the content and facilitate colluder tracing. For the jth user, the owner computes
the marked version of the content y j by adding the watermark s j to the host sig-
nal, y j = x + s j . In addition to attacks operating on a single copy, collusion attacks
are possible when several buyers/users having different marked copies of the same
host signal come together and combine several copies to generate a new compos-
ite copy y such that the traces of each “original” fingerprint in the new version is
removed or attenuated. We illustrate the average collusion attack in Figure 4.1, a
similar model was used in [69, 72, 80]. Based on this average attack model, the
observed content y after collusion is

y = 1
K

∑
j∈Sc

y j + d = 1
K

∑
j∈Sc

s j + x + d, (4.1)

where all vectors have dimension N , K is the number of colluders, where K ≥ 1
since each single copy is marked, and Sc indicates the colluder subset of size K ,
where Sc ⊆ [1, . . . ,n] and n is the total number of users. The fingerprints s j are
assumed to be orthogonal to each other, have equal energy, and be normally dis-
tributed. Due to the orthogonality of s j , we have n ≤ N . We also assume the
distortion d is an N-dimensional vector following an iid N (0, σ2

d ) distribution,
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and define the watermark-to-noise ratio as WNR = 10 log10(‖s‖2/‖d‖2). In this
chapter, we will be concerned with detecting colluders, and we will study the col-
lusion resistance performance of the fingerprinting system. Our detection scheme
seeks to identify the colluders based on the observations y. Since we assume a non-
blind detection scenario in this chapter, the host signal x is always subtracted from
y. Because of the orthogonality of the basis {s j}, when performing detection it
suffices to consider the correlator vector TN , where the jth component is given by

TN ( j) = (y − x)Ts j√∥∥s j
∥∥2

(4.2)

for j = 1, . . . ,n. It is straightforward to show that

p
(
TN ( j) | HK , Sc

) =


N
(‖s‖

K
, σ2

d

)
if j ∈ Sc,

N
(
0, σ2

d

)
otherwise,

(4.3)

where HK represents the hypothesis that there are K colluders, ‖s‖ = ‖s j‖ for all
j due to the equal energy assumption, and each component TN ( j) is independent
of each other due to the orthogonality of s j .

In this section, we are interested in the theoretical collusion resistance of such
fingerprinting systems. When studying the efficiency of a detection algorithm in
collusion applications, appropriate criterion should be used to address the need of
each specific application. The probability of a false negative and the probability of
a false positive are popular criteria explored by researchers [69, 70]. From the de-
tector (owner)’s point of view, a detection approach fails if either the detector fails
to identify any of the colluders (a false negative) or the detector falsely indicates
that an innocent user is a colluder (a false positive). Therefore, it is desirable to
find an efficient detector that minimizes the probability of a false negative (Pf n),
with a given probability of a false positive (Pf p). In general, Pf p should be excep-
tionally low, since a false positive may have severe consequences, such as serving
as false testimony in a court of law. Though we consider the criteria Pf p and Pf n

in this section, it is worth mentioning that other performance criteria also de-
serve consideration. We will present the study of two additional sets of criteria in
Section 4.2.

Next we will introduce two other detection approaches and study their collu-
sion resistance under the average attack.

4.1.1. The maximum detector

We have observed in collusion detection that the more colluders a detector aims
to catch, the higher probability a false positive occurs. A detector designed to
catch only one colluder should be capable of providing a smaller Pf p. A maximum
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detector is

Tmax = n
max
j=1

TN ( j), (4.4)

where TN ( j) as defined in (4.2), can be applied to catch one colluder with high
confidence. This maximum detector should be compared to a threshold h chosen
to yield the desired Pf p. Thus, we have the following test:

Tmax = n
max
j=1

TN ( j), ĵ =


arg

n
max
j=1

TN ( j) if Tmax ≥ h,

∅ if Tmax < h,
(4.5)

where ĵ indicates the index of the accused user, and ĵ = ∅ means that no accu-
sation is made. In practice, it is possible that more than one j maximizes TN ( j)
simultaneously. In this case, the test randomly accuses one of these users. The fol-
lowing analysis reveals that the threshold h is determined by parameters including
the length of the host signal N , the total number of users n, the number of collud-
ers K , and the WNR.

Performance analysis. To analyze the detection performance of the maximum de-
tector, we assume that the number of colluders K is known, and without loss of
generality, we set the subset Sc = [1, 2, . . . ,K], indicating that the first K users are
colluders. We now have

Pf p = Pr
{
Tmax > h, ĵ /∈ Sc

}
= Pr

{
T1 < T2, T2 ≥ h

}
= Pr

{
T2 ≥ h

}
Pr
{
T1 < h

}
+
∫∞
h
Pr
{
T2 ≥ T1

}
p
(
T1
)
dT1

(4.6)

with the statistics T1 = maxKj=1 TN ( j) and T2 = maxnj=K+1 TN ( j). Here n is the
total number of users, and p(T1) is the pdf of the random variable T1. Clearly
T1 is independent of T2 due to the independency of TN ( j)’s. We also define the
detection probability Pd as

Pd = 1− Pf n

= Pr
{
Tmax > h, ĵ ∈ Sc

} = Pr
{
T1 > T2, T1 ≥ h

}
= Pr

{
T1 ≥ h

}
Pr
{
T2 < h

}
+
∫∞
h
Pr
{
T1 ≥ T2

}
p
(
T2
)
dT2.

(4.7)

Since p(TN ( j) | HK , Sc) is given as in (4.3), we have

Pr
(
T1 ≤ t

) = (
1−Q

(
t − ‖s‖/K

σd

))K
,

Pr
(
T2 ≤ t

) = (
1−Q

(
t

σd

))n−K
,

(4.8)
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where the Q-function is defined as Q(t) = ∫∞
t (1/

√
2π) exp(−x2/2)dx. The pdfs

p(T1) and p(T2) can be derived correspondingly from the above cdf. Therefore,
for a given small value of ε, we can numerically solve for h to yield Pf p = ε for
different K , n, and WNR, and then numerically compute the corresponding Pd.

One important efficiency measure of a fingerprint detector is the maximum
number of colluders that can be tolerated by a fingerprinting system with a total
of n different N-point fingerprints. Specifically, with a given Pf p, we explore how
many differently marked copies of the host signal are required for an averaging
attack to generate a colluded copy from which no colluder’s fingerprint can be
detected with a high probability. A reasonably high Pd and a reasonably low Pf p

are necessary to maintain the system’s resistance to collusion.
We illustrate the resistance performance using an example, where WNR =

0 dB and the vector length is N = 104. Since 0 dB WNR corresponds to a non-
blind scenario, the distortion d only consists of the additional additive noise. The
variance σ2

d is assumed known and set to 1 for simplicity. In this example, the sys-
tem requirements are expressed as Pd ≥ 0.8 and Pf p ≤ 10−3. The symbol Kmax

represents the maximum number of colluders the fingerprinting system can suc-
cessfully resist. In the examples shown in Figures 4.2a and 4.2b, when the number
of users n is as high as 104, the fingerprinting system can resist up to 29 collud-
ers; while, when n is set as a small number 75, the fingerprinting system can resist
up to 75 colluders. It is also noted in Figure 4.2a that, if an attacker can collect
50 independent copies, the chance that the system can trace any original copy is
only 4%. We note in Figure 4.2b that, as K increases, Pd first decreases slowly, then
decreases quickly over the range 50 < K < 65, and then increases. This behavior
is determined by the expressions of Pf p and Pd in (4.6) and (4.8). We will give a
similar explanation in Section 4.1.2, where a similar behavior is observed for the
thresholding detector and the reason is more obvious. To have an overall under-
standing of the collusion resistance of this scheme, in Figure 4.3, we also plot the
maximum resistible number of colluders Kmax as a function of the total number of
users n, under N = 104 and WNR = 0 dB. It is noted that the system can resist up
to n colluders when the total number of users (fingerprints) n is less than 75. How-
ever, as a system accommodates more than 75 users, the collusion resistance of the
system starts to decrease. For a system accommodating more than one thousand
users, the maximum number of colluders that the system can handle is 30.

4.1.2. The thresholding detector

Although the goal of this section is to identify at least one of the colluders, from the
content owner’s point of view, it is beneficial to catch as many colluders as possible
as long as we satisfy the Pf p requirement. We employ the traditional correlator
TN ( j) and compare it to a threshold h, and finally report that the jth fingerprint
is present if TN ( j) exceeds h. This simple approach is described as

ĵ = arg j=1,...,n

{
TN ( j) ≥ h

}
, (4.9)
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Ideal analysis
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Figure 4.2. Probability of detection Pd as a function of the number of colluders K when applying the
maximum detector, with WNR = 0 dB, N = 104, and P f p ≤ 10−3. In (a) the number of users n = 104;
in (b) n = 75.

where the set ĵ indicates the indices of colluders, and an empty set means that no
user is accused. Similar to the case of the maximum detector, the threshold h here
is determined by such parameters as the document length N , the total number of
users n, the number of colluders K , and the WNR.

Performance analysis. The threshold h in test (4.9) is chosen to yield Pf p = ε,
where ε is a desired small value. Same as in Section 4.1.1, to analyze the theoretical
performance, we assume that the number of colluders K is known. And without
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Applying the maximum detector
Applying the thresholding detector
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Figure 4.3. Collusion resistance of the orthogonal fingerprinting system to the averaging attack. Here
WNR = 0 dB, N = 104, ε = 10−3, and β = 0.8. (a) P f p = 10−3 and Pd = 0.8. (b) n = 104 and Pd = 0.8.

loss of generality, we set the subset Sc = [1, 2, . . . ,K]. We now have

Pf p = Pr
{

ĵ∩ S̄c �= ∅
} = Pr

{
T2 ≥ h

}
= 1−

(
1−Q

(
h

σd

))n−K
,

(4.10)

Pd = 1− Pf n = Pr
{

ĵ∩ Sc �= ∅
} = Pr

{
T1 ≥ h

}
= 1−

(
1−Q

(
h− ‖s‖/K

σd

))K
,

(4.11)
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where S̄c is the complement set of Sc, T1 = max j∈Sc TN ( j), T2 = max j∈S̄c TN ( j),
and n the total number of users. Due to the independency among TN ( j)’s, T1 is
independent of T2. The cdf ’s of the order statistics T1 and T2 are given as in (4.8).
Therefore, according to (4.13), we can numerically calculate h to yield Pf p = ε
with given K , n, and WNR, and then compute the corresponding Pd. Similar to
the analysis in Section 4.1.1, our goal is to study the resistance of the fingerprinting
system to averaging collusion when employing the thresholding detector (4.9). A
sufficiently high Pd and a sufficiently low Pf p are required to make a fingerprinting
system resistant to collusion attacks.

We illustrate the resistance performance using an example, where WNR =
0 dB, and N = 104. The variance σ2

d is set to 1 like before. The system requirements
are defined as Pd ≥ 0.8 and Pf p ≤ 10−3. As shown in Figures 4.9a and 4.9b, when
the number of users n is in the order of 104, the fingerprinting system can resist up
to 28 colluders; when n is set as a small number 75, the system can resist up to 46
colluders. Similar to Section 4.1.1, Figure 4.9 shows that Pd first decreases slowly,
then decreases quickly, and then increases, as K increases. This behavior can be
intuitively explained by the expressions of Pf p and Pd in (4.13). The sudden quick
decrease is due to the exponential nature of the Q-function; when K is reasonably
small, the term ‖s‖/K inQ(·) function is the dominating factor in deciding Pd, this
term decreases as K increases and therefore results in a decreasing Pd. On the other
hand, when K is sufficiently large, the exponent term K is the dominating factor in
deciding Pd, and thus Pd increases as K increases. To have an overall understanding
of the collusion resistance of the orthogonal fingerprinting scheme, we plot the
maximum resistible number of colluders Kmax as a function of the total number
of users n in Figure 4.3, where N = 104 and WNR = 0 dB. It is noted that the
system can resist up to n colluders when the total number of users n is less than 60.
However, for a system accommodating more than 60 users, its collusion resistance
starts to decrease. For a system accommodating more than one thousand users, the
number Kmax is 28, meaning that the system requirements for the fingerprinting
system is no longer met if the number of colluders is larger than 28.

We also compare the collusion resistance of the orthogonal fingerprinting
scheme when applying both test (4.5) and test (4.9). Figure 4.3a shows Kmax as
a function of the total number of users n, with N = 104 and WNR = 0 dB. In we
present Kmax as a function of Pf p for a specific function of Pf p for a specific system
with 104 users. We note that the maximum detector provides better performance
than the thresholding detector. The intuitive explanation for this observation is
that the maximum detector is designed to catch only one colluder. The overall
difference is small, however, especially when the total number of users is large.

Lower and upper bounds of Kmax. We next provide analytic bounds on the maxi-
mum number of colluders Kmax for an orthogonal fingerprinting system employ-
ing the thresholding detector. Since the above analysis is based on numerical com-
putation, it does not provide an explicit understanding of the relationships be-
tween Kmax and other system parameters, such as the sample length N , the WNR,
the total number of users n, and the performance requirements of Pf p and Pd. To
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72 Orthogonal fingerprinting and collusion resistance

get more insight into the collusion-resistance of the thresholding detector, it is use-
ful to study the analytic lower and upper bounds of Kmax. We begin by introducing
two important lemmas.

Lemma 4.1. Define the Gaussian tail integral as

Q(t) =
∫∞
t

1√
2π

exp
(
−x2

2

)
dx. (4.12)

Q(t) is nonnegative for all t and monotonously decreases as t increases for t > 0.
Q(t) = 1 − Q(−t) by definition. This tail integral Q(t) can be lower and upper
bounded by

Qa(t) = 1√
2πt

(
1− 1

t2

)
exp

(
− t2

2

)
< Q(t) <

1√
2πt

exp
(
− t2

2

)
= Qb(t)

(4.13)

for t > 0, respectively. Please refer to [81] for a detailed proof.

Lemma 4.2. Let n be a positive integer. For 0 < x < 1/n, (1− x)n can be bounded by

1− nx < (1− x)n < 1− nx +
n(n− 1)

2
x2. (4.14)

Proof . We first expand (1− x)n as

(1− x)n =
n∑
i=0

(
n
i

)
(−x)n−i, (4.15)

and utilizing the fact that
( n
i

)
xi >

( n
i+1
)
xi+1 for 0 < x < 1/n, we derive the above

inequality. �

Setting σ2
d = 1 for convenience, note that now ‖s‖ =

√
ηN with the WNR

η = ‖s‖2/‖d‖2. Recalling the expressions for Pf p and Pd in (4.13), we restate the
system requirements as

Pf p = 1− (1−Q(h)
)n−K ≤ ε,

Pd = 1−
1−Q

h−
√
ηN

K

K ≥ β,
(4.16)

where ε is a small number and β is close to 1. For instance, a typical setting is ε =
10−3 and β = 0.8. A key step in determining Kmax is to figure out the appropriate
threshold h in (4.16). Though the explicit solution of h is hard to obtain, we can
take advantage of the lower and upper bound of the threshold h by linking it to the
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lower and upper bounds of Kmax. We now provide the detailed derivation in the
following, by using Lemmas 4.1 and 4.2.

Recall that N represents the sample length, n is the number of total users, and
K is the number of colluders. Since we assume ε � 1, meaning a false positive
should be unlikely to occur, it immediately implies that the threshold h should
yield Q(h) < 1/(n − K) for a fingerprinting system accommodating n users. We
provide an intuitive proof for this observation, defining

γj =
1 if jth user is falsely accused,

0 otherwise,
(4.17)

then the expectation of the number of innocents falsely accused is

E

( ∑
j /∈Sc

γ j

)
=
∑
j /∈Sc

E
(
γj
) = ∑

j /∈Sc
Pr
{
γj = 1

} = (n− K)Q(h). (4.18)

Thus if Q(h) > 1/(n − K), then a false positive almost always happens, which is
against our assumption. Therefore, it gives the observation Q(h) < 1/(n− K). We
further note that ε � 1 and K is normally small compared to n, the assumption
that ε is small implies that the choice of h can meet the condition Q(h) � 1/n.
Therefore, it is fair to claim Q(h) � 1/n in most situations. Since Q(h) � 1/n,
it is safe to assume h > 1 due to the fact that Q(1) ≈ 1/6 and that Q(h) is a
monotonously decreasing function for h > 0. We summarize these useful observa-
tions as

Q(h) <
1

n− K
; Q(h) � 1

n
; h > 1, (4.19)

to help our derivation. By applying Lemmas 4.1 and 4.2, we have

1− (n− K)Q(h) <
(
1−Q(h)

)n−K
< 1− (n− K)Q(h)

+
(n− K)(n− K − 1)

2
Q2(h), by Lemma 4.2,

(n−K)Q(h)− (n−K)(n−K−1)
2

Q2(h)<Pf p=1−(1−Q(h)
)n−K

< (n−K)Q(h),

(n− K)Q(h) < (n− K)Qb(h), by Lemma 4.1,

(n−K)Q(h)− (n−K)(n−K−1)
2

Q2(h)>(n−K)Qa(h)− (n−K)(n−K−1)
2

Q2
b(h),

(4.20)
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therefore, the following inequalities are observed:

Pf p < (n− K)Qb(h),

Pf p > (n− K)Qa(h)− (n− K)(n− K − 1)
2

Q2
b(h).

(4.21)

The observations (4.19) could be used to find a lower bound for h. Since h > 1,

Q(h) <
1√
2πh

exp
(
− h2

2

)
<

1√
2π

exp
(
− h2

2

)
. (4.22)

Suppose we let the last term be equal to 1/n,

1√
2π

exp
(
− h2

2

)
= 1

n
, thus h =

√
log

0.5n2

π
� hL1, (4.23)

the corresponding hL1 serves as a lower bound of the threshold to guarantee
Q(h) � 1/n.

Recalling (4.21) and applying the lower bound hL1 result in

Pf p < (n− K)Qb(h) = (n− K)
1√
2πh

exp
(
− h2

2

)
< (n− K)

1√
2πhL1

exp
(
− h2

2

)
< n

1√
2πhL1

exp
(
− h2

2

)
.

(4.24)

To provide Pf p ≤ ε, we can require the last term to yield ε. It gives

n
1√

2πhL1
exp

(
−h2

2

)
= ε, thus h =

√
log

(
n2

2πε2 log
(
0.5n2/π

)) � hH , (4.25)

this hH serves as an upper bound of the threshold h to guarantee Pf p ≤ ε.
Since the tighter the bounds of the threshold h the better, we would like to

further adjust the lower bound of h by considering (4.21) and the above upper
bound hH :

Pf p > (n− K)Qa(h)− (n− K)(n− K − 1)
2

Q2
b(h)

= (n− K)
1√
2πh

exp
(
− h2

2

)((
1− 1

h2

)
− n− K − 1

2
√

2πh
exp

(
− h2

2

))

> (n− K)
1√

2πhH
exp

(
− h2

2

)((
1− 1

h2
L1

)
− n− K − 1

2
√

2πhL1
exp

(
− h2

L1

2

))

= (n− K)
1√

2πhH
exp

(
− h2

2

)(
1− 1

h2
L1
− n− K − 1

2nhL1

)

>
1√

2πhH
exp

(
− h2

2

)(
1− 1

h2
L1
− 1

2hL1

)
.

(4.26)
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By requiring the last term to be equal to ε, we will obtain a lower bound to satisfy
Pf p = ε such that

h =
√√√√2 log

(
2h2

L1 − hL1 − 2
2
√

2πεhHh2
L1

)
� hL2. (4.27)

By combining together the lower bounds in (4.23) and (4.27), we will determine a
tighter lower bound as hL = max{hL1,hL2}. Therefore, it completes the derivation
of the threshold bounds. In summary, we obtain a lower and upper bound of h as

h < hH =
√

log
(

n2

2πε2 log
(
0.5n2/π

)),

h > hL = max
{
hL1,hL2

}
,

(4.28)

where the bounds are defined as hL1 =
√

log(0.5n2/π), and

hL2 =
√√√√2 log

(
2h2

L1 − hL1 − 2
2
√

2πεhHh2
L1

)
. (4.29)

We would like to point out that the above derived {hL,hH} is one, but not the only
one, choice of bound pairs satisfying the inequalities in (4.16).

So far, we have obtained a lower and upper bound for the threshold h with
a few reasonable assumptions. We now proceed to show that a lower and up-
per bound of the maximum number of colluders Kmax can be obtained by using
the bounds of h in (4.28) to evaluate the probability of accurate detection, Pd, in
(4.16). The basic idea is to find a lower bound KL of Kmax such that the resulting
pair (KL,hH) simultaneously satisfies the conditions that the corresponding Pd is
larger than but close to the requirement β, and Pf p is smaller than but close to the
requirement ε. Similarly, an upper bound KH is chosen such that the pair (KH ,hL)
results in a Pd, which is smaller than but close to the requirement β, and a Pf p,
which is larger than but close to the requirement ε. The smaller the difference be-
tween the two sets of results, the tighter the bounds represented by KL and KH . We
now give a detailed derivation on the collusion resistance Kmax.

We repeat the formula of Pd in (4.16) as

Pd = 1−
1−Q

h−
√
ηN

K

K ≥ β, (4.30)

where β is close to 1. We first show a lower bound of Kmax tolerated by a Gauss-
ian fingerprinting system with n users under some specific WNR η. The lower
bound KL must be chosen such that the pair (KL,hH) satisfies the probability re-
quirements. Since the tail integral Q(t) monotonously decreases as t increases, we
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observe that

hH −
√
ηN

K
= 0, Q(0) = 1

2
�⇒

1−Q

hH −
√
ηN

K

 = 1
2

,

Pd = 1−
1−Q

h−
√
ηN

K

K = 1−
(

1
2

)K
�→ 1.

(4.31)

If K is reasonably large, for instance K = 4, this gives Pd = 15/16 which is close to

1. Therefore K =
√
ηN/hH serves as a loose lower bound

KL =
√
ηN

hH
. (4.32)

We next find an upper bound KH such that the pair (KH ,hL) results in a
smaller Pd than the requirement β, and a larger Pf p than the requirement ε. The
smaller the gap, the tighter the bound. Similar as in the above observation, if the

number of colluders K ≤
√
ηN/hL, then the resulting Pd → 1, thus the bound

KHL =
√
ηN/hL actually is a lower bound of the upper bound KH and we have

hL −
√
ηN/K > 0 assumed for searching KH . We further note that

Pd = 1−
1−Q

hL −
√
ηN

K

K < 1−
1−Q

hL −
√
ηN

K

n (4.33)

since (1 − Q(hL −
√
ηN/K)) ∈ (0, 1) and K ≤ n are assumed by definition. By

setting the last term to be β, we obtain the solution

K =
√
ηN

hL −Q−1
(

1− n
√

1− β
) � K̃ . (4.34)

Clearly, this K̃ can serve as an upper bound of the upper bound KH . Therefore, we
have

1−
1−Q

hL −
√
ηN

K

K < 1−
1−Q

hL −
√
ηN

K

K̃ , (4.35)

and calculate the corresponding KH via letting

1−
1−Q

hL −
√
ηN

K

K̃ = β, thus K =
√
ηN

hL −Q−1
(

1− K̃
√

1− β
) � KH.

(4.36)
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Clearly Pd < β is met with this choice of KH . Recall that as K ≤ n by definition, it
is straightforward that

Kmax ≥ min
{
n,KL

}
; Kmax ≤ min

{
n,KH

}
. (4.37)

In summary, we obtain the following collusion resistance:

Kmax ≥ min
{
n,KL

}
with KL =

√
ηN

hH
=
√

ηN

log
(
n2/2πε2 log

(
0.5n2/π

)) ,

Kmax ≤ min{n,KH} with KH =
√
ηN

hL −Q−1
(

1− K̃
√

1− β
) ,

(4.38)

where Q−1(·) represents the inverse Q-function, and K̃ serves as an upper bound
of KH :

K̃ =
√
ηN

hL −Q−1
(

1− n
√

1− β
) . (4.39)

It is worth mentioning that, the bound KH can be further tightened by letting
K̃ = KH , and then updating KH according to (4.36) iteratively, until K̃ is very
close to KH . Also, it is possible that a tighter lower and upper bound of Kmax can
be obtained by solving the one-dimensional problem Pd = β when hH and hL
are considered, respectively. However, this would require more computation and
no explicit expressions of KH and KL, as would be available in (4.38), due to the
complex nature of Pd. In addition, though the bounds (4.38) are derived for the
thresholding detector, they are also applicable to the maximum detector since, as
shown in Figure 4.3, the overall performance difference between these two schemes
is small and can be neglected.

We illustrate the resistance analysis in Figure 4.4, where σ2
d = 1, WNR = 0 dB,

and N = 104. Setting the requirements Pf p ≤ 10−3 and Pd ≥ 0.8, we plot the lower
and upper bounds of Kmax versus the number of users n, along with the numeri-
cal result Kmax. It is noted that the lower and upper bounds are within a factor of
2 of the true value of Kmax. Given the lower and upper bounds, some interesting
observations are noted from this example. From the attacker point of view, if an
attacker can only collect up to 20 copies, he/she can never succeed in removing all
trace of the fingerprints; however, an attacker is guaranteed success if 80 indepen-
dent copies are available. From the owner (detector) point of view, if the owner
has a means to ensure that a potential attacker has no way to obtain 20 or more in-
dependent copies, the fingerprinting system is essentially collusion-resistant. Fur-
ther, in order to maximize the worst case of Pd, the owner should limit the number
of independent distributions. For instance, if the number of independent copies is
less than 60, the system is also collusion-resistant.
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Figure 4.4. The lower and upper bounds of Kmax as a function of the number of users n when applying
the thresholding detector in (4.9). Here WNR = 0 dB, N = 104, ε = 10−3, and β = 0.8.

4.2. Extensions to other performance criteria

In Section 4.1, we were concerned with capturing one true colluder with high con-
fidence. The motivating application was to provide digital evidence in the court of
law. However, different goals arise under different situations, and there are other
possible performance measures for colluder identification. These measures place a
varying amount of emphasis on capturing colluders and placing innocents under
suspicion. In fact, colluder identification might only be one component of the ev-
idence gathering process. Since the final decision will depend upon many types of
evidence, there might be different roles that collusion detection will play in pro-
tecting content value. For example, it might be desirable to use colluder identifi-
cation to identify a set of suspects and then perform other types of surveillance
on these suspects to gather the remaining evidence. This suggests that researchers
should consider a wider spectrum of performance measures.

We consider two additional sets of performance criteria in this section and
study the thresholding detector under the average attack. The analysis of the
thresholding detector is easier than the maximum detector. However, the results
are similar, and for that reason we will omit the analysis of the maximum detector.

Case 1 (capture more). This set of performance criteria consists of the expected
fraction of colluders that are successfully captured, denoted by rc, and the expected
fraction of innocent users that are falsely placed under suspicion, denoted by ri.
Here the major concern is to catch as many colluders as possible, though poten-
tially at a cost of accusing more innocents. The balance between capturing collud-
ers and placing innocents under suspicion is represented by these two expected
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fractions. We define

γj =
1 if jth user is accused,

0 otherwise.
(4.40)

Considering the thresholding detector and the average attack, we have

rc =
E
(∑

j∈Sc γ j
)

K
=
∑

j∈Sc Pr
{
γj = 1

}
K

= KQ
((
h− ‖s‖/K)/σd)

K
= Q

(
h− ‖s‖/K

σd

)
,

ri =
E
(∑

j /∈Sc γ j
)

n− K
= Q

(
h

σd

)
.

(4.41)

The above observation indicates that studying the behavior of the fractions
rc and ri is equivalent to studying the probability of correctly detecting a specific
colluder and the probability of falsely accusing a specific innocent user. Based on
this pair {rc, ri}, now the system requirements are

ri = Q
(
h

σd

)
≤ αi, rc = Q

(
h− ‖s‖/K

σd

)
≥ αc, (4.42)

meaning a reasonably high rc and a reasonably low ri are required to keep the
fingerprinting system safe from attacks.

We now study the resistance performance of orthogonal fingerprints under

requirements (4.42). In our analysis, ‖s‖ =
√
ηNσd with η being the WNR and N

being the vector length. Based on (4.41) and (4.42), we can obtain the threshold h
and the maximum number of colluders Kmax as

h = Q−1(αi)σd,

Kmax =
√
ηN

Q−1
(
αi
)−Q−1

(
αc
) . (4.43)

It is interesting to note that the threshold h is a constant value determined by αi,
and Kmax is not affected by the total number of users n. The collusion resistance
Kmax is proportional to the square root of the vector length N and the WNR η.
To illustrate this, in Figure 4.5a, we observe that a system with the requirements
ri ≤ 0.01 and rc ≥ 0.5, which involves N = 104 fingerprints, can withstand 43
colluders. If we allow a larger fraction of innocents to be placed under suspicion,
then the system can resist more colluders, as depicted in Figure 4.5b. Here, let us
look at an example represented by the point with coordinate values {10−2, 136} in
Figure 4.5b. In this example, since N = 105, αi = 10−2, and αc = 0.5, the decision
maker will have to identify 68 suspected colluders (calculated as 136× αc) from a
pool of people containing up to one thousand innocent users (calculated asN×αi).
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Figure 4.5. The resistance performance under the criteria rc and ri, when applying the thresholding
detector in (4.9). (a) We plot the expected fraction rc versus the number of colluders K , with N = 104,
the WNR η = 1, and the expected fraction ri = 0.01. (b) Kmax under different requirements of αi with
N = 10−5, the WNR η = 1, and dc = 0.5.

Case 2 (capture all). This set of performance criteria consists of the efficiency rate
R, which describes the expected number of innocents accused per colluder, and
the probability of capturing all K colluders, which we denote by Pd. Here the goal
is to capture all colluders with a high probability. The tradeoff between capturing
colluders and placing innocents under suspicion is managed through the adjust-
ment of the efficiency rate R. More specifically, when considering the thresholding
detector and the average attack, we have

R =
E
(∑

j /∈Sc γ j
)

E
(∑

j∈Sc γ j
) = (n− K)Q

(
h/σd

)
KQ

((
h− ‖s‖/K)/σd) ,

Pd = Pr
{
Sc ⊆ ĵ

} = Pr

{
min
j∈Sc

TN ( j) ≥ h
}
= Q

(
h− ‖s‖/K

σd

)K
.

(4.44)
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Figure 4.6. The behavior of the efficiency rate R and the expected number of users suspected as K
increases. Here N = 104, η = 1, n = 104, and Pd = 0.99. (a) We plot the rate R versus the number of
colluders K . (b) The expected number of users suspected is plotted against K .

Based on this pair {R,Pd}, the system requirements are expressed as

R ≤ α; Pd ≥ β. (4.45)

We first illustrate the resistance performance of the fingerprinting system under
these requirements by examples, where N = 104 and η = 1. We set σ2

d = 1 for

simplicity and recall that ‖s‖ =
√
ηN . First, for a system accommodating as many

as 104 users and requiring Pd = 0.99, we study the behavior of R when the number
of colluders K increases as shown in Figure 4.6. For each choice of K , the thresh-
old h is chosen to yield Pd = 0.99 and then the corresponding R is calculated. It
is clear that almost all users will be placed under suspicion if more than 100 users
come together and perform the collusion. The decision of placing all users under
suspicion certainly provides no useful clues to the identity of the colluders. If the
rate R is set as 0.01, the system can resist up to 13 colluders. To obtain an over-
all understanding of the collusion resistance of the system, we further study the
performance of the system when different amounts of users are involved (as illus-
trated in Figure 4.7) by requiring R ≤ 0.01 and Pd ≥ 0.99. It is clear that the system
can afford up to n colluders if the number of total users n is smaller than 21. The
resistance performance degrades when more than 21 users are accommodated. In
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Figure 4.7. Resistance performance of the orthogonal fingerprinting system under the criteria R and
Pd . Here N = 104, η = 1, α = 0.01, and Pd = 0.99. The lower and upper bounds are also plotted.

situations where the system is required to distribute more than one thousand in-
dependently marked copies, an attacker having as few as 15 independent copies
has the capability to break down the system.

Similar to Section 4.1.2, we provide a lower and upper bound of Kmax under
this set of criteria. Assume σ2

d = 1 for convenience. A derivation similar to that in
Section 4.1.2 leads to the following bounds:

Kmax ≥ min
{
n,KL

}
with KL =

√
ηN

Q−1(2α/n)−Q−1
(

n
√
β
) , (4.46)

Kmax ≤ min
{
n,KH

}
with KH =

√
ηN

Q−1
(
αK̃/

(
n− K̃

))−Q−1
(

KL

√
β
) , (4.47)

with K̃ being

K̃ = −
√
ηN

Q−1
(

KL

√
β
) . (4.48)

The details of this derivation are omitted due to the limitation of space and
due to its similarity to the derivations in Section 4.1.2. An example is given in
Figure 4.7.

The analysis in this section reveals that the maximum number of colluders
allowed by a Gaussian fingerprinting system is on the same order, under three
different sets of criteria. Basically, a few dozen colluders could break down the or-
thogonal Gaussian fingerprinting system by generating a new composite copy such
that the identification of the original fingerprints would unlikely be successful.
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4.3. Extensions to other types of attacks

So far, we have studied the collusion resistance of the Gaussian fingerprinting sys-
tem for the average attack. When an attacker has access to multiple independently
watermarked copies of the same host signal, attacks other than the averaging attack
are also possible. In this section, we consider several nonlinear attacks suggested
by Stone in [62], and we evaluate the resistance of the maximum detector and the
thresholding detector. We have further considered a few other collusion attacks
(see Chapter 3), such as randomly copying and pasting parts of content from in-
dividual copies, or randomly choosing any value between the minimum and the
maximum values. Our study has shown that this additional set of attacks can be
approximated as the collusion attacks discussed in this chapter followed by addi-
tive noise. Thus the attacks studied here represent a wide range of attacks.

(i) Attacks based on the median operation: under this attack, the attacker ob-
tains K independently marked copies of the same host signal, and computes the
composite observation y such that the ith component of y is

y(i) = median j∈Sc
{
x(i) + s j(i)

}
+ d(i)

= median j∈Sc
{
s j(i)

}
+ x(i) + d(i)

(4.49)

for i = 1, 2, . . . ,N , where the subset Sc indicates the colluder index and median(·)
represents the median operation. This attack is named the median attack, as indi-
cated by its definition.

(ii) Attacks based on the minimum operations: under the minimum attack,
the attacker creates a copy y whose ith component is the minimum of the ith com-
ponents of the observed copies plus a noise term. Similarly, we can define the max-
imum attack and the so-called randomized negative attack (also referred as Kilian’s
attack) [60]. Since our statistical analysis reveals that these three attacks share the
same property in terms of collusion resistance, we study only the minimum attack
here to save space.

(iii) Attacks based on the average of the minimum and maximum operations:
under the minmax attack, the attacker creates a copy y whose ith component is

y(i) = min j∈Sc
{
x(i) + s j(i)

}
+ max j∈Sc

{
x(i) + s j(i)

}
2

+ d(i)

= min j∈Sc
{
s j(i)

}
+ max j∈Sc

{
s j(i)

}
2

+ x(i) + d(i)

(4.50)

for i = 1, 2, . . . ,N , where min(·) and max(·) are the minimum and maximum
operations, respectively.

(iv) Attacks based on the median, minimum, and maximum operations: since
Kilian’s attack produces unacceptable distortion, Stone suggested a modified
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version of Kilian’s attack such that

y(i) =
(

min
j∈Sc

{
x(i) + s j(i)

}
+ max

j∈Sc

{
x(i) + s j(i)

}−median j∈Sc
{
x(i) + s j(i)

})
+ d(i)

=
(

min
j∈Sc

{
s j(i)

}
+ max

j∈Sc

{
s j(i)

}−median j∈Sc
{
s j(i)

})
+ x(i) + d(i)

(4.51)

for i = 1, 2, . . . ,N . It is noted that Stone’s attack produces less distortion than
Kilian’s.

For a specific attack, we should examine the overall distortion introduced to
the host signal, and the efficiency comparison of different attacks should be car-
ried out under the assumption that the distortion level created by different attacks
is approximately equal. The purpose of this section is to show that the nonlinear
attacks described above can be regarded as attacks by averaging in the sense that
they yield pretty similar performance when employing the maximum and the
thresholding detectors, as long as the overall MSE (mean-square-error) introduced
to the host signal by different attacks is the same. More specifically, our goal is to
demonstrate that the attacks

yg = g
(

y j , j ∈ Sc
)

+ dg ,

ymean = 1
K

∑
j∈Sc

y j + dmean
(4.52)

provide close collusion resistance performance as long as

E
{∥∥yg − x

∥∥2
}
= E

{∥∥ymean − x
∥∥2
}

� ξ0, (4.53)

where g(·) represents the attack operation, and the additive noise dg are N (0, σ2
d,g)

distributed where the variance σ2
d,g is determined by the power ξ0. Note that the

power of the composite observation indicates the level of MSE introduced to the
host signal. Therefore, given the MSE level allowed by the system, we want to show
that the underlying attack model does not matter from the detector point of view.
In other words, we want to demonstrate that the thresholding detector is robust to
different attacks. A similar argument can be made for the maximum detector.

First, we illustrate an example based on 104 simulation runs in Figure 4.8,
where N = 104, n = 100, and thresholds are chosen to yield Pf p = 10−2. Three
types of attacks are studied: the average, minmax, and minimum attacks. The fin-
gerprints s j ’s are taken as N (0, σ2

s ) distributed random values with σ2
s = 1, and

the additive noise added to the minimum attack dmin follows N (0, 1) distribution.
Thus, the additive noises introduced by the average attack and the minmax attack
are correspondingly generated to provide the same MSE level as by the minimum
attack. From Figure 4.8, it is noted that the performance curves are close to each
other, with the minimum attack marginally superior to the other two attacks from
the detector’s point of view (i.e., worse from the attacker’s point of view).
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Figure 4.8. The probability of detection as a function of the number of colluder K under different
attacks, when applying the thresholding detector and the same MSE level is introduced. Here N = 104,
n = 100, and P f p = 10−2.

The observation noted in the above example is encouraging. We intuitively
explain the reasons by referring to the statistical analysis in [60, 82]. We need to
analyze the statistical behavior of the test TN ( j) under different collusion attacks.
Due to the iid Gaussian assumption of the fingerprint components and since N is
generally in the order of 104 for 256×256 images, by applying the central limit the-
orem (CLT), we propose to approximate the distribution of TN ( j) with a Gaussian
distribution. Our results show that the correlator TN ( j) still yields zero mean for
j /∈ Sc, and the mean of TN ( j), for j ∈ Sc, is the same under different attacks.
By calculating the corresponding mean and variance, we have that the correlator
TN ( j) is approximately distributed as

TN ( j) | K , Sc, g ∼



N
(
0, σ2

g0 + σ2
d,g

) = N

0,
E
{∥∥yg − x

∥∥2
}

N

 if j /∈ Sc,

N


√
Nσ2

s

K
, σ2

g1 + σ2
d,g

 if j ∈ Sc,

(4.54)

in which for all l ∈ Sc,

σ2
g0 = E

{
g
(
s j(i), j ∈ Sc

)2
}

,

σ2
g1 =

Var
{
g
(
s j(i), j ∈ Sc

)
sl(i)

}
σ2
s

.

(4.55)
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Under each attack, TN ( j), for j /∈ Sc, is independent of each other. It is clear that
for a given K , the behavior of TN ( j), for j /∈ Sc, is fully characterized by the overall
power ξ0, therefore, the threshold and Pf p are not affected by the type of attack.
For approximating the distribution of TN ( j) with a Gaussian distribution, we need
to calculate the equivalent mean and variance. As one example, we provide the
derivation of the mean and the variance σ2

g1 under the minimum attack in the
following.

Denote the pdf of each Gaussian fingerprint component as f (x), that is,
f (x) = N (0, σ2

s ), and the cdf as F(x). Now under the minimum attack, the corre-
lator TN ( j) is

TN ( j) = 1
‖s‖

N∑
i=1

(
min
l∈Sc

{
sl(i)

}
+ dmin(i)

)
s j(i). (4.56)

Define smin(i) = minl∈Sc{sl(i)}, we have the pdf of smin(i) as

fmin(x) = K f (x)
[
1− F(x)

]K−1
. (4.57)

For j /∈ Sc, it is easy to show that E{TN ( j)} = 0. For j ∈ Sc, we can express the
joint pdf of smin(i) and s j(i) as

fmin,1
(
smin(i) = x′, s j(i) = x

)
=

f (x′)

[
1− F(x′)

]K−1
if smin(i) = s j(i),

(K − 1) f (x′) f (x)
[
1− F(x′)

]K−2
if smin(i) < sj(i).

(4.58)

By employing the rule of integration by parts, we have

E
{
smin(i)s j(i)

} = ∫∞
−∞

x′2 f (x′)
[
1− F(x′)

]K−1
dx′

+
∫∞
−∞

x′(K − 1) f (x′)
[
1− F(x′)

]K−2
(∫∞

x′
x f (x)dx

)
dx′

= σ2
s

∫∞
−∞

f (x′)
[
1− F(x′)

]K−1
dx′

= σ2
s

K

∫∞
−∞

fmin(x′)dx′ = σ2
s

K
.

(4.59)

It is clear that, for j ∈ Sc, the mean of TN ( j) under the minimum attack is
the same as that of the average attack. We can calculate E{(smin(i)s j(i))2} and
var{smin(i)s j(i)} numerically. Therefore, we can calculate the mean and variance
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Table 4.1. The corresponding σ2
g0, σ2

g1, σ2
d,g , and var{TN ( j)} under different attacks, where K = 15,

σ2
s = 1.

Variance\attack Average Minimum Median Minmax Stone

σ2
g0 0.0667 3.3144 0.1017 0.1581 0.5757

σ2
d,g 3.2477 0 3.2127 3.1563 2.7387

σ2
g1 0.0711 3.7519 0.1108 0.1747 0.6480

var{TN ( j)}, j ∈ Sc 3.3188 3.7519 3.3235 3.3310 3.3867

of TN ( j) correspondingly as

E
{
TN ( j)

} = N

‖s‖E
{
smin(i)s j(i)

} =
√
Nσ2

s

K
,

var
{
TN ( j)

} = var
{
smin(i)s j(i)

}
σ2
s

.

(4.60)

The analysis of other attacks can be similarly derived. We refer the interested
readers to [82] for more details. It is worth mentioning that there is no closed
form expression for the variance σ2

g1 available under most attacks, due to the ex-
istence of Q(·) terms in the distributions. Therefore, in our implementation we
numerically evaluate the integrals by employing the recursive adaptive Simpson
quadrature method. As an example, suppose σ2

s = 1 and no noise is added to the
minimum attack, we report the results in Table 4.1, where we can see that the vari-
ance of TN ( j), for j ∈ Sc, is comparable under different attacks and thus results in
comparable Pd’s under different attacks. Our results also reveal that the difference
of this variance among different attacks gets smaller as the number of colluders K
increases.

The above fact that different attacks provide comparable performance from
the detector’s point of view suggests, for the same MSE distortion, that the average
attack is the most efficient from the attacker point of view. This is because, from the
detector point of view, there exist better detection schemes than detectors based on
the correlators TN ( j)’s for attacks other than the average attack. For this reason, we
have concentrated only on the average attack in this chapter, and we only address
the collusion resistance of a fingerprinting system under the average attack.

In addition, to maintain an acceptable quality of the image, a basic require-
ment is that the collusion attack is unlikely to generate noticeable distortion.
Therefore, three types of attacks, namely the minimum attack, the maximum at-
tack, and Kilian’s attack, should be excluded from consideration, since our analysis
indicates that the energy of the composite watermark generated by these attacks is
greater than that of the original watermark (e.g., large σ2

g0 and σ2
g1), and grows with

the number of colluders K . This unfortunate feature of these attacks suggests that
these attacks are likely to produce noticeable distortion which increases with K .
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4.4. A practical estimator for the amount of colluders

In the above analysis we have assumed that the number of colluders K is known.
However, knowledge of K is normally not available in a practical collusion sce-
nario. Therefore, in real colluder-identification situations, we need to estimate the
number of colluders K . To start, we present the problem in a multiple-hypotheses-
testing framework, where the different hypotheses lead to different y as

HK : y = 1
K

∑
j∈Sc

s j + x + d (4.61)

for 1 ≤ K ≤ n. An optimal way to estimate K can be based on the Bayesian
classifier

K̂ = arg max
K

p
(
HK | y

) = arg max
K

∑
Sc

p
(
HK , Sc | y

)
, (4.62)

where p(·) represents likelihood functions. However, it is immediately noted that
the probability summation over all subsets Sc with size K is infeasible in practice.
We address this issue by obtaining the maximum-likelihood (ML) estimates of K
and Sc jointly based on the observations y:(

K̂ , Ŝc
) = arg max

K ,Sc
p
(

y | HK , Sc
)
. (4.63)

Because of the orthogonality of the basis {s j}, it suffices to consider the correlator
vector TN , defined in (4.2). Now the estimator is equal to(

K̂ , Ŝc
) = arg max

K ,Sc
p
(

y | HK , Sc
) = arg max

K ,Sc
p
(

TN | HK , Sc
)
. (4.64)

By introducing an additional dummy class H0 as p(TN | H0) = N (0, σ2
d In), we

have(
K̂ , Ŝc

)
= arg max

K

{
max
Sc

p
(

TN | HK , Sc
)}

= arg max
K

{
max
Sc

p
(

TN | HK
)

p
(

TN | H0
) }

= arg max
K

max
Sc

Π j∈Sc
(

1√
2πσd

)
exp

(
− (TN ( j)−‖s‖/K)2

2σ2
d

)
Π j /∈Sc

(
1√

2πσd

)
exp

(−TN ( j)2

2σ2
d

)
Πn

j=1

(
1√

2πσd

)
exp

(
− TN ( j)2

2σ2
d

)


= arg max
K

{
max
Sc

∑
j∈Sc

(
2‖s‖
K

TN ( j)− ‖s‖2

K2

)}
by applying log operation

= arg max
K

{
max
Sc

2‖s‖
K

∑
j∈Sc

TN ( j)− ‖s‖2

K

}
,

(4.65)
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thus

K̂ = arg max
K

{
2‖s‖
K

∑
j∈Ŝc

TN ( j)− ‖s‖2

K

}

= arg max
K

{
2‖s‖
K

K∑
j=1

T
( j)
N − ‖s‖2

K

}
,

(4.66)

where T
( j)
N ’s are ordered as T(1)

N ≥ T(2)
N ≥ · · · ≥ T(n)

N . The last equation is due to
the ML estimate

Ŝc = arg max
|Sc|=K

{
2‖s‖
K

∑
j∈Sc

TN ( j)− ‖s‖2

K

}

= arg max
|Sc|=K

∑
j∈Sc

TN ( j) = the index of K largest TN ( j).
(4.67)

Therefore, in summary, we have

K̂ = arg max
K

{
2‖s‖
K

K∑
j=1

T
( j)
N − ‖s‖2

K

}
,

Ŝc = the set of indices of K̂ largest TN ( j)’s.

(4.68)

Based on (K̂ , Ŝc) obtained from the above approach, a fingerprinting system
may accuse all users indicated by Ŝc as colluders. However, the above approach is
aimed at jointly finding the ML estimates of K and the colluder set Sc. Although
it might be interesting to study Pf n and Pf p of this approach in (4.68), this ap-
proach is not designed to allow one to adjust the tradeoff between Pf n and Pf p,
which is a desirable functionality for colluder tracing applications. Therefore, the
above approach is not appropriate to meet our specific detection goal. Thus we
only use it to estimate the total number of colluders K , and examine the effects of
the estimated K next.

Simulations for the maximum detector. Since K is unknown in a practical collu-
sion scenario, we need to estimate K first before setting a suitable threshold h for
the detection process. With given N , WNR, and n, the colluder identification al-
gorithm using the maximum detector becomes as follows.

(1) Estimate the number of colluders K via (4.68).
(2) Determine the threshold h correspondingly to yield a desired Pf p, ac-

cording to (4.6). It is clear that the threshold h is only a function of K̂
when N , WNR, and n are given.

(3) Apply the maximum test statistic described in (4.5) and return the in-
dex ĵ.

In Figures 4.2a and 4.2b for N = 104 and WNR = 0 dB, the simulation results
are compared to the ideal performance analysis shown in Section 4.1.2 where K
is assumed known. Unlike the ideal case where K is assumed known, when K is
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estimated based on simulated observations, the resulting Pd always decreases with
the increasing of K . Good match is observed over the nonincreasing part of the
ideal case, that is, when K is small. Mismatch is noted over the increasing part
of the ideal case, that is, when K is close to n, since K is underestimated in this
situation due to the increasing overlap between the two Gaussian distributions
N (0, σ2

d ) and N (‖s‖/K , σ2
d) as K increases. However, using an estimate of K will

not alter Kmax significantly from the results when we use the exact value of K since
only the nonincreasing part (also the matched part) of the ideal case in the Pd
versus K curve is evaluated to decide Kmax, the maximum number of colluders a
system can afford.

Simulations for the thresholding detector. As in Section 4.4, we need to first esti-
mate K before setting a threshold h for the detection process. We introduce the
following implementation.

(1) Estimate the number of colluders K via (4.68).
(2) Determine the threshold h correspondingly to yield a desired Pf p, ac-

cording to (4.13). It is clear that the threshold h is only a function of K̂
when N , WNR, and n are given.

(3) Apply the thresholding test statistic described in (4.9) and return the
set ĵ.

We compare the simulation results with the ideal performance analysis in Fig-
ures 4.9a and 4.9b. We can see that, with the estimated number of colluders, the
observation when employing the thresholding detection is similar to that of the
maximum detection.

4.5. Experiments with images

In order to demonstrate the performance of a Gaussian fingerprinting system us-
ing orthogonal modulation on real images for identifying colluders, we apply an
additive spread-spectrum watermarking scheme similar to that in [24], where the
original host image is divided into 8 × 8 blocks, and the watermark (fingerprint)
is perceptually weighted and then embedded into the block DCT coefficients. The
detection of the fingerprint is performed with the knowledge of the host image.
To generally represent the performance, the 256 × 256 Lena and Baboon images
with quite different natures are used as the host images for fingerprinting. The
fingerprinted images have an average PSNR of 44.6 dB for Lena, and 41.9 dB for
Baboon. We compare the performance of the thresholding detector under average,
minimum, and minmax collusion attacks, respectively. We show in Figure 4.12 the
original host images, the colluded images, and the difference images. With K = 50,
an average PSNR of 37.3 dB for Lena and 34.6 dB for Baboon result after collusion
attacks.

Denoting s j as the Gaussian fingerprint, we note that the ith component of
the jth fingerprint is actually embedded as

s j(i)t = α(i)s j(i), (4.69)
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Figure 4.9. Probability of detection Pd as a function of the number of colluders K when applying
the thresholding detector, with WNR = 0 dB, N = 104, and P f p ≤ 10−3. In (a) the number of users
n = 104; in (b) n = 75.

where the superscript t means actual, with {α(i)}’s being the just-noticeable-dif-
ference (JND) parameters from human visual model to achieve the imperceptibil-
ity of the embedded fingerprint. Therefore, the composite embedded fingerprint
yt after attack is represented as

y(i)t = g
(
yj(i)t, j ∈ Sc

)
+ d(i) = α(i)g

(
s j(i), j ∈ Sc

)
+ x(i) + d(i), (4.70)

where g(·) is the collusion function discussed in Section 4.3, and the noise d is
independently distributed. Under nonblind detection, α(i)’s are known in the de-
tector side and thus the effects of real images can be partially compensated by
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Figure 4.10. The detection performance of the thresholding detector on Lena images under the aver-
age attack, where equivalently N = 13 691. Here σ2

d = 1, n = 100, and P f p = 10−3.

computing

w(i) = y(i)t − x(i)
α(i)

= g
(
s j(i), j ∈ Sc

)
+
d(i)
α(i)

(4.71)

for i = 1, . . . ,N . In practice, the variance of d(i) is often proportional to the
value of α(i)2, for example, in image compression attack. As such, d(i)/α(i) can
be approximately modelled as iid N (0, σ2

d ) distributed. Therefore, the test statistic
TN ( j) used in the thresholding detector is now defined as

TN ( j) = wTs j√∥∥s j
∥∥2

(4.72)

for j = 1, . . . ,n.
We present the results in Figures 4.10 and 4.11 based on 105 simulations using

real images. The number of total users n is set to 100. We ignored the round-off

error introduced by DCT/IDCT transform in simulations. The fingerprint s j is
assumed to be N (0, I). To make a fair comparison between the experimental and
analytical results, we first demonstrate the results for Lena image under the average
attack in Figure 4.10, where the additive noise is with variance σ2

d = 1 and σ2
d = 1

and Pf p = 10−3 is required. We note that the real image is comparable to that
based on analysis in Section 4.1.2.

We further compare the performance of the thresholding detector under dif-
ferent types of attacks in Figure 4.11. The threshold for each K is chosen to satisfy
Pf p = 10−2 by simulation runs. σ2

d is set as 1 for the minimum attack case, and
the corresponding σ2

d is properly adjusted for the cases of the average and minmax
attacks to ensure the attacked images have the same MSE level (thus PSNR) with
respect to the host image. The level of MSE is larger as K increases. It is noted
that the detection performance is better under the minimum attack than under
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Figure 4.11. The detection performance of the thresholding detector on real images under different
kinds of attacks. Here n = 100 and P f p = 10−2. (a) The Lena image with equivalent N = 13 691 and
(b) the Baboon image with equivalent N = 19 497.

the other two attacks. This suggests that the minimum attack is less efficient from
the attacker point of view, an observation that matches with the analysis. It is also
noticed that a better performance is observed in the Baboon example than in Lena.
One possible explanation for this is that, in Lena, the efficient length of the finger-
print is N = 13 691, while a longer N = 19 497 is allowed in Baboon. Different
characteristics such as the amount of edges and smooth regions of these two im-
ages also contribute to the difference in the performance. It is worth mentioning
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(a) (b) (c)

Figure 4.12. (a) The host images, (b) colluded images with K = 50, and (c) difference images for
Lena and Baboon. The min attack is illustrated for Lena, and the average attack for Baboon.

that, for Gaussian watermarking, if K is large, the minimum attack is likely to pro-
duce noticeable distortion even with no additive noise added. For instance, under
the minimum attack, the MSE is as large as 13.3 for Lena when K = 70. In order
to have the same MSE under the average attack, we need to have a corresponding
WNR as low as −7.5 dB. With such a low WNR, noticeable distortion is intro-
duced to the host signal and the quality of the image may not be acceptable. Thus,
the minimum attack is not favored in practice because it generates noticeable dis-
tortion.

4.6. Efficient fingerprint detection using tree structure

4.6.1. Tree-structured detection strategy

The classical method for estimating which signal was embedded in the host signal
is done via v correlators, and determines the B-bit message that identifies which
user’s watermark was present. This has been considered a major drawback of the
method of orthogonal modulation [23, 83]. In this section we present an algorithm
that reduces the computation needed to detect which watermarks are present in a
host signal.

Algorithm 4.3. Suppose that K colluders are involved in forming a colluded sig-
nal yc. We desire to identify the basis vectors of these K colluders. For a set A =
{w j} j∈J where J is an indexing set, we define the sum of A by SUM(A) =∑

j∈J w j .
We start by considering the case of detecting 1 watermark. Let us denote by S =
{w, . . . , wv} the set of orthogonal watermark signals, and suppose the test signal
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is y. Suppose that we break S into two complementary subsets S0 and S1. If we
correlate the test signal y with SUM(S0), then the correlation will satisfy

〈
y,

∑
w j∈S0

w j

〉
=
∑
j∈J

〈
y, w j

〉
, (4.73)

where 〈y, w〉 denotes a correlation statistic. If the one watermark we desire to de-
tect belongs to the set S0, then 〈y, SUM(S0)〉 will experience a large contribution
from that one basis vector, and all the other terms will have small values. If this
watermark is not present in S0, then 〈y, SUM(S0)〉 will consist only of small con-
tributions due to noise. Therefore, if we test two sets S0 and S1 such that S1 = S\S0,
then we are likely to get a large value in at least one of the two correlations with
the sum of the basis vectors. We can repeat this idea by further decomposing S0

and/or S1 if they pass a threshold test. This idea can be extended to detecting the
presence of K orthogonal signals. At each stage we test two sets S0 and S1, and if a
set passes a threshold test, then we further decompose it.

We use this idea to develop a recursive detection algorithm for detecting the
presence of K orthogonal signals in a test signal y. In Algorithm 4.3, we begin by
initially splitting the set S into S0 and S1. There are many possible choices for divid-
ing S into S0 and S1 in such an algorithm. In Algorithm 4.3 we have chosen S0 such
that |S0| = 2�log2 |S|�−1, which is the largest power of 2 less than |S|. Another pos-
sible choice would be to take S0 such that |S0| = �|S|/2�. The algorithm proceeds
in a recursive manner, subdividing either S0 or S1 if a threshold test is passed. As
we will shortly discuss, the choice of the thresholds τ0 and τ1 is dependent on the
signal-to-noise ratio, the cardinality of either S0 or S1, and the desired probability
of detection for that level.

We now make some observations about the performance of this algorithm.
First, the algorithm can be described via a binary tree, where each internal node
corresponds to two correlations. Let us assume that each correlation truthfully re-
veals whether there is a colluder present or not. We denote by C(n,K) the number
of correlations needed in Algorithm 4.3 to identify K signals from a set S of n or-
thogonal signals. We can derive a bound for C(n,K) in the ideal case where each
correlation is truthful, namely

C(n,K) ≤ 2

(
− 1 + K

(
log2

2�log2 n�

K
+ 1

))
. (4.74)

This bound can be shown using standard techniques for tree-based algorithms [84,
85, 86, 87]. In particular, the bound on the amount of truthful correlations needed
to identify K colluders is O(K log(n/K)). Further, we observe that if we were try-
ing to detect a single signal, then we need to perform at most 2(�log2 |S|� − 1)
correlations as opposed to |S| in a traditional implementation. Also, as K becomes
larger, the improvement in the amount of correlations performed decreases since
it becomes necessary to perform correlations for multiple branches of the tree.
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Realistically, however, the correlations performed at each node of the algo-
rithm are not guaranteed to be truthful. In fact, although we have achieved an im-
provement in computational efficiency, this comes at a tradeoff in detector vari-
ance. When we calculate the correlation with the sums of basis vectors, we get
many small, noisy contributions from correlating the test signal with signals not
present in the test signal, as in (4.73).

We now provide analysis for this phenomenon when there is only one col-
luder, that is, y(k) = s1(k) + d(k). For simplicity, let d = N(0, σ2

d I). The s j are
known and have power ‖s j‖2 = E . The two possible hypotheses are

H0 : y = d,

H1 : y = d + s1.
(4.75)

We break S into S0 = {s1, s2, . . . , sn/2} and S1 = {sn/2+1, sn/2+2, . . . , sn}. For sim-
plicity of derivation, we use an unnormalized correlator for the detection statistics
ρ0 and ρ1. That is,

〈y, s〉 =
N∑
k=1

y(k)s(k). (4.76)

Under hypothesis H1, the calculation for ρ0 is

ρ0 =
〈

s1 + d, s1 + s2 + · · · + sn/2
〉 = ∥∥s1

∥∥2
+

n/2∑
j=1

〈
d, s j

〉
. (4.77)

Under hypothesis H0, the calculation for ρ0 is

ρ0 =
〈

d, s1 + s2 + · · · + sn/2
〉 = n/2∑

j=1

〈
d, s j

〉
. (4.78)

Then E(ρ0;H0) = 0, E(ρ0;H1) = E , and Var(ρ0;H0) = Var(ρ0;H1) = (n/2)σ2
dE .

Thus ρ0 ∼ N(0,nσ2
dE /2) under H0, and ρ0 ∼ N(E ,nσ2

dE /2) under H1. Similar
results can be derived for ρ1. The probability of detection is

PD = Pr
(
ρ0 > τ;H1

) = Q

 τ − E√
σ2
dnE /2

 . (4.79)

The probability of false alarm is

PFA = Pr
(
ρ0 > τ;H0

) = Q

 τ√
σ2
dnE /2

 . (4.80)

As we iterate down the tree, the SNR will become better. For example, at
the second level of the algorithm’s tree, the set S0 has n/4 elements, and ρ0 ∼
N(0,nσ2

dE /4) under H0, and ρ0 ∼ N(E ,nσ2
dE /4) under H1. At each level of the
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Figure 4.13. The bound for the expected amount of correlations needed when there is one colluder,
n = 128 users, and PD = 0.99 for each level. As a baseline, we plot the bound for E[C(128, 1)] against
the amount n, which is the amount of computations needed in performing simple detection.

algorithm, the decision threshold τ may be determined using either a chosen value
for the probability of detection or probability of false alarm for the one colluder
case, that is, from (4.79) or (4.80). If we choose τ at each level of the tree to keep PD
fixed at a sufficiently high value, then the probability of a false alarm will change
at each level of the tree. This means that initially we will let through some false
alarms until we proceed further down the tree, where there are higher effective
SNRs.

It can be shown that a bound for the expected amount of correlations,
E[C(n, 1)], needed to identify a single colluder using Algorithm 4.3 when n = 2r is

E
[
C(n, 1)

] ≤ 2 + 2(lnn− 1)PD + 2
r−1∑
k=1

Pbk
FA

(
2r−k − 1

)
, (4.81)

where bk is the binary string consisting of k−1 zeros followed by a single 1. Here we
have chosen to label the one colluder as user 1, and have denoted the probability
of false alarm for a node b by Pb

FA.
The bound depends on the choice of PD and the Pbk

FA values. In Figure 4.13,
we present the bound for the expected amount of correlations needed when there
is one colluder, n = 128 users, and PD = 0.99 for each level. As a baseline, we
have plotted the bound for E[C(128, 1)] against n = 128, which is the amount of
computations needed in performing simple detection. Examining this figure, one
observes that at low WNR, which could correspond to a blind detection scenario,
the bound on the amount of correlations needed in Algorithm 4.3 is above the
baseline amount of correlations needed for simply correlating with each of the
fingerprint waveforms. This poor performance of the bound is due to the tradeoff

between PD and PFA. Specifically, given PD = 0.99, it is not possible to make the Pbk
FA
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small at low WNR. Thus, at low WNR the tree-structured detection scheme may
not be advantageous over a simple detection scheme. However, at higher WNR,
which corresponds to nonblind detection scenarios, the separation between the
detection hypotheses increases, and it does become possible to make Pbk

FA small. In
these cases, the bound guarantees that we will need less correlations than simply
correlating with each waveform to identify a single colluder.

4.6.2. Experiments on tree-based detector

We desired to study the performance of the tree-structured detection algorithm,
and the effect that collusion had on the detection statistics. We now explore real
image experiments on tree-based detection of orthogonal fingerprints. In our ex-
periments, we used an additive spread-spectrum watermarking scheme similar to
that in [24], where a perceptually weighted watermark was added to DCT coef-
ficients with a block size of 8 × 8. The detection of the watermark is performed
without the knowledge of the host image via the detection statistics as shown
in (2.6). The 512 × 512 Lena was used as the host image for fingerprinting, and
the fingerprinted images had no visible artifacts with an average PSNR of 41.2 dB.
Figure 4.14 illustrates the process of identifying colluders out of 8 users using the
tree-structured detection algorithm (Algorithm 1). The detection statistics are av-
eraged over 10 different sets of watermarks, and each set has 8 mutually uncorre-
lated spread-spectrum watermarks for 8 users. These watermarks are generated via
a pseudorandom number generator and used as an approximate orthogonal basis
in orthogonal modulation.

Figure 4.14a shows the process of detecting colluders from an image with user
1’s fingerprint embedded. The notation “TN | U?” denotes the detection statis-
tics when correlating the test image with the sum of the fingerprints U?. Detection
statistics close to zero indicate the unlikely contributions from the correspond-
ing fingerprints, and the branches of the detection tree below them, indicated by
dotted lines, are not explored further. The number of correlations performed is
6. Figure 4.14b shows the process of detecting colluders from an image colluded
from user 1, user 2, and user 4’s fingerprinted images. The number of correlations
performed is 8.

We see from Figure 4.14a that the detection statistics when correlating with a
sum of a larger number of basis vectors are smaller than that with a smaller amount
of basis vectors. This reflects the noisy contributions from the basis vectors that are
present in the sum of basis vectors but are not present in the test image. We dis-
cussed this phenomena earlier in Section 4.6. Since the detection statistics we use
have their variance normalized to 1, the noisy contributions lower the detection
statistics values. We also observe in Figure 4.14b a decrease in the detection statis-
tics in images colluded by more users.

In addition, we conducted a nonblind detection test with one colluder
amongst n = 128 users on the Lena image. Our test confirmed the findings of
Figure 4.13. Only 14 correlations were needed, which is a significant reduction
over the 128 correlations needed in a simple detection approach.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


Chapter summary 99
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Figure 4.14. Detection trees for identifying colluders using Algorithm 1. The images for different users
are fingerprinted via orthogonal modulation. The fingerprints of colluders are indicated by shadowed
boxes Uj . The notation “TN | U?” denotes the detection statistics from correlating the test image with
the sum of the fingerprints U?. (a) One colluder. (b) Three colluders.

4.7. Chapter summary

In this chapter, we have investigated the collusion resistance of a Gaussian fin-
gerprinting system based upon orthogonal modulation. Specifically, assuming the
host content is available on the detector side (nonblind scenario), we study the
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problem of determining how many independently marked copies of the same mul-
timedia content are required for attackers to cause a fingerprinting system to fail.
We introduced the collusion problem for additive embedding and started with
the average collusion attack where an average operation is performed by weigh-
ing marked copies equally. Since knowledge of the number of colluders (different
marked copies) is normally not available in practice, a likelihood-based classifier
approach was proposed to estimate the number of colluders K . Simulation results
show that the collusion resistance based on the estimated K matches the analysis
of the ideal case.

We introduced two detection approaches, and studied the collusion resistance
of a fingerprinting system to the average attack when considering the performance
criteria represented by Pf p and Pnp. We derived lower and upper bounds of the

maximum number of colluders Kmax. It is noted that
√
ηN is an important factor,

where η is the watermark-to-noise ratio. Using the upper bound, an attacker can
determine how many independent copies are required to guarantee the success of
a collusion attack; on the other hand, an owner (detector) will benefit from these
bounds in designing a fingerprinting system. For instance, in order to achieve a
collusion-free fingerprinting system, a desirable security requirement is to have it
very unlikely for a potential attacker to collect more copies than the lower bound,
and further to have the distribution size limited by the maximum value of Kmax.

Our work was further extended to different attacks and different sets of per-
formance criteria. From the detector point of view, the thresholding detector is
robust to different attacks, since different attacks yield very close performance as
long as the levels of MSE distortion introduced by different attacks are the same.
Therefore, the average attack is most efficient from the attacker side. We also evalu-
ated the performance on real images, and noted that the average attack is the most
efficient from the attacker point of view under the same MSE (thus PSNR) as-
sumption. Different sets of performance criteria were explored to satisfy different
concerns. And it seems that attacks based on a few dozen independent copies will
confound a fingerprinting system accommodating as many as ten thousand users.
This observation suggests that the number of independently marked copies of the
same content that can be distributed should be determined by many concerns,
such as the system requirements, and the cost of obtaining multiple independent
copies. Furthermore, it suggests that tracing colluders via fingerprints should work
in concert with other operations, for example, suspecting a user may lead the
owner to more closely monitor that user and further gather additional evidence.
As fingerprinting is one of the many components in decision-making, it is the con-
fidence in the fidelity of all technical and nontechnical evidences as a whole that
allows a system to identify a colluder.

In addition, the traditional detection schemes for orthogonal modulation in
embedding applications require an amount of correlations that is linear in the
amount of orthogonal basis signals. To address this deficiency, we presented a tree-
based detection algorithm that reduces the amount of correlations from linear to
logarithmic complexity, and is able to identify K colluders in a computationally
efficient manner.
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5
Group-oriented fingerprinting

In the previous chapter we have examined fingerprinting systems using orthogo-
nal modulation. Despite the superior collusion resistance of orthogonal Gaussian
fingerprints over other fingerprinting schemes, previous analysis revealed that at-
tacks based on averaging a few dozen independent copies can confound a finger-
printing system using orthogonal modulation [58, 59, 69, 70]. Averaging collusion
attack is proved effective on orthogonal fingerprinting system due to its effect on
the energy reduction of the original fingerprints and the effect it has upon the
detection performance. Therefore, by gathering a few dozen colluders, it is possi-
ble to sufficiently attenuate each colluder’s identifying fingerprint and produce a
new version of the content with no detectable fingerprints. Ultimately, for mass
market consumption of multimedia, content will be distributed to thousands of
users. In these scenarios, it is possible for a coalition of adversaries to acquire a few
dozen copies of marked content, employ a simple average collusion attack, and
thereby thwart the protection provided by the fingerprints. Thus, an alternative
fingerprinting scheme is needed that will exploit a different aspect of the collusion
problem in order to achieve improved collusion resistance.

We note that one major drawback of fingerprinting using orthogonal mod-
ulation is its severe energy reduction. For example, under the average attack, the
resulting energy of the colluded copy is reduced to 1/K of the original fingerprint
energy, with K being the number of colluders. This energy reduction significantly
degrades the detection performance of each original fingerprint. As we mentioned
earlier, there are two main approaches using spread spectrum for fingerprint em-
bedding: orthogonal modulation and code modulation. The second option allows
for constructing the fingerprint for each user as a linear combination of orthog-
onal noise-like basis signals. Along the code-modulation line, a key is to strate-
gically introduce correlations into different fingerprints to allow accurate iden-
tification of the contributing fingerprints involved in collusion. The correlation
concern also helps to decrease the energy reduction ratio observed in the case of
orthogonal modulation. The resulting fingerprints can be based upon binary or
real-valued code modulation. The group-oriented fingerprinting scheme studied
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102 Group-oriented fingerprinting

in this chapter can be regarded as exploring real-valued code constructions. In the
next chapter, we will focus on a class of collusion-resistant fingerprints exploiting
a class of binary codes, which have the property that the composition of any subset
of K or fewer codevectors is unique.

In this chapter, we introduce a new direction for improving collusion resis-
tance, the group-oriented fingerprinting, by taking advantage of the prior knowl-
edge about potential collusions. We observe that some users are more likely to
collude with each other than with other users, perhaps due to underlying so-
cial or cultural factors. We propose to exploit this a priori knowledge to improve
the fingerprint design. We introduce a fingerprint construction that is an alter-
native to the traditional independent Gaussian fingerprints. Like the traditional
spread-spectrum watermarking scheme, our fingerprints are Gaussian distributed.
However, we assign statistically independent fingerprints to members of different
groups that are unlikely to collude with each other, while the fingerprints we as-
sign to members within a group of potential colluders are correlated. For instance,
we present a two-tier fingerprinting scheme in which the groups of potential col-
luders are organized into sets of users that are equally likely to collude with each
other. We assume in the two-tier model that intergroup collusion is less likely than
intragroup collusion. We extend our construction to more general group collu-
sion scenarios by presenting a tree-based construction of fingerprints. The design
of the fingerprint is complemented by the development and analysis of a detec-
tion scheme capable of providing the forensic ability to identify groups involved
in collusion and to trace colluders within each group.

5.1. Motivation for group-based fingerprinting

In this section, we will introduce fingerprinting and collusion. Collusion-resistant
fingerprinting requires the design of fingerprints that can survive collusion and
identify colluders, as well as the robust embedding of the fingerprints in the multi-
media host signal. We will employ spread-spectrum additive embedding of finger-
prints in this chapter since this technique has proven to be robust against a number
of attacks [23]. Additionally, information theory has shown that spread-spectrum
additive embedding is near optimal when the original host signal is available at the
detector side [38, 39], which is a reasonable assumption for collusion applications.

We begin by reviewing spread-spectrum additive embedding. Suppose that
the host signal is represented by a vector x, which might, for example, consist of
the most significant DCT components of an image. The owner generates the wa-
termark s and embeds each component of the watermark into the host signal by
y(l) = x(l) + s(l), with y(l), x(l), and s(l) being the lth component of the water-
marked copy, the host signal, and the watermark, respectively. It is worth men-
tioning that, in practical watermarking, before the watermark is added to the host
signal, each component of the watermark s is scaled by an appropriate factor to
achieve the imperceptibility of the embedded watermark as well as control the
energy of the embedded watermark. One possibility for this factor is to use the
just-noticeable difference (JND) from a human visual model [24].
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Motivation for group-based fingerprinting 103

In digital fingerprinting, the content owner has a family of watermarks, de-
noted by {s j}, which are fingerprints associated with different users who purchase
the rights to access the host signal x. These fingerprints are used to make copies of
content that may be distributed to different users, and allow for the tracing of pi-
rated copies to the original users. For the jth user, the owner computes the marked
version of the content y j by adding the watermark s j to the host signal, meaning
y j = x+s j . Then this fingerprinted copy y j is distributed to user j and may experi-
ence additional distortion before it is tested for the existence of the fingerprint s j .
The fingerprints {s j} are often chosen to be orthogonal noise-like signals [23], or
are built by using a modulation scheme employing a basis of orthogonal noise-like
signals [80, 88]. For this chapter, we restrict our attention to linear modulation
schemes, where the fingerprint signals s j are constructed using a linear combina-
tion of a total of v orthogonal basis signals {ui} such that

s j =
v∑
i=1

bi jui, (5.1)

and a sequence {b1 j , b2 j , . . . , bv j} is assigned for each user j. It is convenient to
represent {bi j} as a matrix B, and different matrix structures correspond to differ-
ent fingerprinting strategies. An identity matrix for B corresponds to orthogonal
modulation [23, 79, 83], where s j = u j . Thus, each user is identified by means
of an orthogonal basis signal. In practice, it is often sufficient to use indepen-
dently generated random vectors {u j} for spread-spectrum watermarking [23].
The orthogonality or independence allows for distinguishing different users’ fin-
gerprints to the maximum extent. The simple structure of orthogonal modulation
for encoding and embedding makes it attractive in identification applications that
involve a small group of users. Fingerprints may also be designed using code mod-
ulation [45]. In this case, the matrix B takes a more general form. One advantage
of using code modulation is that we are able to represent more than v users when
using v orthogonal basis signals. One method for constructing the matrix B is
to use appropriately designed binary codes. As an example, we recently proposed
a class of binary-valued anticollusion codes (ACC), where the shared bits within
codevectors allow for the identification of up to K colluders (see Chapter 6). In
more general constructions, the entries of B can be real numbers. The key issue of
fingerprint design using code modulation is to strategically introduce correlation
among different fingerprints to allow for accurate identification of the contribut-
ing fingerprints involved in collusion.

In a collusion attack on a fingerprinting system, one or more users with dif-
ferent marked copies of the same host signal come together and combine several
copies to generate a new composite copy y such that the traces of each of the
“original” fingerprints are removed or attenuated. In earlier chapters, we showed
that different nonlinear collusion attacks had almost identical performance to lin-
ear collusion attacks based on averaging marked content signals, when the lev-
els of MSE distortion introduced by the attacks were kept fixed. In a K-colluder
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104 Group-oriented fingerprinting

averaging-collusion attack the watermarked content signals y j are combined ac-

cording to
∑K

j=1 λjy j + d, where d is an added distortion. For the simplicity of
analysis, we will focus on the averaging-type collusion for the remainder of this
chapter.

One principle for enhancing the forensic capability of a multimedia finger-
printing system is to take advantage of any prior knowledge about potential col-
lusion attacks during the design of the fingerprints. In this chapter, we investigate
mechanisms that improve the ability to identify colluders by exploiting fundamen-
tal properties of the collusion scenario. In particular, we observe that fingerprint-
ing systems using orthogonal modulation do not consider the following issues.

(1) Orthogonal fingerprinting schemes are designed for the case where all
users are equally likely to collude with each other. This assumption that users col-
lude together in a uniformly random fashion is unreasonable. It is more reasonable
that users from the same social or cultural background will collude together with
a higher probability than with users from a different background. For example, a
teenage user from Japan is more likely to collude with another teenager from Japan
than with a middle-aged user from France. In general, the factors that lead to di-
viding the users into groups are up to the system designer to determine. Once the
users have been grouped, we may take advantage of this grouping in a natural way:
divide fingerprints into different subsets and assign each subset to a specific group
whose members are more likely to collude with each other than with members
from other groups.

(2) Orthogonality of fingerprints helps to distinguish individual users. How-
ever, this orthogonality also puts innocent users into suspicion with equal proba-
bility. It was shown in Chapter 4 that when the number of colluders is beyond a
certain value, catching one colluder successfully is very likely to require the detec-
tion system to suspect all users as guilty. This observation is obviously undesirable
for any forensic system, and suggests that we introduce correlation between the
fingerprints of certain users. In particular, we may introduce correlation between
members of the same group, who are more likely to collude with each other. There-
fore, when a specific user is involved in a collusion, users from the same group will
be more likely accused than users from groups not containing colluders.

(3) The performance can be improved by applying appropriate detection
strategies. The challenge is to take advantages of the previous points when de-
signing the detection process.

By considering these issues, we can improve on the orthogonal fingerprint-
ing system, and provide a means to enhance collusion resistance. The underlying
philosophy is to introduce a well-controlled amount of correlation into user fin-
gerprints. Our fingerprinting systems involve two main directions of development:
the development of classes of fingerprints capable of withstanding collusion and
the development of forensic algorithms that can accurately and efficiently identify
members of a colluding coalition. Therefore, for each of our proposed systems, we
will address the issues of designing collusion-resistant fingerprints and developing
efficient colluder detection schemes. To validate the improvement of such group-
oriented fingerprinting system, we will evaluate the performance of our proposed
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systems under the average attack and compare the resulting collusion resistance to
that of an orthogonal fingerprinting system.

5.2. Two-tier group-oriented fingerprinting system

As an initial step for developing a group-oriented fingerprinting system, we present
a two-tier scheme that consists of several groups, and within each group are users
who are equally likely to collude with each other but less likely to collude with
members from other groups. The two-tier group-oriented fingerprints described
above can be viewed using a two-level tree. The first level consists of L nodes, with
each node supporting M leaves that correspond to the fingerprints of individual
users within one group. In Section 5.3, if we allow for more general tree structures,
we can achieve more flexibility in capturing the collusion dynamics between differ-
ent groups. As mentioned earlier, design of fingerprinting systems consist of two
design components in order to fight against collusion attacks: one is the design of
collusion-resistant fingerprints and the other is the detection schemes needed to
identify and trace members of the adversarial coalition. We will address these two
issues respectively.

5.2.1. Fingerprint design scheme

The design of our fingerprints are based upon (1) grouping and (2) code modula-
tion.

Grouping. The overall fingerprinting system is implemented by designing L
groups. For simplicity, we assume that each group can accommodate up to M
users. Therefore, the total number of users is n =M×L. The choice ofM is affected
by many factors, such as the number of potential purchasers in a region and the
collusion pattern of users. We also assume that fingerprints assigned to different
groups are statistically independent of each other. There are two main advantages
provided by independence between groups. First, the detection process is simple to
carry out, and secondly, when collusion occurs, the independence between groups
limits the amount of innocent users falsely placed under suspicion within a group,
since the possibility of wrongly accusing another group is negligible.

Code modulation within each group. We will apply the same code matrix to each
group. For each group i, there are v orthogonal basis signals Ui = [ui1, ui2, . . . , uiv],
each having Euclidean norm ‖u‖. We choose the sets of orthogonal bases for dif-
ferent groups to be independent. In code modulation, information is encoded into
si j , the jth fingerprint in group i, via

si j =
v∑
l=1

cl juil, (5.2)

where the symbol cl j is a real value and all s and u terms are column vectors with
length N and equal energy. We define the code matrix C = (cl j) = [c1, c2, . . . , cM]
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106 Group-oriented fingerprinting

as the v×M matrix whose columns are the codevectors of different users. We have
Si = [si1, si2, . . . , siM] = UC, with the correlation matrix of {si j} as

Rs = ‖u‖2R, with R = CTC. (5.3)

The essential task in designing the set of fingerprints for each subsystem is to de-
sign the underlying correlation matrix Rs. With the assumption in mind that the
users in the same group are equally likely to collude with each other, we create the
fingerprints in one group to have equal correlation. Thus, we choose a matrix R
such that all its diagonal elements are 1 and all the off-diagonal elements are ρ. We
will refer to ρ as the intragroup correlation.

For the proposed fingerprint design, we need to address such issues as the size
of groups and the coefficient ρ. The parameters M and ρ will be chosen to yield
good system performance. In our implementation, M is chosen to be the best sup-
portable user size for the orthogonal modulation scheme [58, 59]. In particular,
when the total number of users is small, for instance n ≤ 100, there is no advantage
in having many groups, and it is sufficient to use one or two groups. As we will see
later in (5.15), the detection performance for the single group case is characterized
by the mean difference (1 − ρ)‖s‖/K for K colluders. A larger value of the mean
difference is preferred, implying a negative ρ is favorable. On the other hand, when
the fingerprinting system must accommodate a large number of users, there will
be more groups and hence the primary task is to identify the groups containing
colluders. In this case, a positive coefficient ρ should be employed to yield high ac-
curacy in group detection. For the latter case, to simplify the detection process, we
propose a structured design of fingerprints {si j}’s, consisting of two components:

si j =
√

1− ρei j +
√
ρai, (5.4)

where {ei1, . . . , eiM , ai} are the orthogonal basis vectors of group i with equal en-
ergy. The bases of different groups are independent. It is easy to check the fact that
Rs = Nσ2

uR under this design scheme.

5.2.2. Detection scheme

The design of appropriate fingerprints must be complemented by the development
of mechanisms that can capture those involved in the fraudulent use of content.
When collusion occurs, the content owner’s goal is to identify the fingerprints as-
sociated with users who participated in generating the colluded content. In this
section we discuss the problem of detecting the colluders when the above scheme
is considered. In Figure 5.1 we depict a system accommodating n users, consist-
ing of L groups with M users within each group. Suppose, when a collusion occurs
involving K colluders who form a colluded content copy y, that the number of col-
luders within group i is ki and that ki’s satisfy

∑L
i=1 ki = K . The observed content y

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


Two-tier group-oriented fingerprinting system 107

Host signal
x

s11

...
s1M

...

sL1

sLM

...

y1,1
...y1,k1

...

yL,1

yL,kL
...

1/K d
Additive

noise

Attacked
signal y Detection

process
Index of
colluders

Figure 5.1. Model for collusion by averaging.

after the average collusion is

y = 1
K

L∑
i=1

∑
j∈Sci

yi j + d = 1
K

L∑
i=1

∑
j∈Sci

si j + x + d, (5.5)

where Sci ⊆ [1, . . . ,M] indicates a subset of size |Sci| = ki describing the members
of group i that are involved in the collusion, and the si j ’s are Gaussian distributed.
We also assume that the additive distortion d is an N-dimensional vector following
an i.i.d. Gaussian distribution with zero-mean and variance σ2

d . In this model, the
number of colluders K and the subsets Sci’s are unknown parameters. The non-
blind scenario is assumed in our consideration, meaning that the host signal x is
available at the detector and thus always subtracted from y for analysis.

The detection scheme consists of two stages. The first stage focuses on identi-
fying groups containing colluders, and the second one involves identifying collud-
ers within each “guilty” group.

Stage 1: group detection. Because of the independency of different groups and the
assumption of i.i.d. Gaussian distortion, it suffices to consider the (normalized)
correlator vector TG for identifying groups possessing colluders. The ith compo-
nent of TG is expressed by

TG(i) = (y − x)T
(

si1 + si2 + · · · + siM
)√

‖s‖2
[
M +

(
M2 −M

)
ρ
] (5.6)

for i = 1, 2, . . . ,L. Utilizing the special structure of the correlation matrix Rs, we
can show that the distribution follows

p
(
TG(i) | K , ki, σ2

d

) =

N
(
0, σ2

d

)
, if ki = 0,

N

ki‖s‖
√

1 + (M − 1)ρ

K
√
M

, σ2
d

 , otherwise,
(5.7)
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108 Group-oriented fingerprinting

where ki = 0 indicates that no user within group i is involved in the collusion
attack. We note that based on the independence of fingerprints from different
groups, the TG(i)’s are independent of each other. Further, based on the distri-
bution of TG(i), we see that if no colluder is present in group i, TG(i) will only
consist of small contributions. However, as the amount of colluders belonging to
group i increases, we are more likely to get a larger value of TG(i).

We employ the correlators TG(i)’s for detecting the presence of colluders
within each group. For each i, we compare TG(i) to a threshold hG, and report
that the ith group is colluder-present if TG(i) exceeds hG. That is,

î = argLi=1

{
TG(i) ≥ hG

}
, (5.8)

where the set î indicates the indices of groups including colluders. As indicated
in the distribution (5.7), the threshold hG here is determined by the pdf. Since
normally the number of groups involved in the collusion is small, we can correctly
classify groups with high probability under the nonblind scenario.

Stage 2: colluder detection within each group. After classifying groups into the
colluder-absent class or the colluder-present class, we need to further identify col-
luders within each group. For each group i ∈ î, because of the orthogonality of
basis [ui1, ui2, . . . , uiM], it is sufficient to consider the correlators Ti, with the jth
component Ti( j) = (y − x)Tui j /

√‖u‖2 for j = 1, . . . ,M. We can show that

Ti = ‖u‖
K

CΦi + ni, (5.9)

where Φ ∈ {0, 1}M with Φi( j) = 1 for j ∈ Sci, indicates colluders within group i
via the location of components whose values are 1; and ni = UidT/

√‖u‖2 follows
an N(0, σ2

d IM) distribution. Thus, we have the distribution

p
(

Ti | K , Sci, σ2
d

) = N

(
‖u‖
K

CΦi, σ2
d IM

)
. (5.10)

Recall the correlation coefficients

cTj cl =
1, if j = l,

ρ, if j �= l.
(5.11)
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Now assume the parameters K and ki are known, we can estimate the subset Sci
via

Ŝci = arg max
|Sci|=ki

{
p(Ti | K , Sci, σ2

d )
} = arg min

|Sci|=ki

∥∥∥∥∥Ti − ‖u‖
K

CΦi

∥∥∥∥∥
2

= arg min
|Sci|=ki

TT
i Ti − 2‖u‖

K

∑
j∈Sci

TT
i c j +

‖u‖2

K2

( ∑
j∈Sci

c j

)T( ∑
j∈Sci

c j

)
= arg min

|Sci|=ki

{
TT
i Ti − 2‖u‖

K

∑
j∈Sci

TT
i c j +

‖u‖2

K2

[
ki +

(
k2
i − ki

)
ρ
]}

= arg max
|Sci|=ki

{
2‖u‖
K

∑
j∈Sci

TT
i c j

}
= the indices of ki largest Tsi( j)’s,

(5.12)

where the vector Tsi is defined as

Tsi = CT
i Ti = CT

[
UT

i (y − x)
‖u‖

]
= ST

i (y − x)
‖s‖ , (5.13)

since ‖s‖ = ‖u‖. We can see that Tsi are the correlation statistics involving the
colluded observation y, the host signal x, and the fingerprints si j ’s. Since Tsi =
CTTi, Tsi conditioned on K and Sci is also Gaussian distributed with the mean
vector and the covariance matrix decided as

µi = CTE
{

Ti | K , Sci, σ2
d

} = ‖u‖
K

RΦi, (5.14)

thus µi( j) =


1 + (ki − 1)ρ

K
‖s‖, if j ∈ Sci,

kiρ

K
‖s‖, otherwise,

R = CT Cov
{

Ti | K , Sci, σ2
d

}
C = σ2

dR,

(5.15)

according to the properties of the vector-valued Gaussian distribution [89]. In
summary, suppose the parameters K and ki are assumed known, we can estimate
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the subset Sci via

Ŝci = arg max
|Sci|=ki

p(Ti | K , Sci, σ2
d )

= the indices of ki largest Tsi( j)’s
(5.16)

where the jth component of the correlator vector Tsi is defined as

Tsi( j) = TT
i c j =

(y − x)Tsi j√‖s‖2
. (5.17)

However, applying (5.16) to locate colluders within group i is not preferred
in our situation for two reasons. First, knowledge of K and ki is usually not avail-
able in practice, and they must be estimated. Further, the above approach aims to
minimize the joint estimation error of all colluders, and it lacks of the capability of
adjusting parameters for addressing specific system design goals, such as minimiz-
ing the probability of a false positive and maximizing the probability of catching at
least one colluder. Regardless of these concerns, the observation in (5.16) suggests
the use of Tsi for colluder detection within each group.

To overcome the limitations of the detector in (5.16), we employ a colluder
identification approach within each group i ∈ î by comparing the correlator Tsi( j)
to a threshold hi and indicating a colluder-presence whenever Tsi( j) is greater than
the threshold. That is,

ĵi = argMj=1

{
Tsi( j) ≥ hi

}
, (5.18)

where the set ĵi indicates the indices of colluders within group i and the threshold
hi is determined by other parameters and the system requirements.

In our approach, we choose the thresholds such that false alarm probabilities
satisfy

Pr
{
TG(i) ≥ hG | ki = 0

} = Q

(
hG
σd

)
= α1,

Pr
{
Tsi( j) ≥ hi | ki, j /∈ Sci

} = Q

(
hi − kiρ‖s‖/K

σd

)
= α2,

(5.19)

where the Q-function is Q(t) = ∫∞
t (1/

√
2π) exp(−x2/2)dx and the values of α1 and

α2 depend upon the system requirements.
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When the fingerprint design scheme in (5.4) is applied to accommodate a
large number of users, we observe the following:

Tsi( j) =
(y − x)Tsi j√‖s‖2

= Tei( j) + Ta(i), with Tei( j) =
√

1− ρ(y − x)Tei j√‖s‖2
,

Ta(i) =
√
ρ(y − x)Tai√‖s‖2

,

thus p
(

Tei | K , Sci, σ2
d

) = N
(
µei, (1− ρ)σ2

d IM
)
,

with µei( j) =


1− ρ

K
‖s‖, if j ∈ Sci,

0, otherwise,

p
(
Ta(i) | K , Sci, σ2

d

) = N

(
kiρ‖s‖
K

, ρσ2
d

)
.

(5.20)

Since, for each group i, Ta(i) is common for all Tsi( j)’s, it is only useful in group
detection and can be subtracted in detecting colluders. Therefore, the detection
process (5.18) in Stage 2 now becomes

ĵi = argMj=1

{
Tei( j) ≥ h

}
. (5.21)

Now the threshold h is chosen such that

Pr
{
Tei( j) ≥ h | j /∈ Sci

} = Q

(
h

σd
√

1− ρ

)
= α2,

thus h = Q−1(α2
)
σd
√

1− ρ.

(5.22)

Note that h is a common threshold for different groups. Advantages of the process
(5.21) are that components of the vector Tei are independent and that the resulting
variance is smaller than σ2

d .

5.2.3. Performance analysis

One important purpose of a multimedia fingerprinting system is to trace the in-
dividuals involved in digital content fraud and provide evidence to both the com-
pany administering the rights associated with the content and law enforcement
agencies. In this section, we show the performance of the above fingerprinting sys-
tem under different performance criteria. To compare with the orthogonal scheme
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[58], we assume the overall MSE (mean square error) with respect to the host sig-
nal is constant. More specifically,

E
{‖y − x‖2} = (

1− ρ

K
+
ρ
∑L

i=1 k
2
i

K2

)
‖s‖2 + Nσ2

d � ‖s‖2, (5.23)

meaning the overall MSE equals the fingerprint energy. Therefore, the variance σ2
d

is based on {ki} correspondingly.
Different concerns arise in different fingerprinting applications. As discussed

in Chapter 4, in studying the effectiveness of a detection algorithm in collusion
applications, there are several performance criteria that may be considered. For
instance, “catch one” performance criteria involves measuring the probability of a
false negative (miss) and the probability of a false positive (false alarm). Such per-
formance metrics are significant when presenting forensic evidence in a court of
law, since it is important to quantify the reliability of the evidence when claiming
an individual’s guilt. On the other hand, if overall system security is a major con-
cern, the goal would then be to quantify the likelihood of catching all colluders,
since missed detection of any colluder may result in severe consequences. Further,
multimedia fingerprinting may aim to provide evidence supporting the suspicion
of a party. Tracing colluders via fingerprints should work in concert with other op-
erations. For example, when a user is considered as a suspect based on multimedia
forensic analysis, the agencies enforcing the digital rights can more closely monitor
that user and gather additional evidence that can be used collectively for proving
the user’s guilt. Overall, identifying colluders through anticollusion fingerprinting
is one important component of the whole forensic system, and it is the confidence
in the fidelity of all evidence that allows a colluder to be finally identified and their
guilt sustained in court. Similar to Chapter 4, we consider the following three sets
of performance criteria. Without loss of generality, we assume i = [1, 2, . . . , l],
where i indicates the indices of groups containing colluders and l is the number of
groups containing colluders.

Case 1 (catch at least one colluder). One of the most popular criteria explored by
researchers are the probability of a false negative (Pf n) and the probability of a
false positive (Pf p) [69, 70]. The major concern is to identify at least one colluder
with high confidence without accusing innocent users. From the detector’s point
of view, a detection approach fails if either the detector fails to identify any of the
colluders (a false negative) or the detector falsely indicates that an innocent user
is a colluder (a false positive). We first define a false alarm event Ai and a correct
detection event Bi for each group i,

Ai =
{
TG(i) ≥ hG, max

j /∈Sci
Tsi( j) ≥ hi

}
,

Bi =
{
TG(i) ≥ hG, max

j∈Sci
Tsi( j) ≥ hi

}
,

(5.24)
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for the scheme of (5.18), or

Ai =
{
TG(i) ≥ hG, max

j /∈Sci
Tei( j) ≥ h

}
,

Bi =
{
TG(i) ≥ hG, max

j∈Sci
Tei( j) ≥ h

}
,

(5.25)

for the scheme of (5.21). Then we have

Pd = Pr
{∃̂ji ∩ Sci �= ∅

} = Pr

{ l⋃
i=1

Bi

}
,

= Pr
{
B1
}

+ Pr
{
B̄1 ∩ B2

}
+ · · · + Pr

{
B̄1 ∩ B̄2∩· · · ∩ B̄l−1 ∩ Bl

}
=

l∑
i=1

qi

i−1∏
j=1

(
1− qj

)
, with qi = Pr

{
Bi
}

,

(5.26)

Pf p = Pr
{∃̂ji ∩ S̄ci �= ∅

} = Pr

{ L⋃
i=1

Ai

}

= Pr

{⋃
i /∈i

Ai

}
+

(
1− Pr

{⋃
i /∈i

Ai

})
Pr

{ l⋃
i=1

Ai

}

=
[

1− (1− pl+1
)L−l]

+
(
1− α1

)L−l
Pr

{ l⋃
i=1

Ai

}

=
[

1− (1− pl+1
)L−l]

+
(
1− pl+1

)L−l l∑
i=1

pi

i−1∏
j=1

(
1− pj

)
, with pi = Pr

{
Ai
}
.

(5.27)

These formulas can be derived by utilizing the law of total probability in conjunc-
tion with the independency between fingerprints belonging to different groups,
and the fact that pl+1 = pl+2 = · · · = pL since there are no colluders in {Al+1, . . . ,
AL}. Based on this pair of criteria, the system requirements are represented as

Pf p ≤ ε, Pd ≥ β. (5.28)

We can see that the difficulty in analyzing the collusion resistance lies in cal-
culating joint probabilities pi’s and qi’s. When the total number of users is small
such that all the users will belong to one or two groups, Stage 1 (guilty group
identification) is normally unnecessary and thus ρ should be chosen to maximize
the detection probability in Stage 2. We note that the detection performance is
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Figure 5.2. ROC curves Pd versus P f p of different examples, compared with the orthogonal scheme
in [58]. In (a) a small number of users n = 100 and a negative ρ = −0.01 are considered. In (b) a large
number of users n = 6000 and a positive ρ = 0.4 are considered.

characterized by the difference between the means of the two hypotheses in (5.15),
and hence is given by (1 − ρ)‖s‖/K . Therefore a negative ρ is preferred. Since the
matrix R should be positive definite, 1 + (M − 1)ρ > 0 is required. We show the
performance by examples when the total number of users is small, as in Figure 5.2a
where n = 100, M = 50, and a negative ρ = −0.01 is used. It is clear that introduc-
ing a negative ρ helps to improve the performance when n is small. It also reveals
that the worst case in performance happens when each guilty group contributes
equal number of colluders, meaning ki = K/|i|, for i ∈ i.
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In most applications, however, the total number of users n is large. Therefore,
we focus on this situation for performance analysis. One approach to accommo-
date large n is to design the fingerprints according to (5.4) and use a positive value
of ρ. Now after applying the detection scheme in (5.21), the events Ai’s and Bi’s are
defined as in (5.25). We further note, referring to (5.6) and (5.20), that the corre-

lation coefficient between TG(i) and Tei( j) is equal to
√

(1− ρ)/(M + (M2 −M)ρ),
which is a small value close to 0. For instance, with ρ = 0.2 and M = 60, this
correlation coefficient is as small as 0.03. This observation suggests that TG(i) and
Tei( j)’s are approximately uncorrelated, therefore we have the following approxi-
mations

pi ≈ Pr
{
TG(i) ≥ hG

}
Pr

{
max
j /∈Sci

Tei( j) ≥ h
}

= Q

(
hG − kir0

σd

)1−
(

1−Q

(
h

σd
√

1− ρ

))M−ki ,

qi ≈ Pr
{
TG(i) ≥ hG

}
Pr

{
max
j∈Sci

Tei( j) ≥ h
}

= Q

(
hG − kir0

σd

)1−
(

1−Q

(
h− (1− ρ)‖s‖/K√

1− ρσd

))ki


(5.29)

in calculating Pf p and Pd in (5.27), with r0 = (‖s‖
√

1 + (M − 1)ρ)/K
√
M. Note

that here we employ the theory of order statistics [90]. We show an example in
Figure 5.2b where n = 6000, L = 100, and there are eight groups involved in
collusion with each group having eight colluders. We note that this approxima-
tion is very accurate compared to the simulation result and that our fingerprinting
scheme is superior to using orthogonal fingerprints.

To have an overall understanding of the collusion resistance of the proposed
scheme, we further study the maximum resistable number of colluders Kmax as a
function of n. For a given n, M, and {ki}’s, we choose the parameters α1, which
determines the threshold hG, α2, which determines the threshold h, and ρ, which
determines the probability of the group detection, so that

{
α1,α2, ρ

} = arg max
{α1,α2,ρ}

Pd
(
α1,α2, ρ

)
subject to Pf p

(
α1,α2, ρ

) ≤ ε. (5.30)

In reality, the value of ρ is limited by the quantization precision of the image sys-
tem and ρ should be chosen at the fingerprint design stage. Therefore, ρ is fixed
in real applications. Since, in many collusion scenarios the size |i| would be rea-
sonably small, our results are not as sensitive to α1 and ρ as to α2, and the group
detection in Stage 1 often yields very high accuracy. For example, when |i| ≤ 5, the
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Figure 5.3. Comparison of collusion resistance of the orthogonal and the proposed group-based fin-
gerprinting systems to the average attack. Here M = 60, ki = K/|i|, |i| = 5, and the system require-
ments are represented by ε = 10−3 and β = 0.8.

threshold hG can be chosen such that α1 � ε and Pr(TG(i) ≥ hG) is sufficiently
close to 1 for at least one group i ∈ i. Therefore, to simplify our searching process,
we can fix the values of α1. Also, in the design stage, we consider the performance
of the worst case where ki = K/|i|, for i ∈ i. One important efficiency measure
of a fingerprinting scheme is Kmax, the maximum number of colluders that can
be tolerated by a fingerprinting system such that the system requirements are still
satisfied. We illustrate an example in Figure 5.3, where M = 60 is used since it is
shown to be the best supportable user size for the orthogonal scheme [58, 59], and
the number of guilty groups is up to five. It is noted that Kmax of the proposed
scheme (indicated by the dotted and the dashed-dotted lines) is larger than that of
the orthogonal scheme (the solid line), when n is large. The difference between the
lower bound and upper bound is due to the fact that ki = K/|i| in our simulations.
Overall, the group-oriented fingerprinting system provides the performance im-
provement by yielding better collusion resistance. It is worth mentioning that the
performance is fundamentally affected by the collusion pattern. The smaller the
number of guilty groups, the better chance the colluders are identified.

Case 2 (fraction of guilty captured versus fraction of innocent accused). This set of
performance criteria consists of the expected fraction of colluders that are success-
fully captured, denoted as rc, and the expected fraction of innocent users that are
falsely placed under suspicion, denoted as ri. Here the major concern is to catch
more colluders, possibly at the cost of accusing more innocents. The balance be-
tween capturing colluders and placing innocents under suspicion is represented
by these two expected fractions. Suppose the total number of users n is large and

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


Two-tier group-oriented fingerprinting system 117

the detection scheme in (5.21) is applied. We have

ri =
E
(∑l

i=1

∑
j /∈Sci γi j +

∑L
i=l+1

∑M
j=1 γi j

)
n− K

=
∑l

i=1

(
M − ki

)
p0i + M(L− l)p0,l+1

n− K
,

rc =
E
(∑l

i=1

∑
j∈Sci γi j

)
K

=
∑l

i=1 ki p1i

K
,

(5.31)

where

p1i = Pr
{
TG(i) ≥ hG,Tei( j) ≥ hi | j ∈ Sci

}
, for i = 1, . . . , l,

p0i = Pr
{
TG(i) ≥ hG,Tei( j) ≥ hi | j /∈ Sci

}
, for i = 1, . . . , l + 1,

(5.32)

and γi j is defined as

γi j =
1, if jth user of group i is accused,

0, otherwise.
(5.33)

Based on this pair {ri, rc}, the system requirements are represented by

ri ≤ αi, rc ≥ αc. (5.34)

We further notice that TG(i) and Tei( j)’s are approximately uncorrelated,
therefore we can approximately apply p1i = Pr{TG(i) ≥ hG}Pr{Tei( j) ≥ h | j ∈
Sci}, for i = 1, . . . , l, and p0i = Pr{TG(i) ≥ hG}Pr{Tei( j) ≥ h | j /∈ Sci}, for i =
1, . . . , l + 1, in calculating ri and rc. With a given n, M, and {ki}’s, the parameters
α1 which determines the threshold hG, α2 which determines the threshold h, and ρ
which determines the probability of the group detection are chosen such that

max
{α1,α2,ρ}

rc
(
α1,α2, ρ

)
subject to ri

(
α1,α2, ρ

) ≤ αi. (5.35)

Similarly, finite discrete values of α1 and ρ are considered to reduce the computa-
tional complexity.

We first illustrate the resistance performance of the system by an example,
shown in Figure 5.4a, where N = 104, ρ = 0.2, and three groups are involved
in collusion, with each group including 15 colluders. We note that the proposed
scheme is superior to using orthogonal fingerprints. In particular, for the proposed
scheme, all colluders are identified as long as we allow 10 percent innocents to be
wrongly accused. We further examine Kmax for the case ki = K/|i| when different
number of users is managed, as shown in Figure 5.4b by requiring r ≤ 0.01 and
Pd ≥ 0.5 and setting M = 60 and the number of guilty groups is up to ten. The
Kmax of our proposed scheme is larger than that of Kmax for orthogonal finger-
printing when large n is considered.
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Figure 5.4. The resistance performance of the group-oriented and the orthogonal fingerprinting sys-
tem under the criteria ri and rc . Here N = 104. In (a) we have M = 50, n = 500, ρ = 0.2, and there
are three groups involved in collusion, with each group having 15 colluders. Kmax versus n is plotted
in (b) where M = 60, the numbers of colluders within guilty groups are equal, meaning ki = K/|i|,
the number of guilty groups is |i| = 10, and the system requirements are represented by α = 0.01 and
β = 0.5.

Case 3 (catch all colluders). This set of performance criteria consists of the effi-
ciency rate r, which describes the amount of expected innocents accused per col-
luder, and the probability of capturing all K colluders, which we denote by Pd. The
goal in this scenario is to capture all colluders with a high probability. The trade-
off between capturing colluders and placing innocents under suspicion is achieved
through the adjustment of the efficiency rate r. More specifically, supposing n is
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large and the detection scheme in (5.21) is applied, we have

r =
E
(∑l

i=1

∑
j /∈Sci γi j +

∑L
i=l+1

∑M
j=1 γi j

)
E
(∑l

i=1

∑
j∈Sci γi j

)

=
∑l

i=1

(
M − ki

)
p0i + M(L− l)p0,l+1∑l
i=1 ki p1i

,

Pd = Pr
{∀Sci ⊆ ĵi

} = l∏
i=1

Pr
{
Ci
}

,

with Ci =
{
TG(i) ≥ hG, min

j∈Sci
Tei( j) ≥ h

}
,

(5.36)

in which p0i and p1i are defined as in (5.31). Based on this pair {r,Pd}, the system
requirements are expressed as

r ≤ α, Pd ≥ β. (5.37)

Similar to the previous cases, we further notice that TG(i) and Tei( j)’s are
approximately uncorrelated, and we may approximately calculate p1i’s and p0i’s as
done earlier. Using the independency, we also apply the approximation

Pr
{
Ci
} = Pr

{
TG(i) ≥ hG

}
Pr

{
min
j∈Sci

Tei( j) ≥ h
}

= Q

(
hG − kir0

σd

)
Q

(
h− (1− ρ)‖s‖

σd
√

1− ρ

)ki (5.38)

in calculating Pd. With a given n, M, and {ki}’s, the parameters α1 which deter-
mines the threshold hG, α2 which determines the threshold h, and ρ which deter-
mines the probability of the group detection, are chosen such that

max
{α1,α2,ρ}

Pd
(
α1,α2, ρ

)
subject to r

(
α1,α2, ρ

) ≤ α. (5.39)

Similarly, finite discrete values of α1 and ρ are considered to reduce the computa-
tional complexity.

We illustrate the resistance performance of the proposed system by two ex-
amples shown in Figure 5.5. It is worth mentioning that the accuracy in the group
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Figure 5.5. Performance curves Pd versus r of different examples, compared with the orthogonal
scheme in [58]. In (a) K = 23, a small number of users n = 40, and a negative ρ = −0.023 are
considered. In (b) a large number of users n = 600 and a positive ρ = 0.3 are considered. Three groups
are involved in collusion, with numbers of colluders being 32, 8, and 8, respectively.

detection stage is critical for this set of criteria, since a missed detection in Stage
1 will result in a much smaller Pd. When capturing all colluders with high prob-
ability is a major concern, our proposed group-oriented scheme may not be fa-
vorable in cases where there are a moderate number of guilty groups involved in
collusion or when the collusion pattern is highly asymmetric. The reason is that,
under these situations, a threshold in Stage 1 should be low enough to identify all
colluder-present groups; however, a low threshold also results in wrongly accusing
innocent groups. Therefore, Stage 1 is not very useful in these situations.
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5.3. Tree-structure-based fingerprinting system

In this section, we propose to extend our construction to represent the natural
social and geographic hierarchical relationships between users by generalizing the
two-tier approach to a more flexible group-oriented fingerprinting system based
on a tree structure. As in the two-tier group-oriented system, to validate the im-
provement of such tree-based group fingerprinting, we will evaluate the perfor-
mance of our proposed system under the average attack and compare the resulting
collusion resistance to that of an orthogonal fingerprinting system.

5.3.1. Fingerprint design scheme

The group-oriented system proposed earlier can be viewed as a symmetric two-
level tree-structured scheme. The first level consists of L nodes, with each node
supporting P leaves that correspond to the fingerprints of individual users within
one group. We observe that a user is often more likely to collude with some groups
than with other groups. If we allow for a more general tree structure in the finger-
print design, we can achieve more flexibility in capturing the collusion dynamics
between different groups. For instance, we may consider a simple region-based
collusion pattern: users within Maryland are more likely to come together in gen-
erating an attacked copy than they are likely to collude with other users from Texas,
and the probability for these two groups to come together to collude is higher than
they would with users from Asia. We may view this subgroup hierarchy via a tree
structure, as depicted in Figure 5.6. In this diagram, we assume that (1) users in
region i1 are equally likely to collude with each other with a probability p1, (2)
each user in region i1 is equally likely to colluder with users within region i2 with a
probability p2, and (3) with users within other regions corresponding to different
subtrees with a probability p3, where p1 > p2 > p3. Therefore, it is desirable for
us to design a fingerprint tree that matches the large-scale collusion pattern (e.g.,
represented by the cultural, social, and geographic relationships among users) in
such a way that the fingerprints on the same branch of the tree are more correlated
with each other than with those on other branches, and correspondingly, the as-
sociated users on the same branch of the tree are more likely to collude with each
other.

More generally, we design a tree withM levels where each node at the (m−1)th
level supports a total of Lm nodes. Let [i1, . . . , iM] indicate the index vector of a
user/fingerprint. Exploiting the tree structure, we propose the following design of
fingerprints {si1,...,iM}:

si1,...,iM =
√
ρ1ai1 + · · · +

√
ρM−1ai1,...,iM−1 +

√√√√√1−
M−1∑
j=1

ρjai1,...,iM , (5.40)

where the a vectors correspond to orthogonal basis vectors with equal energy
‖a‖ = ‖s‖, each ρj satisfies 0 ≤ ρj ≤ 1, and ρM = 1 − ∑M−1

j=1 ρj . In this design
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Figure 5.6. A tree-structure-based fingerprinting scheme.

scheme, the correlations between fingerprints are controlled by adjusting the co-
efficients ρi’s, which are determined by the probabilities for users under different
tree branches to carry out collusion attacks.

5.3.2. Detection scheme

We now discuss the problem of detecting the colluders when the proposed fin-
gerprint design scheme in (5.40) is employed. For simplicity in analysis, we con-
sider a balanced tree structure, where the system accommodates n users, and the
tree involves M levels where each node at the (m − 1)th level supports Lm nodes.
The marked copy for a user with the index vector [i1, . . . , iM] is represented as
yi1,...,iM = x + si1,...,iM , where x is the host signal. When a collusion occurs, sup-
pose that a total of K colluders are involved in forming a copy of colluded content
y, and the number of colluders within each level-m subregion represented by an
index vector [i1, . . . , im] is ki1,...,im . For instance, for a tree with M = 3, in a sub-
region where users are all with indices i1 = 2 and i2 = 1, if s2,1,1 and s2,1,3 are
colluders, then k2,1 equals 2. We note that, for each level m = 1, . . . ,M, we have∑L1

i1=1 · · ·
∑Lm

im=1 ki1,...,im = K . The observed content y after the average collusion is

y = 1
K

∑
ic∈Sc

yic + d = 1
K

∑
ic∈Sc

sic + x + d, (5.41)

where ic indicates the index vector of length M, Sc indicates a vector set of size K ,
and each element of Sc is an index vector. We also assume that additional noise d
is introduced after the average collusion and d is a vector following an i.i.d. Gauss-
ian distribution with zero mean and variance σ2

d . The number of colluders K and
the set Sc are the parameters to be estimated. We consider the nonblind scenario,
where the host signal x is available at the detector and thus always subtracted from
y for analysis.

Using such a formulation, we will address the issue of detecting the collud-
ers. The tree-structured, hierarchical nature of group-oriented fingerprints leads
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to a multistage colluder identification scheme: the first stage focuses on identify-
ing the “guilty” regions at the first level; at the second stage, we further narrow
down by specifying “guilty” subregions within each “guilty” region. We continue
the process along each “guilty” branch of the tree until we detect the colluders at
the leaf level. More specifically, at each level m, with m = 1, . . . ,M, and with a
previously identified region indexed by i = [i1, . . . , im−1], we report that the subre-
gion indexed by i = [i1, . . . , im] is colluder-present when the correlator Ti1,...,im−1 (im)
is greater than a threshold hm. That is, for m = 1, . . . , (M − 1), we define Stage m
in the overall detection scheme as follows.

Stage m: subregion detection at level m of the tree structure. With a previously iden-
tified region indexed by i = [i1, . . . , im−1], we need to further examine the subre-
gions indexed by i = [i1, . . . , im] for im = 1, . . . ,Lm. Due to the orthogonality of
basis {ai1,...,im}, it suffices to consider the (normalized) correlator vector Ti1,...,im−1

for identifying subregions including colluders. The imth component of Ti1,...,im−1 is
expressed by

Ti1,...,im−1

(
im
) = (y − x)Tai1,...,im√‖s‖2

, (5.42)

for im = 1, . . . ,Lm. We can show that

p
(

Ti1,...,im−1 | K , Sc, σ2
d

) = N
(
µi1,...,im−1 , σ2

d ILm
)

(5.43)

with

µi1,...,im−1

(
im
) = ki1,...,im

√
ρm

K
‖s‖ (5.44)

and ki1,...,im = 0 indicating that no colluder is present within the subregion rep-
resented by [i1, . . . , im]. If many colluders belong to the subregion represented by
[i1, . . . , im], we are likely to observe a large value of Ti1,...,im−1 (im). Therefore, the
detection process in Stage m is

ĵm = argLmim=1

{
Ti1,...,im−1

(
im
) ≥ hm

}
, (5.45)

where ĵm indicates the indices of subregions containing colluders within the pre-
viously identified region represented by [i1, . . . , im−1].

Finally, we note that the individual colluders are identified at level M (the
leaf level). Now with previously identified region represented by [i1, . . . , iM−1], we
have, for iM = 1, . . . ,LM ,

Ti1,...,iM−1

(
iM
) = (y − x)Tai1,...,iM√‖s‖2

,

with p
(

Ti1,...,iM−1 | K , Sc, σ2
d

) = N
(
µi1,...,iM−1 , σ2

d ILm
)
,

(5.46)
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where

µi1,...,iM−1

(
iM
) =


√

1−∑M−1
m=1 ρm

K
‖s‖, if ki1,...,iM > 0,

0, otherwise.

(5.47)

Now the detection process in Stage M is

ĵM = argLMiM=1

{
Ti1,...,iM−1

(
iM
) ≥ hM

}
, (5.48)

where ĵM indicates the indices of colluders within the previously identified region
represented by [i1, . . . , iM−1].

In our approach, at each level m, we specify a desired false positive probability
αm and choose the threshold hm such that

Pr
{
Ti1,...,im−1

(
im
) ≥ hm | ki1,...,im = 0

} = Q

(
hm
σd

)
= αm, (5.49)

thus

hm = Q−1(αm)σd. (5.50)

In summary, the basic idea behind this multistage detection scheme is to keep
narrowing down the size of the suspicious set. An advantage of this approach is
its light computational burden since, when the number of colluders K is small
or the number of subregions involved in collusion is small, the total amount of
correlations needed can be significantly less than the total number of users.

5.3.3. Parameter settings and performance analysis

In this subsection, we will address the issue of setting the parameters (e.g., how to
choose the values of coefficients ρm’s, thresholds hm’s, and the sizes Lm’s) and ex-
amine the performance metrics characterized by Pf p and Pd. Due to the multistage
nature of the proposed detection approach, calculating the overall performance
Pf p and Pf n involves computing the probabilities of joint events. Furthermore,
the collusion pattern will also make the analysis of Pf p and Pd complicated.

We first examine the types of false alarm events possible for our tree-struc-
tured scheme. A false alarm occurs when the detector claims colluders are present
in a colluder-absent region. A colluder-absent region is characterized by ki1,...,im =
0. As shown in Figure 5.7, where the gray rectangles represent colluder-absent
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Figure 5.7. Demonstration of the types of false alarm events for a three-level tree structure, where
at the leaf level the square-shaped nodes indicate colluders and the circle-shaped nodes indicate in-
nocents. (a) The dark and lighter arrows represent a event in B3 and B2, respectively. (b) The event
A1(2).

regions, we can characterize false alarm events in these regions by AM(·),AM−1(·),
. . . ,A1(·):

AM
(
i1, . . . , iM

)
�
{
Ti1,...,iM−1

(
iM
) ≥ hM | ki1,...,iM = 0

}
,

Am
(
i1, . . . , im

)
�
{
Ti1,...,im−1

(
im
) ≥ hm,

⋃
im+1

Am+1
(
i1, . . . , im, im+1

) | ki1,...,im = 0

}
.

(5.51)

The probability of these events is given by

pM = Pr
{
AM

(
i1, . . . , iM

)} = αM ,

pm = Pr
{
Am

(
i1, . . . , im

)} = αm
[

1− (1− pm+1
)Lm+1

]
< αmLm+1pm+1,

(5.52)
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126 Group-oriented fingerprinting

for m = (M − 1), . . . , 1. Denoting the index vectors for the estimated colluders as
{ îc}, we now have

Pf p = Pr
{∃îc ∈ S̄c

} = Pr

{⋃
m

Bm

}
, (5.53)

with

B1 �
{ ⋃
{i1|ki1=0}

A1
(
i1
)}

, for m = 2, . . . ,M,

Bm �
{⋃

Sm

(
T0
(
i1
) ≥ h1, . . . ,Ti1,...,im−2

(
im−1

) ≥ hm−1,Am
(
i1, . . . , im

))}
,

(5.54)

where the vector set Sm = {{i1, . . . , im}|{ki1 �= 0, . . . , ki1,...,im−1 �= 0, ki1,...,im = 0}.
As we can see, due to the complex nature of a collusion pattern represented in the
tree structure, Pf p is a complicated function of the collusion pattern.

During the system design process, we normally do not have knowledge of the
location of the colluders. As such, we use the upper bound of Pf p, which does
not require detailed knowledge of the collusion pattern, to guide our selection of
parameter values. Let K be the total number of colluders. Based on the analysis of
probability and order statistics [90, 91], we have

Pf p ≤
M∑

m=1

Pr
{
Bm
}
< L1p1 + K

M−1∑
m=2

Lmpm + Kp, (5.55)

where p = 1 − (1 − pM)LM represents the probability of a false alarm within a
subregion as [i1, . . . , iM−1] where all users are innocents. As we can see, the Lmpm
term in the above expression is due to the type of false alarm event Am. Intuitively,
we want the probability of an event of type Am to decrease with decreasing level
m. In particular, we want the probability that a false alarm occurs in an innocent
region connected directly to the root Pr{B1} to be negligible, thus implying that
α1 is small. This is due to the fact that our tree-structured fingerprint system can
be deployed in such a way that typically only a very small number of regions at the
first level are involved in collusion, thus a miss detection is rare at the first level
even with a high threshold h1. To simplify the parameter setting process, we relate
the false alarm probabilities at different levels with a multiplicative factor c. That
is, if at the leaf level we have the probability of a false positive represented by p,
then for the (M − 1) level, we scale p by a factor of c and use p/c to represent the
probability of the events of type BM−1. We apply this scaling to upper levels in a
similar way. Further, using the upper bound of pm in (5.53), we can summarize
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the process as

LM−1pM−1 = LM−1
(
αM−1p

) = p

c
,

�→ αM−1 = 1
LM−1c

,

Lmpm < Lm
(
αmLm+1pm+1

) = Lm+1pm+1

c
,

�→ αm = 1
Lmc

, for m =M − 2, . . . , 2.

(5.56)

Based on the expression of Pf p in (5.55), we have Pf p ≤
∑M

m=1 Pr{Bm}. Recall

the definition of Bm’s and that
∑L1

i1=1 · · ·
∑Lm

im=1 ki1,...,im = K . We note that the size
|S1| = |{i1 | ki1 = 0}| ≤ L1, that the size of the colluder-present regions satisfying
{ki1 �= 0, . . . , ki1,...,im−1 �= 0} is smaller than K , and therefore that the size of Sm

satisfies |Sm| ≤ KLm for m = 2, . . . ,M. Therefore, by taking advantage of the
independency of the basis vectors a’s, we have

Pr
{
B1
} ≤ 1− (1− p1

)L1 < L1p1, for m = 2, . . . ,M,

Pr
{
Bm
} ≤ KPr

{
T0
(
i1
) ≥ h1, . . . ,Ti1,...,im−2

(
im−1

) ≥ hm−1,
⋃
im

Am
(
i1, . . . , im

}}
,

= K
m−1∏
j=1

Pr
{
Ti1,...,i j−1

(
i j
) ≥ hm−1

}
Pr

{⋃
im

Am
(
i1, . . . , im

}}
,

≤ KPr

{⋃
im

Am
(
i1, . . . , im

}} ≤ K
[

1− (1− pm
)Lm] < KLmpm.

(5.57)

By defining p = [1− (1− pM)LM ] in the above, we have Pr{BM} ≤ Kp. Putting all
these inequations together, we have

Pf p ≤
M∑

m=1

Pr
{
Bm
} ≤ L1p1 + K

M−1∑
m=2

Lmpm + Kp. (5.58)

By choosing αm = 1/(Lmc) and using that pm < αmLm+1pm+1 for m = 1, . . . ,
(M − 1), and choosing α1 such that Pr{B1} is negligible in comparison with other
terms Pr{Bm}’s, we now have

Pf p < K p

(
o

(
1

cM−1

)
+

1
cM−1

+ · · · +
1
c2

+
1
c

+ 1

)
<

K pc

c − 1
, (5.59)

where o(a) represents a small value compared with a, and c is a positive constant
larger than 1. Basically, for larger K and p, or for smaller c, we will see a larger Pf p.
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Based on the chosen αm’s, we can set the threshold at level m as

hm = Q−1(αm)σd = Q−1

(
1

cLm

)
σd. (5.60)

With this design scheme, we fix the thresholds at levels 1 to (M−1) and only leave
the threshold at the last level adjustable in our performance evaluation.

Now we proceed to study the behavior of Pd. We have

Pd = Pr
{∃ îc ∈ Sc

} = Pr

{ ⋃
i1∈{ki1 �=0}

C1
(
i1
)}

(5.61)

with

C1
(
i1
)

�
{
T0
(
i1
) ≥ h1,

⋃
i2∈{ki1,i2 �=0}

C2
(
i1, i2

)}
, (5.62)

while for m = 2, . . . , (M − 1),

Cm
(
i1, . . . , im

)
�
{
Ti1,...,im−1

(
im
) ≥ hm,

⋃
im+1∈{ki1,...,im+1 �=0}

Cm+1
(
i1, . . . , im+1

)}
,

CM
(
i1, . . . , iM

)
�
{
Ti1,...,iM ≥ hM

}
.

(5.63)

It is worth mentioning that, due to the independency of the basis vectors a’s in
fingerprint design, all events Cm(·)’s at the same level m are independent of each
other. Without loss of generality, given a region {i1, . . . , im}, we assume that
ki1,...,im+1 �= 0 for the first ki1,...,im+1 indices of im+1. Therefore, we have

Pr
{
Cm
(
i1, . . . , im

)} = Pr
{
Ti1,...,im−1

(
im
) ≥ hm

}
,[ ki1,...,im+1∑

j=1

qi1,...,im( j)
j−1∏
l=1

(
1− qi1,...,im(l)

)] (5.64)

with qi1,...,im( j) = Pr{Cm+1(i1, . . . , im, j)}. Iteratively applying this relationship, we
can calculate the probability of detection Pd for a given collusion pattern. Intu-
itively, we can see that Pr{Ti1,...,im−1 (im) ≥ hm} plays an important role in Pd, thus
the more tightly the colluders are concentrated in a subregion, the higher the Pd is.
We want the probability Pr{Ti1,...,im−1 (im) ≥ hm} to be larger at lower levels, since
a miss detection in a lower level is more severe. Referring to the distribution of
Ti1,...,im−1 (im) in (5.45), we note that Pr{Ti1,...,im−1 (im) ≥ hm} is characterized by the
mean µi1,...,im−1 (im) = ki1,...,im

√
ρm‖s‖/K . Further, it is observed that

max
{
µi1,...,im−1

(
im
)} ≥ 1

min
{∏m

j=1 Lj ,K
}√ρm‖s‖ = µlow

m . (5.65)
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From this, it is clear that (1/K)√ρm‖s‖ is important in system design, since it
characterizes the worst case of the detection performance due to higher levels (e.g.,∏m

j=1 Lj ≥ K). To simplify our problem, we choose ρ1 = · · · = ρM−1 and L2 =
· · · = LM−1. Since the final decision is made in the last level and αM is usually
low (thus hM is large), we want to maintain enough power at the Mth level to yield
reasonable detection probability. In our case, we simply choose 1−∑M−1

m=1 ρm = 0.5,
meaning half power is kept at the last level. Given the total number of users n, the
WNR, and the total levels M, we choose L1 and h1 such that Q((µlow

1 − h1)/σd)
is close to 1 (e.g., 0.99) and α1 < 1/(L1c). This strategy ensures that at least one
colluder-present region will pass the detection at level 1 with very high probability.
We choose LM to maximize the number of colluders that the system can tolerate.
For instance, based on the example shown in Figure 5.3, we can choose LM = 60.
Therefore, in addition to choosing L1 and LM as above, we set other parameters as
follows: choose

ρ1 = · · · = ρM−1 = 0.5
M − 1

, ρM = 0.5;

L2 = L3 = · · · = LM−1 =
(

n

L1LM

)1/(M−2)

;

αm = 1
Lmc

, for m = 2, . . . , (M − 1).

(5.66)

Now the overall performance is a function of αM (thus hM) and c.
We demonstrate the performance of such a fingerprinting system through ex-

amples and compare it with a fingerprinting system employing orthogonal mod-
ulation. As in the group-oriented scheme, the overall power of the colluded ob-
servation y is maintained as ‖s‖2 in our simulations for a fair comparison. We
consider a tree structure with four levels, where L1 = 8, L2 = L3 = 5, and L4 = 50,
therefore it can accommodate n = 104 users. Suppose the total number of collud-
ers K = 40. We first examine a scenario where the collusion pattern is balanced,
that is, at each level m, all nonzero ki1,...,im ’s are equal. One example is illustrated in
Figure 5.8, where we choose α1 = 10−3 and c = 10. In this example, two regions at
level 1 include colluders (e.g., k1 = k2 = K/2), and in turn two subregions at level
2 within each guilty region from level 1 are colluder-present, then one subregion at
level 3 within each guilty region of level 2 is colluder-present, and finally 10 collud-
ers are present within each guilty subregion of level 3. This example illustrates the
improved collusion resistance that the tree-structured system can provide when
compared to orthogonal fingerprinting.

The previous example illustrates the gain in designing fingerprints when one
has precise knowledge of the collusion behavior. Sometimes, however, there might
be mismatch in the assumed collusion behavior. In order to illustrate the effect
of designing a group-fingerprinting system for a collusion pattern that is substan-
tially different from the true collusion pattern, we built fingerprints using the same
tree structure as in the example illustrated in Figure 5.8. We then examined two
extreme scenarios, where the collusion patterns are more random. Each collusion

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


130 Group-oriented fingerprinting

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Pd

10−3 10−2 10−1 100

P f p

Orth.
Tree

(a)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

rc

10−3 10−2 10−1 100

ri

Orth.
Tree

(b)

Figure 5.8. Performance curves of one example of the tree-structure-based fingerprinting system with
a symmetric collusion pattern, compared with the orthogonal scheme in [58]. (a) The ROC curve Pd
versus P f p . (b) The curve of the fractions rc versus ri.

pattern involved 60 colluders. Random Pattern 1 involves the colluders coming to-
gether in a totally random manner, representing that all users are equally likely to
collude with each other; while in Random Pattern 2, the colluders are randomly
distributed in the first region at level 1. In Figure 5.9, we provide the ROC curves,
Pd versus Pf p, for both random patterns, as well as for orthogonal fingerprints.
From this figure we have two observations. First, when the collusion pattern that
the fingerprints were designed for is similar to the actual collusion pattern, as in
the case of Random Pattern 2 at the first level, the results show improved collusion
resistance. Second, when there is no similarity between the assumed collusion pat-
tern and the true collusion pattern, as in the case of Random Pattern 1, orthogo-
nal fingerprints can yield higher collusion resistance than the tree-based scheme.
Therefore, it is desirable for the system designer to have good knowledge of the
potential collusion pattern and design the fingerprints accordingly.

One additional advantage of the tree-structure-based fingerprinting system
over the orthogonal one is its computational efficiency, which is reflected by the
upper bound of the expected computational burden of this approach. The upper
bound is in terms of the amount of correlations required as a function of a set of
parameters including the number of colluders, the threshold at each level of the
tree, and the number of nodes at each level. We denote by C(n,K) the number
of correlations needed in our proposed detection scheme. Denoting by E(Am) the
number of expected correlations needed in an event Am, t being the number of
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Figure 5.9. The ROC curve Pd versus P f p of one example of the tree-structure-based fingerprinting
system with random collusion patterns, compared with the orthogonal scheme.

colluder-present subregions at level (M − 1), and C(detection) and C(false alarm)
being the number of expected correlations needed in correct detections and false
alarms, respectively, we have

C(n,K) = C(detection) + C(false alarm). (5.67)

Suppose all the detections for colluder-present subregions are truthful, meaning
no miss detection occurs at any stage, then

C(detection) ≤ L1 + tL2 + · · · + tLm < t
M∑

m=1

Lm. (5.68)

Recalling that the false alarms can be categorized into event types Am’s and that
the number of each type of event Am is less that tLm, we have

C(false alarm) ≤ L1E
(
A1
)

+ t
M−1∑
m=2

LmE
(
Am

)
(5.69)

with

E
(
AM−1

) = αM−1LM ,

E
(
Am

) = αmLm+1E
(
Am+1

) = · · ·
= αm

( M−1∏
j=m+1

Ljαj

)
LM = αm

1
cM−(m+1)

LM ,

(5.70)
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for m = 1, . . . , (M − 2), by referring to αm = 1/(Lmc). Therefore,

C(false alarm) < t
M−1∑
m=1

Lmαm
1

cM−(m+1)
LM = t

M−1∑
m=1

1
cM−m

LM

< min

{
M,

1
c − 1

}
KLM < min

{
M,

1
c − 1

}
t

M∑
m=1

Lm.

(5.71)

Putting C(detection) and C(false alarm) together, and assuming c ≥ 2 usually, we
have

C(n,K) <

(
1 + min

{
M,

1
c − 1

})
t

M∑
m=1

Lm < 2t
M∑

m=1

Lm < 2K
M∑

m=1

Lm. (5.72)

In addition, the above bound is loose, since it is derived for the worst case where
the number of the guilty regions at each level is set as the upper bound t. Clearly,
for a small t, a situation we expect when the colluders come from the same groups,
the computational cost of the tree-structure-based fingerprinting system is much
smaller than the n correlations needed by fingerprinting systems using orthogonal
fingerprints.

5.4. Experimental results on images

We now compare the ability of our fingerprinting scheme and a system using or-
thogonal fingerprints for identifying colluders when deployed in actual images.
In order to demonstrate the performance of orthogonal, Gaussian fingerprints we
apply an additive spread-spectrum watermarking scheme similar to that in [24],
where the original host image is divided into 8 × 8 blocks, and the watermark
(fingerprint) is perceptually weighted and then embedded into the block DCT co-
efficients. The detection of the fingerprint is nonblind, and is performed with the
knowledge of the host image. To generally represent the performance, the 256×256
Lena and Baboon images were chosen as the host images since they have differ-
ent characteristics. The fingerprinted images have an average PSNR of 44.6 dB for
Lena and 41.9 dB for Baboon. We compare the performance of the thresholding
detector under average collusion attack. We show in Figure 5.10 the original host
images, the colluded images, and the difference images. With K = 40, we obtain
an average PSNR of 47.8 dB for Lena and 48.0 dB for Baboon after collusion attack
and the JPEG compression.

Denoting s j as the ideal Gaussian fingerprint, the ith component of the fin-
gerprint, indexed by ic, is actually embedded as

sic(i)
t = α(i)sic(i) (5.73)
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(a) (b) (c)

Figure 5.10. The host images (a), colluded images (b) with K = 40, and difference images (c) for
Lena and Baboon under the average attack. The collusion pattern is the same as in Figure 5.11 for Lena
image, and as in Figure 5.12 for the Baboon image.

with α being determined by the human visual model parameters in order to achieve
imperceptibility. Therefore, the composite embedded fingerprint yt after attacking
is represented as

y(i)t = 1
K
α(i)

∑
ic∈Sc

sic(i) + x(i) + d(i), (5.74)

where the noise d is regarded as i.i.d. N(0, σ2
d ). Due to the nonblind assumption,

αi’s are known in the detector side and thus the effects of real images can be par-
tially compensated by correlating (yt − x) with the α-scaled basis or fingerprints
in the test statistics T(·)’s defined in earlier sections and adjusting the norm to be

‖st‖ =
√∑N

i=1 α(i)2‖s‖. For instance, the detection scheme in (5.45) is now defined
as

Ti1,...,im−1

(
im
) = (

yt − x)Tai1,...,im
t

‖st‖ (5.75)

with each component ai1,...,im(i)t = α(i)ai1,...,im(i).
We illustrate examples where the collusion pattern is symmetric. We consider

a four-level tree structure with L1 = 8, L2 = L3 = 5, and L4 = 50. We present the
results for the Lena image in Figure 5.11 based on 104 simulations, where K = 40
and we choose α1 = 10−3 and c = 10. In this example, one region at level 1 is
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Figure 5.11. One example of the detection performance of the group-oriented fingerprinting system
on Lena image under average attack. Here M = 4, n = 104, K = 40, and the Lena image with equivalent
N = 13691. (a) The curve Pd versus P f p . (b) The curve rc versus ri.

guilty, while at levels 2 and 3 we assumed that each guilty region had 2 subregions
containing colluders. Finally, 10 colluders are present within each guilty subregion
at the final level, that is, level 3. Additionally, we present the results for Baboon
image in Figure 5.12 based on 104 simulations, where K = 40, α1 = 10−3, and
c = 10. In this example, two regions at level 1 are guilty, while at levels 2 and 3 we
assumed that each guilty region had 2 subregions containing colluders. Finally, 5
colluders are present within each guilty subregion at level 3. We can see that the
detection performance of the proposed tree-structure-based fingerprinting system
is much better than that of the orthogonal system under this colluder scenario.
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Figure 5.12. One example of the detection performance of the group-oriented fingerprinting system
on Baboon image under average attack. Here M = 4, n = 104, K = 40, and the Baboon image with
equivalent N = 19497. (a) The curve Pd versus P f p . (b) The curve rc versus ri.

5.5. Chapter summary

In this chapter, we investigated a method for enhancing the collusion resistance
performance of fingerprinting systems using orthogonal modulation. We pro-
posed a group-oriented fingerprinting system by exploiting the fundamental
property of the collusion scenario that adversaries are more likely to collude with
some users than others due to geographic or social circumstances. With this un-
derlying philosophy, we then introduced a well-controlled amount of correlations
into user fingerprints in order to improve colluder identification.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


136 Group-oriented fingerprinting

We first developed a two-tier group-oriented fingerprinting system that in-
volved the design of fingerprints and a two-stage detection scheme for identify-
ing colluders. We evaluated the resistance performance of the proposed system
under the average attack by examining different sets of performance criteria. It
was demonstrated that the proposed fingerprinting scheme is superior to orthog-
onal fingerprinting system. In particular, as shown in one example, the proposed
scheme can identify all colluders when we allow for up to 10 percent of the inno-
cents to be wrongly accused. In stark contrast, a system using orthogonal finger-
prints would require the detection system to suspect almost all users as guilty.

Our work was further extended to a more flexible tree-structure-based fin-
gerprinting system in order to represent the natural hierarchical relationships be-
tween users due to social and geographic circumstances. We proposed an efficient
and simple scheme for fingerprint design and proposed a multistage colluder iden-
tification scheme by exploiting the hierarchical nature of the group-oriented sys-
tem where the basic idea was to successively narrow down the size of the suspi-
cious set. Performance criteria were analyzed to guide the parameter settings dur-
ing the design process. We demonstrated performance improvement of the pro-
posed scheme over the orthogonal scheme via examples. Furthermore, we derived
an upper bound on the expected computational burden of the proposed approach
and showed that one additional advantage of the tree-structure-based fingerprint-
ing system is its computational efficiency. We also evaluated the performance on
real images and noted that the experimental results match the analysis. Overall, by
exploiting knowledge of the dynamics between groups of colluders, our proposed
scheme illustrates a promising mechanism for enhancing the collusion resistance
performance of a multimedia fingerprinting system.
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6
Anticollusion-coded (ACC)
fingerprinting

In the previous chapters, we examined a conceptually simple strategy for finger-
printing that uses orthogonal signals as the fingerprints. We saw that the complex-
ity of detection can be a concern for orthogonal fingerprints. Another problem
with orthogonal fingerprinting arises when we examine the energy reduction in
the fingerprint signals during collusion. Just looking at averaging collusion, it is
easy to see that the energy reduction is roughly the same order of magnitude as the
amount of colluders. This can be a significant problem for it means that once we
have a few colluders, we become unlikely to identify any traitor. Further, another
potential drawback with using orthogonal fingerprinting systems stems from the
fact that the maximum number of users that can be supported by an orthogonal
fingerprinting system is equal to the amount of orthogonal signals—that is, the
dimensionality of the fingerprinting system can be a strict limit on the amount
of copies of marked media that we distribute. In many commercial scenarios, the
limitations imposed by using orthogonal fingerprinting is too restrictive, and it is
therefore desirable to look for other fingerprinting strategies that can support a
larger customer base, while also being able to resist collusion.

One natural approach to counteract the energy reduction caused by collusion
is to introduce correlation between the fingerprints. When colluders combine their
fingerprints, positively correlated components of the fingerprints will not experi-
ence as significant an energy reduction as would be experienced by orthogonal
fingerprints. We have already seen an example of a fingerprinting strategy that
uses correlated fingerprints. The group-based fingerprints that were introduced
in Chapter 5 can be viewed as a special type of correlated fingerprints, where we
employ a priori knowledge of the collusion pattern to guide us in introducing
dependencies between fingerprints that assists in identifying collusion involving
members of the same group. Further, by using an extra set of orthogonal signals
to represent group information and introducing correlation, we were able to build
more fingerprints than the amount of basis signals we had.

In this chapter, we will look at a more general approach for introducing de-
pendency among the media fingerprints. We will build our fingerprints using code
modulation, which is another modulation technique that is popular in digital
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communications [45]. The correlation between fingerprints will be introduced
by carefully designing the underlying codevectors used to construct the code-
modulated signals. In order to build these codevectors as well as their correspond-
ing fingerprints, we should consider the process by which the fingerprints are em-
bedded in the multimedia content, as well as how these fingerprints will be de-
tected and the corresponding effect that collusion will have on the identification
process. Throughout this chapter, we will highlight a recurring theme for design-
ing collusion-resistant fingerprints—the design of fingerprints that survive collu-
sion and can allow one to successfully identify traitors is closely dependent on the
embedding and detection process. In particular, we will not only discuss the design
of codes that have correlation between the codevectors, but also will discuss the de-
sign of traitor identification algorithms that facilitate the accurate identification of
participants involved in a collusion attack. Our discussion will primarily focus on
the case of binary codes, though nonbinary code or real-valued code construc-
tions are also possible, and are a topic that the research community is currently
investigating.

Before we jump to the discussion of code-modulated fingerprints, however,
we will briefly visit the problem of designing fingerprints for generic, binary data,
such as software or compressed files. In particular, we will review the seminal work
of Boneh and Shaw, and their construction of c-secure fingerprint codes were built
for objects that satisfy an underlying principle known as the marking assumption.
Although the marking assumption is valid for some types of digital data, it is not
well suited for the multimedia domain. Multimedia data have very different char-
acteristics than generic data, and we have observed that a few fundamental aspects
of the marking assumption may not always hold when fingerprinting multimedia
data. In particular, fingerprints may be constructed and embedded in multime-
dia content in a strategic way so as to significantly limit the capability of colluders
to even conduct the type of attacks suggested by the marking assumption. For
example, different “marks” or fingerprint bits can be embedded in overlapped re-
gions of an image through spread-spectrum techniques, and such “spreading” will
make it challenging, if not impossible, for attackers to manipulate each individ-
ual mark at will. This confines the effect of a colluders’ action to a milder form of
collusion from the designer’s point of view. Selectively manipulating bits in a fin-
gerprint code is not directly possible, and instead other forms of attacks, such as
an averaging collusion attack, must be used by an adversary to attempt to subvert
a multimedia fingerprint. This suggests that by jointly considering the encoding,
embedding, and detection processes involved with fingerprinting multimedia, we
have the potential to substantially enhance the performance of multimedia finger-
printing.

This new cross-layer paradigm is fundamentally different from most existing
literature on coded fingerprints, which typically considers coding issues separately
from embedding issues by making assumptions, like the marking assumption.
Throughout this chapter, we will consider the embedding and detection process
as motivation for designing a new family of fingerprint codes, known as anticollu-
sion codes (ACCs).
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Data Fingerprint
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Undetectable
marks

Detectable
marks

Figure 6.1. Illustration of the marking assumption.

6.1. Prior work on collusion-resistant fingerprinting for generic data

An early work on designing collusion-resistant binary fingerprint codes was pre-
sented by Boneh and Shaw in 1995 [77], which primarily considered the problem
of fingerprinting generic data that satisfy an underlying principle referred to as the
marking assumption. In this work, a fingerprint consists of a collection of marks,
each of which is modeled as a position in a digital object and can take a finite
number of states. A mark is considered detectable when a coalition of users does
not have the same mark in that position, as illustrated in Figure 6.1. The marking
assumption states that undetectable marks cannot be arbitrarily changed without
rendering the object useless; however, it is considered possible for the colluding set
to change a detectable mark to any state. Under this collusion framework, Boneh
and Shaw used hierarchical design and randomization techniques to construct c-
secure codes that are able to capture one colluder out of a coalition of up to c col-
luders with high probability.

The construction of a c-secure code involves two main stages: (1) the con-
struction of a base code, and (2) the composition of the base code with an outer
code to improve the efficiency when accommodating a large number of users.

In the first stage, we start with a primitive binary code that consists of n pos-
sible codewords of length n − 1. For the mth codeword, the first (m − 1) bits are
0 and the rest are 1. An example of the trivial codes for n = 4 users A, B, C, and
D is shown in Figure 6.2 (Step-I). If we assign this code to n users, we can see that
everyone except user A has a “0” as the first bit, and everyone except user D has
“1” as the last bit. Now, suppose that a fingerprint collusion occurs in which the
first m − 1 users are not involved but the mth user is involved. According to the
marking assumption, by inspecting the primitive code, the colluders will not be
able to detect the first m − 1 bits, hence the first m − 1 bits will remain “0” after
collusion. On the other hand, the colluders will detect the fact that the mth bits of
their fingerprints do not agree. The colluders may then alter this bit to whatever
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Figure 6.2. Construction procedure and examples of collusion-secure fingerprint codes.

they choose—either a 0 or a 1. If the detector observes that the first m − 1 bits
are 0 and the mth bit is a 1, then we can conclude that user m was involved in the
collusion. We sequentially check whether this holds for m = 1, 2, . . . ,n, and if m0

is the first value for m passing this test, we know with high confidence that user m0

is involved in collusion.
We note that there is no guarantee that the colluders will switch the bit to

a “1,” which prompts the need of some method to encourage a “1” showing up
during collusion. This is accomplished by repetition and permutation techniques.
More specifically, for each bit of the primitive code, we form a block by replicat-
ing that bit d times, arriving at a code of (n − 1) code blocks for a total length of
(n − 1)d. We denote this code as Γ0(n,d). Extending the above example, we have
the Γ0(4, 3) code shown in Figure 6.2 (Step-II), where d = 3. When fingerprinting
digital data with a codeword, each bit is put in a location specified by a secret per-
mutation table that is known only to the fingerprint creator and detector. Repeti-
tion and permutation help hide which position of the digital object encodes which
fingerprint bits. In the example in Figure 6.2 (Step-II), the first six bits before per-
mutation for A have the same value, as do C and D. Later, the bit permutation
is performed as shown in Figure 6.2 (Step-IV). When colluders having A, C, and
D, respectively, come together to collude, they observe six positions with different
values among the three of them. But since each of them has the same value at all six
positions, they would not know which three out of the six bits correspond to the
first three bits before permutation, and which to the second three bits. As a result,
they cannot alter the underlying Γ0(4, 3) code at will. Based on the principle that
every colluder should contribute an equal share to the colluded data, some of the
six bits would be set to “1” and others to “0.” A detector starts from the first block
and examines each block in a block-by-block manner, which is analogous to the
bit-by-bit examination of the primitive code discussed above. The number of “1”s
per code block is used as an indicator of a user’s involvement in collusion.
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In the second stage, we use the code obtained in the first stage as a building
block and combine it with a second codebook. We construct a second codebook of
N codewords over an alphabet of size n, where each codeword has length L. The N
codewords are chosen independently and uniformly over the nL possibilities. We
call this code C(L,N). For example, one random code C(5, 7) over an alphabet
n = 4 is shown in Figure 6.2 (Step-III). Next, we substitute each of the n alphabets
in the code C(L,N) by Γ0(n,d), and arrive at a binary code containing N possi-
ble codewords of length L(n − 1)d. This substitution allows us to first apply the
collusion identification algorithm mentioned earlier on each of the L components
using the first codebook Γ0(n,d), then find the best match in the second code-
book to determine a likely colluder. Finally, each of the blocks of the codeword are
permuted before being inserted into the data. For example, using the above code
C(5, 7), we would be able to support 7 users, and the codeword for the first user
is shown in Figure 6.2 (Step-IV). By choosing the code parameters appropriately,
we can catch one colluder with high probability and keep the probability of falsely
accusing innocents low. The construction that Boneh and Shaw arrived at gives a
code length of O(log4 N log2(1/ε)) for catching up to logN users out of a total of
N users with error probability ε < 1/N .

The construction strategies of Boneh-Shaw code offer insight into fingerprint-
ing both bitstreams and other data for which each bit or unit of a fingerprint is
marked in a nonoverlapped manner. An improvement was introduced in [92] to
merge the low-level code with the direct sequence spread-spectrum embedding for
multimedia and to extend the marking assumption to allow for random jamming.
The two-level code construction also inspired the work in [78], which uses the or-
thogonal fingerprinting in the low level and a structured error-correction code in
the upper level to improve the detection efficiency over the traditional single-level
orthogonal fingerprinting.

The c-secure fingerprint codes were intended for objects that satisfy the mark-
ing assumption. We would like to emphasize that multimedia data have very differ-
ent characteristics from generic data, and a few fundamental aspects of the mark-
ing assumption may not always hold when fingerprinting multimedia data. For
example, different “marks” or fingerprint bits can be embedded in overlapped
regions of an image through spread-spectrum techniques, and such “spreading”
can make it impossible for attackers to manipulate each individual mark at will.
As a result, such collusion models as linear collusion by averaging become more
feasible for multimedia fingerprints, and this has a critical impact on the design
of fingerprint codes. It is also desirable to capture as many colluders as possible,
instead of only capturing one. Recent research in [93] explored these directions
and jointly considered the encoding, embedding, and detection of fingerprints for
multimedia. A new class of structured codes, known as ACCs, has been proposed
that is intended to be used with spread-spectrum code modulation. Construc-
tions of specific families of ACC have been devised using combinatorial designs,
and several colluder identification algorithms for these fingerprint codes were de-
signed and the performance tradeoffs were examined [80]. We will now shift our
attention back to examining multimedia fingerprinting by taking a closer look at
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the design and detection of these new coded fingerprints in the sections that fol-
low.

6.2. Code modulation with spread-spectrum embedding

Code modulation is a different form of modulation from orthogonal signaling and
provides more fingerprint codes for a given amount of basis vectors than orthog-
onal modulation. With such a compact representation, we will be able to accom-
modate more users than orthogonal modulation, while using the same amount
of orthogonal signals. Throughout the rest of this chapter, we will use this mod-
ulation technique, in conjunction with appropriately designed codewords, known
as anticollusion codes, to construct a family of watermarks that have the ability to
identify members of the colluding set of users.

In code modulation, there are v orthogonal basis signals {u j}, and informa-
tion is encoded into a watermark signal w j via

w j =
v∑
i=1

bi jui, (6.1)

where bi j ∈ {0, 1} or bi j ∈ {±1}. The first of the two possibilities for choosing the
values of bi j corresponds to on-off keying (OOK) while the second choice of {±1}
corresponds to an antipodal form [45]. If bi j = 0, this is equivalent to having no
contribution in the ui direction. At the detector side, the determination of each
bi j is typically done by correlating with the ui, and comparing against a decision
threshold.

We assign a different bit sequence {bi j} for each user j. We may view the
assignment of the bits bi j for different watermarks in a matrix B = (bi j), which we
call the derived code matrix, where each column of B contains a derived codevector
for a different user. This viewpoint allows us to capture the orthogonal and code
modulation cases for watermarking. For example, the identity matrix describes
the orthogonal signaling case since the jth user is only associated with one signal
vector u j .

We refer to B as the derived code matrix since the design procedure that we
will employ in the following section involves designing a code matrix C whose
elements are either 0 or 1 that satisfies specific properties that are best examined
using 0 or 1. Once we have designed a code matrix C, we may map C to the derived
code matrix B by applying a suitable mapping that depends on whether the OOK
or antipodal form of code modulation is used. The columns of B will be used to
create the watermark or fingerprint signals w j via (6.1). These fingerprint signals
w j will then be suitably scaled in order to embed them in the host signal with a
desired watermark-to-noise ratio. The resulting scaled fingerprint signals will be
denoted as s j .

Before delving into the construction of these codes, we briefly explore the
effect that collusion will have upon the fingerprint signals. In binary code mod-
ulation, if we average two watermarks w1 and w2 corresponding to bit sequences
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bi1 and bi2, then when bi1 �= bi2, the contributions attenuate or cancel depend-
ing on whether the OOK or antipodal form is used. However, when bi1 = bi2, the
contributions do not attenuate. For example, suppose that we use antipodal code
modulation for constructing the fingerprints and desire that each fingerprint has
energy E in order to be embedded at a target WNR. In this case, each compo-
nent of the scaled fingerprint signal will have an amplitude of

√
E /v. The result

of averaging two watermark signals is that many of the components will still have√
E /v amplitude, which is identical to the amplitude prior to collusion, while other

components will have 0 amplitude. When we averageK watermarks, those compo-
nents in the bit sequences that are all the same will not experience any cancellation,
and their amplitude will remain

√
E /v, while others will experience diminishing

(though not necessarily complete cancellation). This observation gives us insight
into how we should strive to build our fingerprint codes. Namely, when building
fingerprint codes, we should ensure that there is overlap between any subset of user
codevectors so that the corresponding components of the fingerprints will survive
collusion.

6.3. Combinatorial designs

The construction of anticollusion codes that we present in this chapter will be
based upon combinatorial designs. Combinatorial design theory is an area of com-
binatorics that is devoted to studying the problem of selecting subsets of objects
from a larger set of objects such that certain relationships between these subsets are
satisfied. Typically, the type of relationship that we are concerned with is incidence,
that is, we are concerned with whether these subsets have particular intersection
properties and certain membership properties. This is a very generic definition,
and there are many types of designs that arise when we consider slightly differ-
ent definitions of incidence. In spite of this rather broad definition, the theory of
combinatorial designs is a field of mathematics that has found application to a va-
riety of applied fields, ranging from the construction of error-correcting codes to
the design of statistical experiments. In order to better facilitate the discussion on
anticollusion codes built using combinatorial designs, we present a brief survey of
some of the core results from design theory. For more detail, though, we refer the
reader to one of the many excellent books on design theory [94, 95].

The best way to start describing designs is to look at a simple example.

Example. We consider a set X containing seven objects:

X = {1, 2, 3, 4, 5, 6, 7}. (6.2)

Now, if we choose a subset of three of them at a time, there are a total of
(

7
3

) = 21
different ways to select these subsets. So far, we have not required any incidence
relationships. Now, suppose that we impose a constraint that any pair of objects
must appear only once. For instance, if the combination of (1, 2, 3) has been se-
lected, then we do not allow (1, 2, 4) to be selected as the pair (1, 2) has already
been used. The triplet (3, 4, 5), however, is still possible since it does not contain
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any pair of objects already appearing in (1, 2, 3). With this constraint, the number
of different valid combinations is reduced to seven. The selection is not unique,
though. One possible set of combinations is

{123, 145, 246, 167, 347, 257, 356}; (6.3)

and another possible set of combinations is

{124, 136, 157, 235, 267, 347, 456}. (6.4)

Either of them satisfies the rule laid out above, so we consider the second one and
denote it by A. What we have obtained is known as a balanced incomplete block
design (BIBD), and is typically referred to as a (7, 3, 1)-BIBD. Here, the 7 refers to
the total number of objects, while the 3 refers to the number of objects that we are
allowed to choose at a time, and 1 indicates that each pair of objects is allowed to
appear once.

We note that in the example above, we represented these objects using num-
bers, though they could have been anything we wanted. Nowhere in our discussion
did we use the numerical properties of these objects. The numbers were just names
that allowed us to easily refer to each object.

Now that we have given a specific example of a balanced incomplete block
design, we look at the generic definition of a BIBD. Formally, a (v, k, λ)-BIBD is
defined as follows.

Definition 6.1. A (v, k, λ) balanced incomplete block design (BIBD) is a pair
(X, A), where A is a collection of k-element subsets (blocks) of a v-element set
X, such that each pair of elements of X occurs together in exactly λ blocks.

There are several natural questions that should come to mind. First, if we have
selected subsets of objects to form a BIBD, then how many blocks will an object
belong to? Second, how many blocks will we have? We now look at both of these
questions.

It turns out that these two questions are related. Each object will belong to
the same amount of blocks as any other object. Therefore, we define r to be the
amount of blocks that an arbitrary object belongs to. At the same time, we define
n to be the amount of blocks that we will form for a (v, k, λ)-BIBD.

We may now obtain a relationship between v, k, r, and n by doing some simple
counting. First, if we count repetitions, since each of the v objects belongs to r
blocks, we have a total of vr objects. On the other hand, we may count this another
way by observing that each of the n blocks has k objects in it, giving a total of nk
objects. These two are equal, giving us the following relationship:

vr = nk. (6.5)

Now, we may perform another counting to obtain another relationship between
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r, k, v, and λ. We consider a particular object y and look at blocks B that contain
that object and another object. We will define pairs (x,B) to correspond to blocks
B containing an object x �= y. Now, there are v − 1 ways, we can select an x ∈ X
such that x �= y. Each of these x appears in λ blocks, giving a total of λ(v− 1) pairs
(x,B). Now, we may also calculate this another way by starting with the block B.
There are r ways we may choose a block B with y contained in B. For this block,
there are k − 1 ways to choose x different from y, giving a total of r(k − 1) pairs
(x,B). We may set these equal to get the relationship

λ(v − 1) = r(k − 1). (6.6)

With these two relationships, we can solve for r to get r = λ(v − 1)/(k − 1), and
n = λ(v2 − v)/(k2 − k).

These relationships give us some important information about whether or
not it is possible for a particular (v, k, λ)-BIBD to exist. Since the numbers r and n
must be integers, we may use the above formulas for r and n to show that certain
(v, k, λ)-BIBDs do not exist by simply checking to see whether the formulas give
integer values for r or n. It should be noted, however, that just because the formulas
for r and n for a particular (v, k, λ) give integer values, this does not imply that a
BIBD will exist. One of the challenging tasks that has yet to be solved in the field of
combinatorial designs is devising a systematic way for determining precisely when
a (v, k, λ)-BIBD exists. That being said, though, there are many constructions for
generating infinite families of BIBDs with different (v, k, λ) values.

Balanced incomplete block designs may also be described using their inci-
dence matrix. The incidence matrix of a (v, k, λ)-BIBD is a v × n matrix A, where
the rows index the objects of the set X and the columns index the blocks associ-
ated with the BIBD. The (i, j)th element of the matrix A is defined to be 1 if the
ith object belongs in the jth block, otherwise the value is set to 0. We now give the
incidence matrix for the (7, 3, 1)-BIBD provided in the earlier example:

A =



1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 0 0 0 0 1 1
0 0 1 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0


. (6.7)

It is clear from this definition that, since an object appears in exactly r blocks, the
sum of any row of A should be r. Similarly, the sum of any column of A should be
k since there are precisely k objects in each block.
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The incidence matrix has rich structure that yields several interesting proper-
ties. In particular, we may look at AAT . Observe that the entries along the diagonal
of AAT are precisely r, while the off-diagonal elements are equal to λ. That is,

AAT =


r λ · · · λ
λ r · · · λ
...

...
. . .

...

λ λ · · · r

 . (6.8)

Suppose that we define a matrix Iv to be the v × v identity matrix, and the matrix
Jv to be the v × v matrix with all of its entries equal to 1. Then, it may be shown
that

AAT = (r − λ)Iv + λJv. (6.9)

There is another result from combinatorics that states that any v × n matrix A
consisting of entries that are either 0 or 1 that satisfy AAT = (r − λ)Iv + λJv for
some r and λ is an incidence matrix for a corresponding (v, k, λ)-BIBD. The proof
of this fact may be found in any text on combinatorial designs.

From this relationship for AAT , we may find that the determinant of AAT

is det(AAT) = rk(r − λ)v−1. To see this, one may subtract the first column of
AAT from the other columns, and then add the sum of all but the first row to the
first row. We may calculate the determinant of the resulting matrix by performing
cofactor and major expansion.

Using the fact that k < v, we have that r > λ, and hence the determinant
det(AAT) �= 0. Thus the v×v matrix AAT has rank v, and we may use the properties
of matrices to deduce

v = rank
(

AAT) ≤ rank(A) ≤ min(v,n), (6.10)

and hence v ≤ n. This fact, which is known as Fisher’s inequality, basically states
that we always have at least as many blocks as we have objects in X.

In fact, one common class of BIBDs is precisely that where v = n. These BIBDs
are called symmetric BIBDs. The (7, 3, 1)-BIBD example that we have been dis-
cussing is an example of a symmetric BIBD. Later, when we construct practical
anticollusion codes using BIBDs, we will want nonsymmetric BIBDs with n > v.
There are many techniques to generate nonsymmetric BIBDs. For example, one
popular method for constructing BIBDs is to use affine geometries.

We wrap up the discussion by examining one method to generate Steiner
triple systems. A Steiner triple system is a (v, 3, 1)-BIBD. Steiner triple systems
are known to only exist if and only if v ≡ 1 or 3 (mod 6). The Bose construction
scheme may be used to generate Steiner triple systems when v ≡ 3 (mod 6). We
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discuss the Bose construction in order to give the reader a systematic way to gener-
ate BIBDs, but recommend that the reader examines a reference on combinatorial
designs for larger, more generic constructions of BIBDs.

We start the Bose construction by defining a building block we will need. A
quasigroup (G,◦) is a set of size n with a binary relationship ◦ that takes two ele-
ments a and b from G and composes them to produce a third c = a ◦ b. Further,
the composition a◦b is unique in the sense that a◦b1 = a◦b2 implies that b1 = b2.
We may look at the quasigroup as a table with elements listed along the top and
side, and the table describing the composition rule. For example, the following is
a quasigroup with n = 5 elements:

◦ 1 2 3 4 5
1 1 4 2 5 3
2 4 2 5 3 1
3 2 5 3 1 4
4 5 3 1 4 2
5 3 1 4 2 5

If we examine any row or column of the table, we will see that each number appears
at most once. This is the uniqueness property that we required in the definition of
the quasigroup. This example also has two additional properties that will be useful
to us. First, we have that the composition is commutative, that is, a ◦ b = b ◦ a
for any pair a and b. Also, we have that the composition is idempotent, that is,
a ◦ a = a for any a. A quasigroup (G,◦) with both of these properties is called a
commutative, idempotent quasigroup. There is a close relationship between quasi-
groups and latin squares, and techniques used to construct latin squares may be
used to construct quasigroups. Commutative, idempotent quasigroups of even or-
der do not exist. A simple procedure for generating a commutative, idempotent
quasigroup of order n is the following.

(1) Let n be odd, and start with {0, 1, . . . ,n− 1}, the set of integers modulo
n.

(2) To build the n×n composition table, let x and y range from 0 to n−1. In
the (x, y)th entry of the table, place the value ((n+1)/2)(x+ y) (mod n).

This procedure results quasigroup whose elements are {0, 1, . . . ,n − 1} and may
be easily mapped into a quasigroup G whose elements are {1, 2, . . . ,n} by simply
adding one to each entry in the table.

The Bose construction produces Steiner triple systems of order v=3 (mod 6).
Therefore, we represent v by v = 6n + 3 for some appropriate value of n. Suppose
that we have a commutative, idempotent quasigroup G of order 2n + 1. We label
the elements of G by G = {1, 2, . . . , 2n + 1}. We define a new set S = G× {1, 2, 3}.
This set S has v elements. We will select subsets of S that will form the blocks of a
Steiner triple system. These subsets will each have 3 elements in them. Collectively,
we will gather these subsets into a new set T . There are two types of subsets that
are formed in the Bose construction.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


148 Anticollusion-coded (ACC) fingerprinting

(i) Type 1. For 1 ≤ j ≤ 2n+ 1, the subset {( j, 1), ( j, 2), ( j, 3)} is a triple and
will belong to T .

(ii) Type 2. For 1 ≤ i < j ≤ 2n + 1, the three subsets {(i, 1), ( j, 1), (i ◦ j, 2)},
{(i, 2), ( j, 2), (i◦ j, 3)}, and {(i, 3), ( j, 3), (i◦ j, 1)} are triples and belong
to T .

Now, to construct the incidence matrix, we simply form a v-dimensional vec-
tor for each subset belonging to T , and place a 1 where an element of S appears
in that subset, and a 0 for elements that do not appear. Since there are v = 6n + 3
elements, we may list them as

S = {
(1, 1), (2, 1), . . . , (2n + 1, 1),

(1, 2), (2, 2), . . . , (2n + 1, 2),

(3, 1), (3, 2), . . . , (2n + 1, 3)
}
.

(6.11)

The vector corresponding to the Type 1 set {( j, 1), ( j, 2), ( j, 3)} would be repre-
sented as

[0, . . . , 0, 1, 0, . . . 0, 1, 0, . . . , 0, 1, 0, . . . , 0]T , (6.12)

where the first 1 appears in the jth position. We may similarly construct vectors
for Type 2 triples. Collecting all of these vectors together produces the incidence
matrix A.

For more discussion on constructing quasigroups and BIBDs, we refer the
reader to one of the many textbooks on combinatorial designs.

6.4. Combinatorial-design-based anticollusion codes

In this section, we return to our discussion of fingerprinting multimedia content.
We will design a family of anticollusion codevectors {c j} whose overlap with each
other can identify groups of colluding users. A similar idea was proposed in [96],
where projective geometry was used to construct such code sequences. As we will
explain in this section, our proposed code construction considers the relation be-
tween the code, the embedding process, and the detection process. As a conse-
quence of this, the resulting fingerprints make more efficient usage of the basis
vectors than the codes described in [96].

We begin by defining a new family of codes, called anticollusion codes (ACCs).
An anticollusion code is a family of codevectors for which the bits shared between
codevectors uniquely identify groups of colluding users. ACC codes have the prop-
erty that the composition of any subset of K or fewer codevectors is unique. This
property allows for the identification of up to K colluders. A K-resilient AND an-
ticollusion code (AND-ACC) is such a code where the composition is an element-
wise AND operation. We will show in this section that binary-valued AND-ACC
can be constructed using BIBDs [93].
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6.4.1. Formulation and construction of ACC codes

We want to design codes such that when K or fewer users collude, we can iden-
tify the colluders. We prefer shorter codes since for embedded fingerprints, longer
codes would distribute the fingerprint energy over more basis vectors, which would
lead to a higher error rate in the detection process. In order to identify colluders,
we require that there are no repetitions in the different combinations of K or fewer
codevectors. We will call codes that satisfy this property ACCs. In the definition
that follows, we provide a definition appropriate for this paper involving binary
values, but note that the definition can be easily extended to more general sets G.

Definition 6.2. Let G = {0, 1}. A code C = {c1, . . . , cn} of vectors belonging to
Gv is called a K-resilient AND anticollusion code (AND-ACC) when any subset of
K or fewer codevectors combined element-wise under AND is distinct from the
element-wise AND of any other subset of K or fewer codevectors.

The general procedure that we will use to construct these codes will be to build
them using the binary symbols {0, 1}. Once we have constructed a binary-valued
code such that the codevectors satisfy the requirements for an AND-ACC, we will
map these codevectors-derived codevectors by a suitable mapping depending on
whether we will use the OOK or antipodal form of binary code modulation for
embedding the fingerprint in the multimedia. For example, when used in the an-
tipodal form, the binary symbols {0, 1} are mapped to {−1, 1} via f (x) = 2x − 1.

Looking at the above definition, one natural question that might be asked
is why we used the AND logical operation. The motivation behind using AND
comes from looking ahead at the collusion problem and how collusion affects the
detection process. We assume, when a sequence of watermarks is averaged and
detection is performed, that the detected binary sequence is the logical AND of
the codevectors c j used in constructing the watermarks. For example, when the
watermarks corresponding to the codevectors (1110) and (1101) are averaged, we
assume that the output of the detector is (1100). When we perform 2 or more
averages, this assumption might not necessarily hold since the average of many
1’s and a few 0’s may produce a decision statistic large enough to pass through the
detector as a 1. We discuss the behavior of the detector in these situations further in
Section 6.5, and detail approaches to improve the validity of the AND assumption.

We now present a simple ACC, namely the n-resilient AND-ACC. Let C con-
sist of all n-bit binary vectors that have only a single 0 bit. For example, when
n = 4, C = {1110, 1101, 1011, 0111}. It is easy to see that any element-wise logical
AND of K ≤ n of these vectors is unique. This code has cardinality n, and hence
can produce at most n differently watermarked media. We refer to this code as the
trivial AND-ACC for n users.

We should note that the trivial AND-ACC is very inefficient from a coding
point of view. In particular, when the codevectors are mapped to fingerprints, we
will require as many basis vectors as we have users. In general, it is desirable to
shorten the code length to squeeze more users into fewer bits since this would
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require the use and maintenance of fewer orthogonal basis vectors. To do this, we
need to give up some resiliency. We next present a construction of a K-resilient
AND-ACC that requires O(K

√
n) basis vectors for n users. This construction uses

BIBDs [94].
Recall, from our earlier discussions, that a (v, k, λ)-BIBD has a total of n =

λ(v2 − v)/(k2 − k) blocks. We again denote the incidence matrix of this (v, k, λ)-
BIBD by M. The BIBD-based construction of an AND-ACC involves defining our
code matrix C as the bit complement of M, and assign the codevectors c j as the
columns of C. We will shortly show that the resulting construction produces a
(k− 1)-resilient AND-ACC. Our codevectors are therefore v-dimensional, and we
are able to accommodate n = λ(v2 − v)/(k2 − k) users with these v basis vectors.
Assuming that a BIBD exists, for n users and a given collusion resiliency of (k−1),
we will only need v = O(

√
n) basis vectors.

We now prove the main result regarding the construction of BIBD-based
ACC.

Theorem 6.3. Let (X, A) be a (v, k, 1)-BIBD, and M the corresponding incidence
matrix. If the codevectors are assigned as the bit complement of the columns of M,
then the resulting scheme is a (k − 1)-resilient AND-ACC.

Proof . We prove the theorem by working with the blocks Aj of the BIBD. The
bitwise complementation of the column vectors corresponds to complementation
of the sets {Aj}. We would like for

⋂
j∈J A

C
j to be distinct over all sets J with cardi-

nality less than or equal to k−1. By De Morgan’s Law, this corresponds to unique-
ness of

⋃
j∈J Aj for all sets J with cardinality less than or equal to k − 1. Suppose

that we have a set of k − 1 blocks A1,A2, . . . ,Ak−1, we must show that there does
not exist another set of blocks whose union produces the same set. There are two
cases to consider.

(i) First, assume that there is another set of blocks {Ai}i∈I with
⋃

j∈J Aj =⋃
i∈I Ai such that I∩J = ∅ and |I| ≤ k−1. Suppose that we take a block

Ai0 for i0 ∈ I . Then Ai0 must share at most one element with each Aj ,
otherwise it would violate the λ = 1 assumption of the BIBD. Therefore,
the cardinality of Ai is at most k− 1, which contradicts the requirement
that each block has k elements. Thus, there does not exist another set of
blocks {Ai}i∈I with

⋃
j∈J Aj =

⋃
i∈I Ai and I ∩ J = ∅.

(ii) Next, consider I ∩ J �= ∅. If we choose i0 ∈ I\(I ∩ J) and look at Ai0 ,
then again we have that Ai0 can share at most 1 element with each Aj for
j ∈ J , and thus Ai0 would have fewer than k elements, contradicting the
fact that Ai0 belongs to a (v, k, 1)-BIBD.

Thus,
⋃

j∈J Aj is unique. �

6.4.2. Examples of BIBD-based ACC

We have shown that we can construct AND-ACC using balanced incomplete block
designs. We now look at a couple of examples of AND-ACC built using BIBDs.
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The first example of an ACC code is built using the (7, 3, 1)-BIBD that we have
seen in the last section:

A = {124, 136, 157, 235, 267, 347, 456}. (6.13)

We represent each of the selection as a column vector in the following way. Starting
from the first object, if the object is selected, we put a zero, and otherwise we put
a one. The selection of {124} becomes [0, 0, 1, 0, 1, 1, 1]T . We can similarly obtain
the other six column vectors. Putting all column vectors together, we will obtain
the following matrix, which is simply the bit complement of the incidence matrix
we presented earlier for this (7, 3, 1)-BIBD:

C =



0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
0 1 1 1 1 0 0
1 1 0 0 1 1 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


. (6.14)

This code requires 7 bits for 7 users and provides 2-resiliency since any two
column vectors share a unique pair of bits. If we use the antipodal form of code
modulation, each column vector c of C will be mapped to {±1} by f (x) = 2x− 1.
The code modulated watermark is then w = ∑v

i=1 f (c(i))ui. Thus, if we calculate
the fingerprint signal corresponding to each codevector, we have the following
fingerprint signals:

w1 = −u1 − u2 + u3 − u4 + u5 + u6 + u7,

w2 = −u1 + u2 − u3 + u4 + u5 − u6 + u7,

...

w7 = +u1 + u2 + u3 − u4 − u5 − u6 + u7.

(6.15)

When two fingerprint signals are averaged, the locations where the corre-
sponding AND-ACC agree and have a value of 1 identify the colluding users. For
example, (w1 + w2)/2 has coefficient vector (−1, 0, 0, 0, 1, 0, 1). The fact that a 1
occurs in the fifth and seventh locations uniquely identifies user 1 and user 2 as
the colluders.

In the second example of an AND-ACC, we present a larger code that is ca-
pable of identifying up to three colluders, and is built using a (16, 4, 1)-BIBD. The
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code matrix C is given by

C =



0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0
1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1
1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1
1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1
1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1
1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0
1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0
1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1
1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1



.

(6.16)

The 20 corresponding codevectors may be used in antipodal code modulation to
form 20 fingerprint signals. We have depicted the embedding of several of these
fingerprints in the Lena image in Figure 6.3. This AND-ACC is an example of a
3-resilient AND-ACC, and we are thus capable of identifying up to 3 colluders.
We have also presented the effect that an averaging collusion attack would have
on the different components of the codevectors. Again, the set of positions of the
sustained 1’s is unique with respect to the colluder set, and we may therefore use
these to identify colluders. For example, only users 1 and 4 can produce a set of
sustained 1’s at the fifth–tenth and fourteenth–sixteenth code bits; and only users
1, 4, and 8 can produce a set of sustained 1’s at the fifth, sixth, eighth, tenth, four-
teenth, and sixteenth code bits. Also, in this example, it should be noted that when
we have three users collude, we have some components that are ±1/3. These are
values where we either had two 1-values and a 0-value, or two 0-values and a 1-
value in the codevectors averaging together. The AND-ACC codes that we have
constructed do not use these locations to determine which users participated in
the collusion process—it is only the locations where there are 1’s in all colluding
codevectors that identify traitors.

6.4.3. ACC coding efficiency and BIBD design methods

We have looked at some examples of ACC built using BIBDs. In order to make
AND-ACC useful, we need systematic methods for constructing infinite families
of BIBDs with desirable n, v, and k values.
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User 1 User 4 User 8

User 1:
User 4:
User 8:

−1−1−1 −1 1 1 1 1 1 1 1 1 1 1 1 1
−1 1 1 1 1 1 1 1 1 1 −1−1−1 1 1 1

1 −1 1 1 1 1 −1 1 −1 1 1 1 1 1−1 1

User(1,4) average: −1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1

User(1,4,8) average: − 1
3
− 1

3
1
3

1
3

1 1 1
3

1 1
3

1 1
3

1
3

1
3

1 1
3

1

After thersholding: 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1

Figure 6.3. 16-bit codevectors from a (16, 4, 1)-ACC code for users 1, 4, and 8, and the fingerprinted
512×512 Lena images for these three users, respectively. The code can capture up to 3 colluders. Shown
here is an example of two-user collusion by averaging (users 1 and 4) and an example of three-user col-
lusion by averaging. The two codes indicated by arrows in the table uniquely identify the participating
colluders.

For example, the (7, 3, 1)-example that we presented had no improvement in
bit efficiency over the trivial AND-ACC for 7 users, and it had less collusion re-
silience. A useful metric for evaluating the efficiency of an AND-ACC for a given
collusion resistance is β = n/v, which describes the amount of users that can be ac-
commodated per basis vector. AND-ACCs with a higher β are better. For (v, k, λ)-
BIBD AND-ACC, their efficiency is β = λ(v−1)/(k2−k). Therefore, the efficiency
of an AND-ACC built from BIBDs improves as the code length v becomes larger.
By Fisher’s inequality [94], we also know that n ≥ v for a (v, k, λ)-BIBD, and thus
β ≥ 1 using the BIBD construction.

In contrast, the K-resilient construction in [96] has efficiency much less than
1, and thus requires more spreading sequences (or basis vectors) to accommo-
date the same amount of users as ACC. It is possible to use the collusion-secure
code constructions of [77] in conjunction with code modulation for embedding.
However, the construction described in [77] is limited to a collusion resistance
of K ≤ logn, and is designed to trace one colluder among K colluders. Their
construction has code length O(log4 n log2(1/ε)), where ε < 1/n is the decision
error probability. This code length is considerably large for small error probabili-
ties and practical n values. For example, when n = 210, the code length of [77] is
on the order of 106, while the code length for our proposed AND-ACC is on the
order of 102. Additionally, for the same amount of users, the use of code modula-
tion watermarking with an AND-ACC constructed using a (v, k, 1)-BIBD requires
less spreading sequences than orthogonal modulation. A code modulation scheme
would need v orthogonal sequences for n = (v2 − v)/(k2 − k) users, while orthog-
onal signaling would require n sequences.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


154 Anticollusion-coded (ACC) fingerprinting

This quadratic relationship between n and v is desirable, and luckily there are
many techniques to generate BIBDs that we may use to construct efficient AND-
ACC. For example, (v, 3, 1)-systems, which are also known as Steiner triple sys-
tems, are known to exist if and only if v ≡ 1 or 3 (mod 6). The Bose construction,
which we presented earlier, builds Steiner triple systems when v ≡ 3 (mod 6).
An alternative construction, known as the Skolem construction, allows us to build
Steiner triple systems when v ≡ 1 (mod 6) [97]. Steiner triple systems build ACC
with 2-resilience, and can support up to n = (v2 − v)/6 users.

Another approach to constructing BIBDs is to use d-dimensional projective
and affine geometry over Zp, where p is of prime power. Projective and affine ge-
ometries yield ((pd+1 − 1)/(p − 1), p + 1, 1) and (pd, p, 1)-BIBDs [94, 98]. Tech-
niques for constructing these and other BIBDs can be found in [95]. Another con-
struction are unitals, which yield (p3 + 1, p+ 1, 1) BIBDs. When the projective and
affine geometries have d > 2, that is they are nonplanar geometries, the construc-
tions yield nonsymmetric BIBDs with n > v. Additionally, the unitals also have
desirable coding efficiency.

Finally, we mention that other combinatorial objects, such as packing de-
signs and pairwise balanced designs, have very similar properties to BIBD, and
may be used to construct AND-ACC where the codevectors do not all have the
same weight. The construction and use of AND-ACC built from other combina-
torial objects is a natural extension of the techniques presented in this book and
we recommend interested readers to refer to the references listed above for further
discussion on other combinatorial objects.

6.5. Detection strategies and performance tradeoffs

Constructing fingerprints is only half of the battle in battling illicit content ma-
nipulation and redistribution. It is also essential to devise tools that will allow
content distributors to effectively identify participants involved in creating fraud-
ulent content. Therefore, in this section, we switch our focus to discuss the prob-
lem of detecting the colluders when AND-ACCs are used with code modulation to
construct media fingerprints. We present several detection algorithms that can be
used to identify possible colluders. Our goal here is to present efficient and pow-
erful colluder tracing algorithms that take advantage of the special characteristics
of ACC. In the following section, we will use these algorithms to demonstrate the
performance of AND-ACC in combating collusion.

In the discussion that follows, we will use the notation that was introduced in
Chapter 2. In particular, we will assume that an observed content signal y may be
viewed as consisting of two components: the contributions from the fingerprints,
and a total distortion vector d. We assume that this total distortion d is an N-
dimensional vector following an i.i.d. Gaussian distribution with zero mean and
variance σ2

d . This total distortion vector may involve the host signal x or may in-
volve any noise contributed by compression d. For example, if we consider a blind
detection scenario, the total distortion is d = x + z, and if there are no collud-
ers present (meaning the observed content does not contain any of the fingerprint
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signals s j), then the observed content y is merely the distortion signal d = x + z.
We will define two hypotheses for our discussion. H0 is the colluder-absent hy-
pothesis, while H1 is the colluder-present hypothesis. Under the colluder-present
hypothesis, H1, K colluders come together and perform an averaging attack that
produces a colluded version of the content y. We emphasize here that the case in
which there is only a single fingerprint contained in y, that is, only one entity is
involved in the redistribution of content, is considered an example of the H1 hy-
pothesis with K = 1.

We may thus gather all of these scenarios together and present the represen-
tations for y in a hypotheses-testing framework, where we have

H0 : y = d,

H1 : y = 1
K

∑
j∈Sc

y j + z = 1
K

∑
j∈Sc

s j + d, (6.17)

where K is the number of colluders, and Sc indicates the colluder subset, which
has size K . The marked content y j for each user j is given as

y j = x + s j = x + α
v∑
i=1

bi jui, (6.18)

where α is used to control the strength of the fingerprint. We note, here, that the
fingerprint s j is simply a scaled version of the fingerprint signals w j that were
presented in Section 6.4. Clearly, the precise probability law under H1 depends
on the fingerprint signals of the colluders and, since the collusion behavior repre-
sented by K and Sc is unknown, the hypotheses to be tested are composite. Further,
due to the discrete nature of this model, the optimal maximum-likelihood (ML)
approach usually involves the enumeration of all possible parameter values, and
hence the computational cost can be prohibitively high.

Due to the orthogonality of the basis {ui}, for the purpose of detecting collud-
ers, it suffices to consider the correlator vector TN , with ith component expressed
by

TN (i) = yTui√
σ2
d ·

∥∥ui

∥∥2
(6.19)

for i = 1, . . . , v. It is straightforward to show that

TN = α1

K
BΦ + n, (6.20)

where the column vector Φ ∈ {0, 1}n indicates colluders via the location of the
components whose value is 1. The parameter α1 = α

√
‖u‖2/σ2

d depends on the
embedded watermark-to-noise ratio, and is assumed known, with ‖ui‖ = ‖u‖ for

all i; and n = [u1, . . . , uv]Td /
√
σ2
d · ‖u‖2 follows an N(0, Iv) distribution. Here B
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is the derived code matrix and K is the number of 1’s in Φ. Thus, the model (6.17)
can be equivalently presented as

H0 : f
(

TN |Φ = 0
) = N

(
0, Iv

)
,

H1 : f
(

TN |Φ
) = N

(
α1

K
BΦ, Iv

)
,

(6.21)

where we refer the reader back to (6.17) and (6.20) to arrive at this result.
Our goal in this section is to efficiently estimate Φ. We will present three dif-

ferent strategies for estimating the colluder vector Φ: first, we will look at a hard
detection strategy; second, we will look at a soft detection strategy that will effec-
tively avoid hard thresholding when trying to determine code bits; and, finally, a
sequential detection algorithm that bypasses estimating code bits and attempts to
directly estimate the colluder set.

However, before we examine the candidate detectors, we discuss the choice of
using either the OOK or antipodal form of code modulation. Suppose that a code-
vector c j has weight ω = wt(c j). In the OOK case, the remaining v − ω positions
would be zeros, while in the antipodal case, the remaining v − ω positions would
be mapped to −1. If we allocate E energy to this codevector, then the OOK case
would use E /ω energy to represent each 1, while the antipodal case would use E /v
energy to represent each ±1. The amplitude separation between the constellation
points for the 0 and 1 in OOK is

√
E /ω, while the separation between −1 and 1

in antipodal is 2
√

E /v. Therefore, since it is desirable to have the separation be-
tween the constellation points as large as possible, we should choose OOK only
when ω < v/4. In the AND-ACCs presented in Section 6.4, the weight of each
codevector is ω = v − k. OOK is advantageous when k > (3/4)v, and antipodal
modulation is preferable otherwise. Typically, in BIBDs with λ = 1, the block size k
is much smaller than v [95], and therefore the antipodal form of code modulation
is preferred.

6.5.1. Hard detection

We first introduce a simple detection scheme based upon hard thresholding. Upon
applying hard thresholding to the detection statistics TN (i), we obtain a vector
Γ = (Γ1,Γ2, . . . ,Γv), where Γi = 1 if TN (i) > τ and Γi = 0 otherwise. Given the
vector Γ, we must determine who the colluders are.

Algorithm 6.1 starts with the entire group as the suspicious set, and uses the
components of Γ that are equal to 1 to further narrow the suspicious set. We deter-
mine a vector Φ = (Φ1,Φ2, . . . ,Φn)T ∈ {0, 1}n that describes the suspicious set via
the location of components of Γ whose value are 1. Thus, if Φ j = 1, then the jth
user is suspected of colluding. In the algorithm, we denote the jth row vector of C
by e j , and use the fact that the element-wise multiplication “·” of the binary vec-
tors corresponds to the logical AND operation. We start with Γ and Φ = 1, where
1 is the n-dimensional vector consisting of all ones. The algorithm then uses the
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Algorithm: HardDetAlg(Γ)
Φ = 1;
Define J to be the set of indices where Γi = 1;
for t = 1 to |J| do

j = J(t);
Define e j to be the jth row of C;
Φ = Φ · e j ;

end
return Φ;

Algorithm 6.1. Algorithm HardDetAlg(Γ), which determines the vector Φ that describes the suspect
set.

indices where Γ is equal to 1, and updates Φ by performing the AND of Φ with the
rows of the code matrix C corresponding to indices where Γ is 1.

6.5.2. Adaptive sorting approach

One drawback of the hard detection approach above is that the threshold τ is fixed
at the beginning. This choice of τ is applied to every detection scenario, regard-
less of the observations. To overcome this disadvantage, it is desirable to avoid
the hard-thresholding process. Consequently, in Algorithm 6.2, we present a soft-
thresholding detection scheme where Φ is updated iteratively via the likelihood of
TN . We start with the highest detection statistic TN ( j) to narrow down the suspi-
cious set. At each iteration, we check whether the next largest statistic TN ( j) in-
creases the likelihood. If the likelihood increases, then we use this to further trim
the suspicious set. The iteration stops when the likelihood decreases.

6.5.3. Sequential algorithm

The approaches in both Sections 6.5.1 and 6.5.2 share the same idea that the col-
luders can be uniquely identified by utilizing the locations of 1’s in Γ due to the
structural features of our AND-ACC. One key disadvantage of these schemes is
that, in practice, the noise causes the thresholding decision to have errors, which
in turn results in incorrect indications of colluders. Therefore, it is desirable to
estimate Φ directly from the pdf behavior of TN , as suggested by model (6.21).

Thus, we introduce Algorithm 6.3, which we refer to as the sequential algo-
rithm, for estimating Φ from the pdf of TN . This algorithm is similar to the adap-
tive sorting scheme in its sequential nature. The difference is that Algorithm 6.3
directly estimates the colluder set, while the adaptive sorting algorithm first esti-
mates the code bits before deciding the colluder set.

Finally, we note that since a binary variable is assigned to each user that indi-
cates his/her presence or absence in the coalition, the collusion problem (6.20) is
related to the estimation of superimposed signals [99]. One may also apply the al-
ternating maximization (AM) method [100, 101] to the problem of identifying the
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Algorithm: AdSortAlg(TN )
Sort elements of TN in descending order and record
corresponding index vector as J;
Set Φ = 1; Set i = 0 and calculate the likelihood
LL(i) = f (TN |Φ) according to (6.21);
Flag = True;
while Flag & i < v do

Set i = i + 1;
j = J(i) and Γ( j) = 1;
Define e j to be the jth row of C;
Φup = Φ · e j ;
LL(i) = f (TN |Φup);
if LL(i) > LL(i− 1) then

Φ = Φup;
else

Flag = False;
end

end
return Φ;

Algorithm 6.2. Algorithm AdSortAlg(Γ) which uses an adaptive sorting approach to determine the
vector Φ that describes the suspect set.

colluders. In our experience, we found that there was no significant performance
difference between the AM approach and our sequential algorithm, though the
computational complexity of the AM algorithm was noticeably higher.

6.6. Experimental results for ACC fingerprinting

Now that we have presented both techniques for creating fingerprints, and tech-
niques for detecting fingerprints, we now turn our attention to evaluating their
performance. We will study the performance of fingerprints built using AND-
ACC by first conducting a study using synthetic content signals represented by
signals constructed from randomly generated Gaussian samples. Then, we will ex-
amine the performance of code modulated fingerprints built from our AND-ACC
by embedding our fingerprints inside of images using a popular additive spread-
spectrum watermarking scheme. For both sets of experiments, we will highlight
important observations about the fingerprinting, collusion, and detection process.

6.6.1. ACC simulations with Gaussian signals

In this section, we study the behavior of our AND-ACC when used with code
modulation in an abstract model. The distortion signal d and the orthogonal basis
signals ui are assumed to be independent and each of them is an N = 10000 point
vector of i.i.d. Gaussian samples. The factor α is applied equally to all components
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Algorithm: SeqAlg(TN )
Set K = 0;
Calculate the likelihood LL(0) = f (TN |Φ = 0) according to (6.21);
Set J = ∅ and Flag = True;
while Flag do

Let K = K + 1;
Estimate iK , assuming that (K − 1) users
have indices i j = J( j),
for j = 1, . . . , (K − 1) via

iK = arg max
iK

{
f
(

TN |J =
{
i1, . . . , iK

})}
;

J = {i1, . . . , iK} and Φup(J) = 1;
Calculate LL(K) = f (TN |Φup);
If LL(K) > LL(K − 1) then

Φ = Φup;
else

Flag = False;
end

end
return Φ;

Algorithm 6.3. Algorithm SeqAlg(TN ) which is a sequential algorithm to determine the vector Φ

that describes the suspect set.

and is used to control the WNR, where WNR = 10 log10 ‖s‖2/‖d‖2 dB. We use
these simulations to verify some basic issues associated with collusion and code
modulation.

In the simulations that follow, we used the (16, 4, 1)-BIBD that was presented
earlier to construct our AND-ACC code. The (v, 4, 1)-codes are a broad family of
AND-ACC that may be constructed from BIBDs since (v, 4, 1)-BIBDs are known
to exist if and only if v ≡ 1 or 4 (mod 12) and there are systematic methods for
generating these BIBDs. With the (16, 4, 1)-code, we use 16 orthogonal basis vec-
tors to handle 20 users, and can uniquely identify up to K = 3 colluders. Through-
out the experiments that follow, the fingerprints for each user will be assigned ac-
cording to the antipodal form of code modulation, where we use the columns of
C as the codevectors.

We first wanted to study the behavior of the detector and the legitimacy of the
AND logic for the detector under the collusion scenario. We randomly selected
3 users as colluders and averaged their marked content signals to produce y. The
colluded content signal was used in calculating TN , as described in (6.19).

For three colluders using antipodal modulation, there are four possible
cases for the average of their bits, namely −1,−1/3, 1/3, and 1. We refer to
the cases −1,−1/3, and 1/3 as the non-1 hypothesis since under the AND logic
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Figure 6.4. The probability of detection p(1|1) and for different WNR and different thresholds using
hard detection.

assumption of our proposed AND-ACC, they would be mapped to 0. We exam-
ined the tradeoff between the probability p(1|1) of correctly detecting a one when
a one was expected from the AND logic, and the probability of p(1|non-1), where
the detector decides a one when the correct hypothesis was a non-1. We calculated
p(1|1) and p(1|non-1) as a function of WNR when using hard detection with dif-
ferent thresholds. The thresholds used were τ1 = 0.9E(TN ), τ2 = 0.7E(TN ), and
τ3 = 0.5E(TN ). In order to calculate E(TN ), we used (2.5) and assumed that the de-
tector knows the WNR, and hence the power of the distortion. The plot of p(1|1)
for different thresholds is presented in Figure 6.4, and the plot of p(1|non-1) is
presented in Figure 6.5. We observe that for the smaller threshold of 0.5E(TN ),
the probability p(1|1) is higher, but at the expense of a higher probability of false
classification p(1|non-1). Increasing the threshold allows us to decrease the prob-
ability of falsely classifying a bit as a one, but at the expense of also decreasing the
probability of correctly classifying a bit as a one.

We next examined the performance of the different detection strategies for
identifying the colluders. The following six measures present different, yet related
aspects of the performance for capturing colluders:

(a) the fraction of colluders that are successfully captured;
(b) the fraction of innocent users that are falsely placed under suspicion;
(c) the probability of missing a specific user when that user is guilty;
(d) the probability of falsely accusing a specific user when that user is inno-

cent;
(e) the probability of not capturing any colluders;
(f) and the probability that we falsely accuse at least one user.

We calculated these six different performance measures for each of the detec-
tion strategies described in Section 6.5 and present the results in Figure 6.6. For
each WNR, we averaged over 2000 experiments.
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Figure 6.5. The probability of false alarm p(1|non-1) for different WNR and different thresholds
using hard detection.

We observe in Figure 6.6a and Figure 6.6b that for all WNRs, the use of a
higher threshold in the hard detection scheme is able to capture more of the col-
luders, but also places more innocent users falsely under suspicion. As WNR in-
creases, the hard detector has lower p(1|non-1), and therefore does not incorrectly
eliminate colluders from suspicion. Similarly, at higher WNR, the hard detector
has a higher p(1|1), thereby correctly identifying more 1’s, which allows for us to
eliminate more innocents from suspicion. Therefore, at higher WNR, we can cap-
ture more colluders as well as place less innocent users under suspicion. We note,
however, that in Figure 6.6b, at low WNR between −25 dB and −15 dB, the frac-
tion of innocents under suspicion using threshold τ = 0.9E(TN ) is lower than at
slightly higher WNR. This behavior can be explained by examining Figures 6.4 and
6.5. We observe that at low WNR, the p(1|non-1) is higher than slightly higher
WNR, particularly for the threshold τ = 0.9E(TN ). However, for this threshold,
the p(1|1) at these WNR is relatively flat. These two observations combined in-
dicate that at lower WNR, we falsely decide 1 more often than at slightly higher
WNR, while we do not experience much difference in the amount of correctly
identified 1’s. As more 1’s pass through the detector, we remove more users from
suspicion. Therefore, since the amount of correctly detected 1’s increases slowly
for WNRs between −25 dB and −15 dB, the additional 1’s from false detections at
lower WNR eliminate more innocent users (as well as colluders) from suspicion.

Compared to the hard detection scheme with τ = 0.9E(TN ), the adaptive
sorting scheme captures a larger fraction of the colluders at all WNR, while for
a large range of WNRs between −20 dB and −3 dB, the adaptive sorting scheme
places fewer innocents under suspicion. However, examining the curves for the
sequential algorithm, we find that we are able to capture more colluders than any
other detection schemes at all WNRs. Further, the amount of innocents placed
under suspicion is less than the adaptive sorting algorithm.
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Figure 6.6. (a) The fraction of colluders that is successfully captured, or placed under suspicion, (b)
the fraction of the total group that is innocent and falsely placed under suspicion for different WNR
and different thresholds, (c) the probability of missing user 1 when he is guilty, (d) the probability of
falsely accusing user 1 when he is innocent, (e) the probability of not capturing any colluder, and (f)
the probability of putting at least one innocent under suspicion. In each plot, there were 3 colluders.

Consistent behavior is observed for the different detection schemes under the
other performance measures, as depicted in Figures 6.6c, 6.6d, 6.6e, and 6.6f. Over-
all, the sequential detection scheme provides the most promising balance between
capturing colluders and placing innocents under suspicion.
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6.6.2. ACC experiments with images

In order to demonstrate the performance of our AND-ACC with code modulation
fingerprinting on real images for fingerprinting users and detecting colluders, we
used an additive spread-spectrum watermarking scheme similar to that in [24],
where the perceptually weighted watermark was added to 8× 8 block DCT coeffi-
cients. We focused on detecting the colluders in a blind detection scenario, where
there was no knowledge of the host image at the detector, as well as a nonblind de-
tection scenario, where the original image was subtracted off from the compressed
and colluded copy. We used the detection statistics that were presented in (2.6).
Just as we did for the simulations using Gaussian signals, we used the code matrix,
detailed in (6.16), as our AND-ACC. This code is able to accommodate 20 users
and is designed to capture up to 3 colluders. The 512× 512 Lena and Baboon im-
ages were used as the host signals for the fingerprints. The fingerprinted images
have no visible artifacts with an average PSNR of 41.2 dB for Lena, and 33.2 dB for
Baboon. Figure 6.7 shows the original images, the fingerprinted images, and the
difference with respect to the originals.

The three derived codevectors that were assigned to users 1, 4, and 8 via an-
tipodal mapping as well as the colluded versions are presented in Figure 6.3. Two
collusion examples are illustrated in Figure 6.8 and the detection statistics of the
two examples are shown in Figure 6.9. In one example, we averaged the Lena im-
ages fingerprinted with users 1 and 4’s codes, and the other is for averaging users
1, 4, and 8’s. The colluded images are further compressed using JPEG with a qual-
ity factor (QF) of 50%. Also shown in Figure 6.9 are the thresholds determined
from the estimated mean of the detection statistics E(TN ). We then estimate the
fingerprint codes by thresholding the detection statistics using a hard threshold
of τ. The estimated fingerprint codes are identical to the expected ones shown in
Figure 6.3. We can see in Figures 6.9 and 6.10 that nonblind detection increases
the separation between the values of the detection statistics that are mapped to
{−1, 0, +1}.

We present histograms of the TN (i) statistics from several collusion cases with
different distortions applied to the colluded Lena images in Figure 6.10. For each
collusion and/or distortion scenario, we used 10 independent sets of basis vectors
to generate the fingerprints. Each set consists of 16 basis vectors for representing
16 ACC code bits. Figure 6.10 shows the histograms of the blind and nonblind de-
tection scenarios, as well as the single user, two colluders, and three colluders cases.
We see that there is a clear distinction between the three decision regions corre-
sponding to {−1, 0, +1}, which is desirable for identifying colluders. This implies
that the average magnitude of TN , when the bit values agree, is much larger than
the average magnitude for where the bit values disagree, therefore facilitating the
accurate determination of the AND-ACC codes from colluded images. The statis-
tics TN can be used with hard detection to determine the colluders, as depicted in
Figure 6.9. Similarly, we can use TN with other detectors, whose performance was
presented in Section 6.6.1. We have also studied the effect of averaging collusion in
the presence of no distortion, JPEG compression, and lowpass filtering. We found
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(a)

(b)

(c)

Figure 6.7. The original images (a), fingerprinted images (b), and difference images (c) for Lena and
Baboon. In the difference images, gray color indicates zero difference between the original and the
fingerprinted version, and brighter and darker indicate larger difference.

that the one and non-one decision regions were well separated, which can lead to
reliable identification of colluders.

6.7. A unified formulation on fingerprinting strategies

We now revisit the formulation of fingerprint coding and modulation. We noted
in Section 6.2 that the general form for code modulation allows us to also capture
the case of orthogonal modulation by simply considering the identity matrix as the
derived code matrix. The representation for fingerprints presented in (6.1) allows
us to arrive at a unified framework that covers a broad spectrum of fingerprint
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User 1 User 4 User 8

Colluded ACC code (−1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1,)

Colluded ACC code (0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,)

Collude by averaging

Collude by averaging

Figure 6.8. Illustration of collusion by averaging two and three images fingerprinted with ACC codes,
respectively.

designs, ranging from orthogonal fingerprints to group-oriented fingerprints to
ACC-based fingerprints. Additionally, this unified framework provides a simpli-
fied framework for formulating the colluder identification problem.

Under this unified formulation, a different sequence {b1 j , b2 j , . . . , bv j} is as-
signed for each user j. The matrix representation, B = {bi j}, will have different
structure for different fingerprint strategies. Generally, we choose some noise-like
signals ui that will serve as basis signals for building our fingerprint signals. These
basis signals span the watermark space, allowing us to represent each fingerprint
signal via the matrix-vector form

w j =
v∑
i=1

bi jui = Bb j , (6.22)

where each column of U is an orthogonal basis vector, and b j = [b1 j , b2 j , . . . , bv j]T

is the jth column of the derived code matrix B.
An identity matrix for B represents orthogonal fingerprinting w j = u j , where

each user is identified with an orthogonal basis signal. The simple structure for
encoding and embedding orthogonal fingerprints makes it attractive in identifi-
cation applications that involve a small group of users. As noted earlier, when we
have a large group of users, however, the linearly increasing number of basis sig-
nals has a significant impact on the complexity of detection and bookkeeping, and
the energy reduction of the fingerprint signal under averaging collusion is high.

To use v orthogonal basis signals to represent more than v users, correla-
tions between different users’ fingerprints must be introduced. One way to con-
struct a corresponding B matrix is to use binary codes. The c-secure code and
the BIBD-ACC code discussed earlier in this chapter are two examples. In more
general constructions, entries of B can be real numbers, as was described in the
group-oriented fingerprinting strategies [102], for example. More recently, new
families of anticollusion codes have been proposed that are constructed using the
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Figure 6.9. Example detection statistics values for 2 users’ and 3 users’ collusion with a (16, 4, 1)-BIBD
AND-ACC fingerprint. (Top) Blind detection scenario on colluded Lena image, two and three colluders
and (bottom) nonblind detection scenario on colluded Lena image. (Left) Users 1 and 4 perform aver-
aging, resulting in the output of the detector as (−1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1). (Right) Users 1,
4, and 8 average, resulting in the output of the detector as (0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1).

relationships between the problem of collusion in multimedia fingerprinting and
code-division multiple access (CDMA) in multiuser communication [103]. The
key issue in designing a good B is to strategically introduce correlation among dif-
ferent fingerprints to allow for accurate identification of any single fingerprint as
well as the contributing fingerprints involved in forming a colluded fingerprint
signal.

During the collusion problem, several colluders linearly combine their copies
attempting to remove the underlying fingerprints. Typically, we assume that no
user wants to take higher risk than any other, and hence assume that users are sim-
ply averaging when conducting an attack. If we assume that an averaging collusion
attack is being used, and also assuming there are a total of K colluders represented
by the set Sc, then the colluded signal is simply

y = x +
α

K

∑
j∈Sc

w j + d, (6.23)
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Figure 6.10. Histograms of detection statistics {TN (i)} of embedded fingerprints: (top row) single-
fingerprint case, (middle row) two-user collusion case involving users 1 and 4 as colluders, (bottom
row) three-user collusion case involving users 1, 4, and 8 as colluders; (left column) blind detection,
(right column) nonblind detection.

where d is the random noise vector introduced by signal compression, transfor-
mation, and distortion. We assume this distortion to be additive. In the nonblind
detection scenario, x is known and can be subtracted from the received signal.
In the blind scenario, we treat x as part of the noise, and incorporate it into the
overall distortion vector d. The variable α is a scaling factor that is introduced to
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control the energy of the embedded watermark w and used to control the embed-
ding watermark-to-noise ratio. It is often set using the just-noticeable difference
from a human visual model.

At the detection stage, since we are only interested in detecting the colluders,
we can project the received signal y onto the space spanned by U. The resulting
v × 1 coefficient vector, denoted as T, is the sufficient statistics for detection. Sim-
ilarly, we denote the projection of d (for simplicity, we assume that x has been
removed or incorporated into d) onto U as n, the noise vector in the watermark
space. It is straightforward to show that

T = α

K
BΦ + n, (6.24)

where the column vector Φ ∈ {0, 1}n indicates colluders via the location of its
components whose values are 1.

The goal behind the detection phase is to estimate collusion vector Φ from
the noisy observation T, while the code matrix B and the scaling factor α are
known. Assuming the noise is white Gaussian, the maximum-likelihood solution
of (6.24) is

Φ̂ = arg min
Φ

∥∥∥∥T− α

K
BΦ

∥∥∥∥, (6.25)

that is, the distance between T and (α/K)BΦ is minimum. If we assume that the
number of colluders K is known, which is admittedly a strong assumption, then
(6.25) is a typical integer least-squares problem. If the fingerprints are orthogo-
nal, the simple matched filtering solution is optimal. However, if the fingerprints
are not orthogonal, the problem generally involves searching every possible input,
which is NP-hard [104]. The detection algorithms presented in Section 5.2.2 may
be viewed as efficient, suboptimal alternatives to the maximum-likelihood detec-
tor. New techniques, involving the use of sphere decoding [103, 105], are currently
being investigated and applied by the community to solve the colluder identifica-
tion problem.

6.8. Chapter summary

In this chapter, we investigated the problem of applying coded fingerprinting for
multimedia content that can resist collusion attacks and trace colluders. We devel-
oped a fingerprinting scheme based upon code modulation that does not require
as many basis signals as orthogonal modulation in order to accommodate n users.
We proposed anticollusion codes (ACCs) that are used in conjunction with mod-
ulation to fingerprint multimedia sources. Our anticollusion codes have the prop-
erty that the composition of any subset of K or fewer codevectors is unique, which
allows for the identification of subgroups of K or fewer colluders. We constructed
binary-valued ACC under the logical AND operation using combinatorial designs.
Our construction is suitable for both the on-off keying and antipodal form of bi-
nary code modulation. Further, our codes are efficient in that, for a given amount
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of colluders, they require only O(
√
n) orthogonal signals to accommodate n users.

For practical values of n, this is an improvement over prior work on fingerprinting
generic digital data.

We introduced three different detection strategies that can be used with our
ACC for identifying a suspect set of colluders. We performed experiments to eval-
uate the proposed ACC-based fingerprints. We first used a Gaussian signal model
to examine the ability of the ACC to identify the colluders, as well as reveal the
amount of innocent users that would be falsely placed under suspicion. We ob-
served a close connection between the ability to capture colluders and the side ef-
fect of placing innocent users under suspicion. From our simulations, we observed
that the proposed sequential detection scheme provides the most promising bal-
ance between capturing colluders and placing innocents under suspicion out of
the three detection strategies examined. We also evaluated our fingerprints on real
images, and observed that the values of the detection statistics can be well sepa-
rated. This behavior allows the detector to accurately determine the colluder set
by estimating a fingerprint codevector that corresponds to the colluder set.
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7
Secure fingerprint multicast
for video streaming

The popular streaming technology enables the customers to enjoy multimedia on
the fly and starts playing multimedia while parts of the data are still being trans-
mitted. In video streaming applications, a huge amount of data has to be transmit-
ted to a large number of users using limited bandwidth available under stringent
latency constraints. To maximize their profit, video streaming service providers
aim to reduce the communication cost in transmitting each copy, and therefore, to
accommodate as many users as possible. Prior art in the literature usually utilizes
the multicast technology that provides a bandwidth advantage for content and
network providers when distributing the same data to multiple users [106, 152]. It
reduces the overall communication cost by duplicating packages only when rout-
ing paths to multiple receivers diverge [106, 107].

For streaming applications that require traitor tracing capability, the unique-
ness of each copy poses new challenges to the secure and efficient distribution of
differently marked copies. Multicast cannot be directly applied to fingerprinting
applications where different users receive slightly different copies. A simple solu-
tion of unicasting each fingerprinted copy is obviously inefficient since the band-
width requirement grows linearly as the number of users increases while the differ-
ence between different copies is small. This calls for fingerprint multicast schemes
that reduce the communication cost of distributing fingerprinted media without
revealing the secrecy of the video content as well as that of the embedded finger-
prints.

This chapter addresses the secure and efficient transmission of multimedia
for video streaming with traitor tracing requirement. We first analyze the secu-
rity requirement in video streaming and then investigate the fingerprint multicast
techniques to efficiently distribute fingerprinted media to multiple users. To ex-
amine the performance of fingerprint multicast schemes, we use the pure unicast
scheme as the benchmark in which each fingerprinted copy is unicasted to the cor-
responding user. For the fingerprint multicast schemes, we evaluate their band-
width efficiency, the collusion resistance of the embedded fingerprints, and the
perceptual quality of the reconstructed sequence at the decoder’s side, and investi-
gate the tradeoff between the communication cost and computation complexity.
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Figure 7.1. An example of framing attack on fingerprinting systems.

7.1. Secure video streaming

In video streaming applications, to protect the welfare and interests of the con-
tent owner, it is critical to ensure the proper distribution and authorized usage
of multimedia content. To be specific, the desired security requirements in video
streaming applications are [108] as follows.1

(1) Secrecy of the video content. Only legitimate users who have registered with
the content owner/service provider can have access to the video content. Proper
encryption should be applied to prevent outsiders who do not subscribe to the
service from estimating the video’s content.

(2) Traitor tracing. After the data are distributed to the legitimate users, the
content owner has to protect multimedia from unauthorized manipulation and
redistribution. Digital fingerprinting is one possible solution to traitor tracing and
can be used to identify the source of the illicit copies.

(3) Robustness of the embedded fingerprints. If digital fingerprinting is used for
traitor tracing, it is required that the embedded fingerprints can survive common
signal processing (e.g., compression), attacks on a single copy [110, 111], as well
as multiuser collusion attacks [23, 62].

(4) Antiframing. The clear text of a fingerprinted copy is known only by the
corresponding legitimate user whose fingerprint is embedded in that copy, and no
other users of the service can access that copy in clear text and frame an innocent
user.

We will explain the antiframing requirement in detail. In digital fingerprinting
applications, different fingerprinted copies do not differ significantly from each
other. If the content owner or the service provider does not protect the transmitted
bit streams appropriately, it is very easy for an attacker, who subscribes to the video
streaming service, to impersonate an innocent user of the service.

Figure 7.1 shows an example of the framing attack. Assume that Ki and Kj are
the secret keys of the ith user and the jth user, respectively; yi and y j are the clear

1Depending on the applications, there might be other security requirements except these listed
in this chapter, for example, sender authentication and data integrity verification [109]. It is out of the
scope of this book and we assume that the distribution systems have already included the corresponding
security modules if required.
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text versions of two fingerprinted copies for the ith and the jth users, respectively;
and vi and v j are the ciphertext versions of yi and y j encrypted with Ki and Kj ,
respectively. User i first decrypts vi that is transmitted to him and reconstructs
yi. Assume that he also intercepts v j that is transmitted to the ith user. Without
appropriate protection by the content owner or the service provider, user i can
compare v j with yi, estimate y j without knowledge of Kj , and generate ỹ j of good
quality, which is an estimated version of y j . User i can then redistribute ỹ j or use ỹ j

during collusion. This framing puts innocent user j under suspicion and disables
the content owner from capturing attacker i. The content owner must prohibit
such framing attacks.

To summarize, before transmission, the content owner should embed unique
and robust fingerprints in each distributed copy, and apply proper encryption to
the bit streams to protect both the content of the video and each fingerprinted
coefficient in all fingerprinted copies.

7.2. Prior art in secure fingerprint multicast

Given the security requirement listed in the previous section, the most straight-
forward way to securely distribute the fingerprinted copies is the pure unicast
scheme, in which each fingerprinted copy is encoded independently, encrypted
with the corresponding user’s secret key, and unicasted to him. It is simple and
has limited requirement on the receivers’ computation capability. However, from
the bandwidth’s point of view, it is inefficient because the required bandwidth is
proportional to the number of users while the difference between different copies
is small. In this chapter, we use the pure unicast distribution scheme as the bench-
mark for the purpose of performance comparison.

To improve the bandwidth efficiency, for applications that wish to survive col-
lusion by a few attackers (e.g., ten traitors), one possible solution to enabling mul-
ticast of fingerprinted media is to adjust the fingerprint design to suit an existing
communication framework (e.g., multicast). In fact, most prior work on finger-
print multicast followed this philosophy of design [112, 113, 114, 115], and their
fingerprint code design was similar to that of the Boneh-Shaw code [77].

In [112], a two-layer fingerprint design was used where the inner layer of
spread-spectrum embedding [23] was combined with the outer fingerprint code
of [77]. Two uniquely fingerprinted copies were generated, encrypted, and multi-
casted, where each frame in the two copies was encrypted with a unique key. Each
user was given a unique set of keys for decryption and reconstructed a unique
sequence. Their fingerprinting system was vulnerable to collusion attacks. From
their reported results, for a two-hour video distributed to 10,000 users, only when
no more than three users colluded could their system detect at least one colluder
correctly with probability 0.9. Similar work was presented in [115, 116, 117].

In [114], the sender generated and multicasted several uniquely fingerprinted
copies, and trusted routers in the multicast tree differently forwarded fingerprinted
packets to different users. In [118], a hierarchy of trusted intermediaries was
introduced into the network. All intermediaries embedded their unique IDs as
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fingerprints into the content as they forwarded the packets through the network,
and a user was identified by all the IDs of the intermediaries that were embedded
in his received copy.

In [119], fingerprints were embedded in the DC coefficients of the luminance
component in I frames using spread-spectrum embedding. For each fingerprinted
copy, a small portion of the MPEG stream, including the fingerprinted DC coef-
ficients, was encrypted and unicasted to the corresponding user, and the rest was
multicasted to all users to achieve the bandwidth efficiency. The embedded finger-
prints in [119] have limited collusion resistance since they are only embedded in a
small number of coefficients.

A joint fingerprint and decryption scheme was proposed in [113]. In their
work, the content owner encrypted the extracted features from the host signal with
a secret key KS known to the content owner only, multicasted the encrypted con-
tent to all users, and transmitted to each user i a unique decryption key Ki �= KS.
At the receiver’s side, each user partially decrypted the received bit stream, and re-
constructed a unique version of the original host signal due to the uniqueness of
the decryption key. In [113], the fingerprint information is essentially the asym-
metric key pair (KS,Ki), and the unique signature from the partial decryption was
used to identify the attacker/colluders.

7.3. General fingerprint multicast distribution scheme

Most prior work considered applications where the goal of the fingerprinting sys-
tem is to resist collusion attacks by a few colluders (e.g., seven or ten traitors),
and designed the efficient distribution schemes accordingly. In many video appli-
cations, the number of users is in the order of thousands or tens of thousands,
and therefore, the potential number of colluders is in the order of dozens or hun-
dreds. We focus on applications that aim to withstand dozens of colluders instead
of just a few and apply the fingerprint design with strong traitor tracing capability
[80, 120]. For such applications, we utilize the existing multicast communication
technology to fit the fingerprint design and reduce the bandwidth requirement
without sacrificing the robustness of the embedded fingerprints.

In this section, utilizing the perceptual constraints on fingerprint embedding,
we develop a general fingerprint multicast distribution scheme that can be used
with most multimedia fingerprinting systems where the spread-spectrum embed-
ding is adopted [121]. We consider a video distribution system that uses MPEG-2
encoding standard. For simplicity, we assume that all the distributed copies are en-
coded at the same bit rate and have approximately the same perceptual quality. To
reduce the computation cost at the sender’s side, fingerprints are embedded in the
DCT domain. The block-based human visual models [24] are used to guarantee
the imperceptibility and control the energy of the embedded fingerprints.

From human visual models [24], not all DCT coefficients are embeddable due
to the imperceptibility constraints on the embedded fingerprints, and a nonem-
beddable coefficient has the same value in all copies. To reduce the bandwidth
in transmitting the nonembeddable coefficients, we develop a general fingerprint
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multicast scheme: the nonembeddable coefficients are multicasted to all users, and
the rest of the coefficients are embedded with unique fingerprints and unicasted
to the corresponding user.2

In the general fingerprint multicast scheme, to guarantee that no outsiders
can access the video content, a key that is shared by all users is used to encrypt
the multicasted bit stream and the generalized index mapping [13, 122] is used
to encrypt portions of the compressed bit streams that carry the most important
information of the video content: the DC coefficients in the intrablocks and the
motion vectors in the interblocks. To protect the fingerprinted coefficients, each
unicasted bit stream is encrypted with the corresponding user’s secret key. The
generalized index mapping can be applied to the fingerprinted AC coefficients to
prevent the attackers from framing an innocent user at the cost of introducing sig-
nificant bit-rate overhead.3 To protect the fingerprinted coefficients without sig-
nificant bit-rate overhead, similar to that in [123], the stream cipher [30] from
traditional cryptography is applied to the compressed bit streams of the AC coeffi-
cients.4 It has no impact on the compression efficiency. In addition, the bit-stuffing
scheme [122] is used to prevent the encrypted data from duplicating MPEG head-
ers/markers.

Figure 7.2 shows the MPEG-2-based general fingerprint multicast scheme for
video-on-demand applications where the video is stored in compressed format.
Assume that Kmulti is a key that is shared by all users, and Ki is the user’s secret key.
The key steps in the fingerprint embedding and distribution at the server’s side are
as follows.

(1) A unique fingerprint is generated for each user.
(2) The compressed bit stream is split into two parts: the first one includes

motion vectors, quantization factors, and other side information and is not al-
tered, and the second one contains the coded DCT coefficients and is variable-
length decoded.

(3) Motion vectors, quantization factors, and other side information are left
intact, and only the values of the DCT coefficients are changed. For each DCT co-
efficient, if it is not embeddable, it is variable-length coded with other nonembed-
dable coefficients. Otherwise, first, it is inversely quantized. Then for each user,
the corresponding fingerprint component is embedded using spread-spectrum
embedding, and the resulting fingerprinted coefficient is quantized and variable-
length coded with other fingerprinted coefficients.

(4) The nonembeddable DCT coefficients are encrypted with Kmulti and
multicasted to all users, together with the positions of the embeddable coeffi-
cients in the 8× 8 DCT blocks, motion vectors, and other shared information; the

2We assume that each receiver has moderate computation capability and can listen to at least 2
channels simultaneously to reconstruct one video sequence. We also assume that the receivers have
large enough buffers to smooth out the jittering of delays among different channels.

3From [122], the bit rate is increased by more than 5.9% if two nonzero AC coefficients in each
intrablock are encrypted.

4Only the content-carrying fields are encrypted and the headers/markers are transmitted in clear
text.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


176 Secure fingerprint multicast for video streaming

Embeddable?VLC−1

Coded DCT
coeff.

Motion vectors,
quantization factors,
and side info.

Positions of embeddable coeff.

VLC

VLC

Encrypt

Encrypt

Multicast
to all users

Unicast
to user i

N
Y

Q−1 Q

Kmulti

Ki
For user iUser i’s fingerprint

(a)

VLC−1

VLC−1

Multicasted
coded DCT
coeff.

Unicasted coded

DCT coeff. IDCT

0

Decrypt

Decrypt

Reconstruct
the 8× 8

DCT block

Motion
compensation

Positions of
embeddable
coeff. Motion vector

Q−1

Q−1

Kmulti

Ki

(b)

Figure 7.2. The MPEG-2-based general fingerprint multicast scheme for video-on-demand applica-
tions: (a) the fingerprint embedding and distribution process at the server’s side; (b) the decoding
process at the user’s side.

fingerprinted DCT coefficients are encrypted with each user’s secret key and uni-
casted to them.

For live applications where the video is compressed and transmitted at the
same time, the fingerprint embedding and distribution process is similar to that
for video-on-demand applications.

The decoder at the ith user’s side is the same for both types of applications
and is similar to a standard MPEG-2 decoder. After decrypting, variable-length
decoding and inversely quantizing both the unicasted bit stream to user i and the
multicasted bit stream to all users, the decoder puts each reconstructed DCT coef-
ficient in its original position in the 8×8 DCT block. Then, it applies inverse DCT
and motion compensation to reconstruct each frame.

7.4. Joint fingerprint design and distribution scheme

The general fingerprint multicast scheme is designed for the general fingerprinting
applications that use spread-spectrum embedding. To further improve the band-
width efficiency, we utilize the special structure of the embedded fingerprints and
introduce a joint fingerprint design and distribution scheme [124].

In this section, we first compare two fingerprint modulation schemes com-
monly used in the literature, the CDMA-based and the TDMA-based fingerprint
modulations, including the bandwidth efficiency and the collusion resistance.
Then in Section 7.4.2, we develop a joint fingerprint design and distribution
scheme that achieves both the robustness against collusion attacks and the
bandwidth efficiency of the distribution scheme. In Section 7.4.3, we take the
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Figure 7.3. A tree-structure-based fingerprinting scheme with L = 3, D1 = D2 = 2, and D3 = 3.

computation constraints into consideration, and adjust the joint fingerprint de-
sign and distribution scheme to minimize the communication cost under the com-
putation constraints.

7.4.1. Comparison of fingerprint modulation schemes

Group-oriented fingerprint design in Chapter 5 uses the tree structure to explore
the hierarchical relationship among users. Figure 7.3 shows an example of the fin-
gerprint tree with three levels. We consider a symmetric tree structure where each
node at level l − 1 has the same number of children nodes Dl for l = 1, . . . ,L − 1.
Given the tree structure as in Figure 7.3, a unique basis fingerprint ai1,...,il following
Gaussian distribution N (0, σ2

W ) is generated for each node [i1, . . . , il] in the tree,
and the basis fingerprints {a} are independent of each other. For the ith user whose
index is i = [i1, . . . , iL], a total of L fingerprints ai1 , ai1,i2 , . . . , ai1,...,iL are embedded
in the fingerprinted copy yi that is distributed to him. Assume that the host sig-
nal x has a total of N embeddable coefficients. There are two different methods to
embed the L fingerprints into the host signal x: the CDMA-based and the TDMA-
based fingerprint modulations.

The CDMA-based fingerprint modulation. In the CDMA-based fingerprint mod-
ulation, the basis fingerprints {a} are of the same length N and equal energy. The
ith user’s fingerprint si is generated by si = √ρ1ai1 +√ρ2ai1,i2 + · · · +√ρLai1,i2,...,iL ,
the same as in Chapter 5. The fingerprinted copy distributed to the ith user is
yi = x + si, where x is the host signal. {ρl} are determined by the probabilities of
users under different tree branches to collude with each other, 0 ≤ ρ1, . . . , ρL ≤ 1,
and

∑L
j=1 ρj = 1. They are used to control the energy of the embedded fingerprints

at each level and adjust the correlation between fingerprints assigned to different
users.
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x1 x2 x3 x1 x2 x3

1s 1s 2s 1s 1s 2s

· · ·

Figure 7.4. An example of the partitioning of the host signal for a tree with L = 3 and [ρ1, ρ2, ρ3] =
[1/4, 1/4, 1/2].

The TDMA-based fingerprint modulation. In the TDMA-based fingerprint mod-
ulation, the host signal x is divided into L nonoverlapping parts x1, . . . , xL such
that the number of embeddable coefficients in xl is Nl = ρlN with

∑L
l=1 Nl = N .

An example of the partitioning of the host signal is shown in Figure 7.4 for a tree
with L = 3, [ρ1, ρ2, ρ3] = [1/4, 1/4, 1/2] and [N1,N2,N3] = N[1/4, 1/4, 1/2]. For
every 4 seconds, all the frames in the first second belong to x1, all the frames in
the second second are in x2 and all the frames in the last two seconds are in x3. If
the video sequence is long enough, the number of embeddable coefficients in xl is
approximately Nl.

In the TDMA-based fingerprint modulation, the basis fingerprints {ai1,...,il} at
level l are of length Nl. In the fingerprinted copy yi that is distributed to the ith
user, the basis fingerprint ai1,...,il at level l is embedded in the lth part of the host
signal xl, and the lth part of the fingerprinted copy yi is yl

i = xl + ai1,...,il .

Performance comparison of the CDMA-based and the TDMA-based fingerprint mod-
ulations. To compare the CDMA-based and the TDMA-based fingerprint modu-
lation schemes in the tree-based fingerprinting systems, we measure the energy of
the fingerprints that are embedded in different parts of the fingerprinted copies.
Assume that the host signal x is partitioned into L nonoverlapping parts {xl}l=1,...,L

where there are Nl embeddable coefficients in xl, the same as in the TDMA-based
modulation. We also assume that for the ith user, sli is the fingerprint that is embed-
ded in xl, and yl

i = xl +sli is the lth part of the fingerprinted copy that is distributed
to the ith user. Define Ek,l as the energy of the basis fingerprint ai1,...,ik at level k
that is embedded in yl

i , and El � ∑L
k=1 Ek,l is the overall energy of sli. We further

define a matrix P whose element at row k and column l is pk,l � Ek,l/El, and it is
the ratio of the energy of the kth level fingerprint ai1,...,ik embedded in yl

i over the
overall energy of sli. The P matrices for the CDMA-based and the TDMA-based
fingerprint modulation schemes are

PCDMA =


ρ1 ρ1 · · · ρ1

ρ2 ρ2 · · · ρ2

...
...

. . .
...

ρL ρL · · · ρL


L×L

, PTDMA =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


L×L

, (7.1)

respectively. In addition, in the TDMA-based fingerprint modulation scheme,

PTDMA[N1 N2 · · · NL
]T = N

[
ρ1 ρ2 · · · ρL

]T
(7.2)
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and
∑L

l=1 Nl = N , where N is the total number of embeddable coefficients in the
host signal.

Comparison of bandwidth efficiency. First, in the TDMA-based modulation scheme,
pk,l = 0 for k > l, and therefore, the lth part of the fingerprinted copy yl

i is only
embedded with the basis fingerprints at level k ≤ l in the tree. Note that the ba-
sis fingerprints {ai1,...,ik}k≤l are shared by users in the subgroup Ui1,...,il � { j =
[ j1, . . . , jl, . . . , jL] : j1 = i1, . . . , jl = il}, so is yl

i . Consequently, in the TDMA-based
fingerprint modulation, the distribution system cannot only multicast the non-
embeddable coefficients to all users, but it can also multicast part of the finger-
printed coefficients that are shared by a subgroup of users to them. In the CDMA-
based fingerprint modulation, pk,l > 0 for k > l and the distribution system can
only multicast the nonembeddable coefficients. Therefore, from the bandwidth
efficiency’s point of view, the TDMA-based modulation is more efficient than the
CDMA-based fingerprint modulation.

Comparison of collusion resistance. Second, in the TDMA-based modulation
scheme, pk,l = 0 for k �= l and the basis fingerprints ai1,...,il at level l are only embed-
ded in the lth part of the fingerprinted copy yl

i . With the TDMA-based modulation
scheme, by comparing all the fingerprinted copies that they have, the colluders can
distinguish different parts of the fingerprinted copies that are embedded with fin-
gerprints at different levels in the tree. They can also figure out the structure of
the fingerprint tree and the positions of all colluders in the tree. Based on the in-
formation they collect, they can apply a specific attack against the TDMA-based
fingerprint modulation, the interleaving-based collusion attack.

Assume that SC is the set containing the indices of all colluders, and {yk}k∈SC
are the fingerprinted copies that they received. In the interleaving-based collu-
sion attacks, the colluders divide themselves into L subgroups {SC(l) ⊆ SC}l=1,...,L,
and there exists at least one 1 ≤ l < L such that the lth subgroup SC(l) and
the (l + 1)th subgroup SC(l + 1) are under different branches in the tree and
are nonoverlapping, that is, SC(l) ∩ SC(l + 1) = ∅. The colluded copy y con-
tains L nonoverlapping parts {yl}l=1,...,L, and the colluders in the subgroup SC(l)
generate the lth part of the colluded copy by yl = g({yl

k}k∈SCl ), where g(·) is
the collusion function. Figure 7.5 shows an example of the interleaving-based
collusion attack on the tree-based fingerprint design of Figure 7.3. Assume that
SC = {1 = [1, 1, 1], 2 = [1, 1, 2], 4 = [1, 2, 1], 7 = [2, 1, 1]} is the set containing
the indices of the colluders. The colluders choose SC(1) = {7}, SC(2) = {4} and
SC(3) = {1, 2}, and generate the colluded copy y, where

y1 = y1
7 = x1 + a2,

y2 = y2
4 = x2 + a1,2,

y3 =
(

y3
1 + y3

2

)
2

= x3 +

(
a1,1,1 + a1,1,2

)
2

.

(7.3)
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Figure 7.5. An example of the interleaving-based collusion attack on the tree-based fingerprinting
system shown in Figure 7.3 with the TDMA-based fingerprint modulation.

In the detection process, at the first level in the tree, although both a1 and
a2 are guilty, the detector can only detect the existence of a2 because a1 is not
in any part of the colluded copy y. Following the multistage detection process in
Chapter 5, the detector outputs the estimated guilty region [2] at the first level of
the tree. At the second level, the detector tries to detect whether [2, 1] and [2, 2]
are the guilty subregions, and finds out that neither of these two are guilty since
a2,1 and a2,2 are not in y. To continue the detection process, the detectors have to
check the existence of each of the four fingerprints {ai1,i2} in y. The performance
of the detection process in the TDMA-based fingerprint modulation is worse than
that of the CDMA-based fingerprint modulation [120], and it is due to the special
structure of the fingerprint design and the unique “multistage” detection process
in the group-oriented fingerprinting systems.

To summarize, in the group-oriented fingerprinting systems, the TDMA-
based fingerprint modulation improves the bandwidth efficiency of the distribu-
tion system at the cost of the robustness against collusion attacks.

7.4.2. Joint fingerprint design and distribution

In the joint fingerprint design and distribution scheme, the content owner first
applies the group-oriented fingerprint design in [120] and generates the finger-
print tree. Then, he embeds the fingerprints using the joint TDMA and CDMA
fingerprint modulation scheme introduced in Section 7.4.1, which improves the
bandwidth efficiency without sacrificing the robustness. Finally, the content owner
distributes the fingerprinted copies to users using the distribution scheme intro-
duced in Section 7.4.2.

Design of the joint TDMA and CDMA fingerprint modulation. To achieve both
the robustness against collusion attacks and the bandwidth efficiency of the
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distribution scheme, we develop a joint TDMA and CDMA fingerprint modula-
tion scheme, whose P matrix is an upper triangular matrix. In PJoint, we let pk,l = 0
for k > l to achieve the bandwidth efficiency. For k ≤ l, we choose 0 < pk,l ≤ 1
to achieve the robustness. Take the interleaving-based collusion attack shown in
Figure 7.5 as an example, in the joint TDMA and CDMA fingerprint modulation,
although a1 is not in y1, it can still be detected from y2 and y3. Consequently, the
detector can apply the “multistage” detection and narrow down the guilty-region
step by step, the same as in the CDMA-based fingerprint modulation.

At level 1, p1,1 = 1. At level 2 ≤ l ≤ L, given pl,l, we seek {pk,l}k<l to satisfy
E1,l : E2,l : · · · : El−1,l = ρ1 : ρ2 : · · · : ρl−1. We can show that pk,l = ρk(1 − pl,l)/
(ρ1 + · · · + ρl−1) for k < l, and

PJoint =



1 1− p2,2 · · · (
1− pL,L

) ρ1

1− ρL

0 p2,2 · · · (
1− pL,L

) ρ2

1− ρL
...

...
. . .

...
0 0 · · · pL,L


L×L

. (7.4)

Given {pl,l}l=1,...,L and PJoint as in (7.4), we seek N1, N2, . . . ,NL to satisfy

PJoint[N1 N2 · · · NL
]T = N

[
ρ1 ρ2 · · · ρL

]T
s.t.

L∑
l=1

Nl = N , 0 ≤ Nl ≤ N.
(7.5)

From (7.4), when pL,L = ρL, it is the CDMA-based fingerprint modulation.
Therefore, we only consider the case where pL,L > ρL. Define

A =



1 1− p2,2 · · ·
(
1− pL−1,L−1

)
ρ1∑L−2

k=1 ρk

0 p2,2 · · ·
(
1− pL−1,L−1

)
ρ2∑L−2

k=1 ρk
...

...
. . .

...
0 0 · · · pL−1,L−1


,

B = 1− pL,L

1− ρL


ρ1 · · · ρ1

ρ2 · · · ρ2

...
. . .

...
ρL−1 · · · ρL−1

 ,

(7.6)
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where A and B are of rank (L−1)×(L−1). We can show that (7.5) can be rewritten
as

 A− B
−−−−−−−
pL,L · · · pL,L




N1

...
NL−1

 = (
pL,L − ρL

)
N



ρ1

1− ρL
...

ρL−1

1− ρL
1


,

NL = N −
L−1∑
l=1

Nl.

(7.7)

Define

Q �

 A− B
−−−−−−−
pL,L · · · pL,L

 ,

c �
(
pL,L − ρL

)
N

1− ρL

[
ρ1 · · · ρL−1 1− ρL

]T
.

(7.8)

Given {pl,l}, if Q is of full rank, then the least square solution to (7.7) is

[
N1 N2 · · · NL−1

]T = Q†c, NL = N −
L−1∑
l=1

Nl, (7.9)

where Q† = (QTQ)−1Q is the pseudoinverse of Q. Finally, we need to verify the
feasibility of the solution (7.9), that is, if 0 ≤ Nl ≤ N for all 1 ≤ l ≤ L. If not,
another set of {pl,l}l=1,...,L has to be used.

Fingerprint embedding and detection in the joint TDMA and CDMA modulation.
In the joint TDMA and CDMA fingerprint modulation scheme, given PJoint as in
(7.4) and {Nl}l=1,...,L as in (7.9), for each basis fingerprint ai1,...,il at level 1 ≤ l ≤ L in
the tree, ai1,...,il = ali1,...,il �al+1

i1,...,il �· · ·�aLi1,...,il , where {aki1,...,il}k=l,...,L follow Gaussian
distribution N (0, σ2

W ) and are independent of each other. aki1,...,il for k ≥ l is of
length Nk, and is embedded in xk. “�” is the concatenation operator. For the ith
user whose index is i = [i1, . . . , iL], the lth part of the fingerprinted copy that he
receives is yl

i1,...,il = xl + sli1,...,il , where

sli1,...,il =
√
p1,lali1 +

√
p2,lali1,i2 + · · · +

√
pl,lali1,...,il . (7.10)
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During collusion, assume that there are a total of K colluders and SC is the
set containing their indices. The colluders divide them into L subgroups {SC(l) ⊆
SC}l=1,...,L. For each 1 ≤ l ≤ L, given the K copies {yl

k}k∈SC , the colluders in SC(l)
generate the lth part of the colluded copy by yl = g({yl

k}k∈SC(l)), where g(·) is the
collusion function. Assume that y = y1 � · · · � yL is the colluded copy that is
redistributed by the colluders.

At the detector’s side, given the colluded copy y, for each 1 ≤ l ≤ L, the detec-
tor first extracts the fingerprint wl from yl, and the detection process is similar to
that in Chapter 5.

Detection at the first level of the tree. The detector correlates the extracted fin-
gerprint {wl}l=1,...,L with each of the D1 fingerprints {ai1}i1=1,...,D1 at level 1 and
calculates the detection statistics

T1
(
i1
) = ∑L

k=1

〈
wk, aki1

〉√∑L
k=1

∥∥aki1
∥∥2

(7.11)

for i1 = 1, . . . ,D1. The estimated guilty regions at level 1 are ĵ1 = {[i1] : T1(i1) >
h1}, where h1 is a predetermined threshold for fingerprint detection at the first
level in the tree.

Detection at level 2 ≤ l ≤ L in the tree. Given the previously estimated guilty
regions ĵl−1, for each [i1, i2, . . . , il−1] ∈ ĵl−1, the detector calculates the detection
statistics

Tl
(
i1, . . . , il−1, il

) = ∑L
k=l

〈
wk, aki1,...,il−1,il

〉√∑L
k=l

∥∥aki1,...,il−1,il

∥∥2
(7.12)

for il = 1, . . . ,Dl, and narrows down the guilty regions to

ĵl =
{[
i1, . . . , il

]
:
[
i1, . . . , il−1

] ∈ ĵl−1,Tl
(
i1, . . . , il

) ≥ hl
}

, (7.13)

where hl is a predetermined threshold for fingerprint detection at level l in the tree.
Finally, the detector outputs the estimated colluder set ŜC = {i : i = [i1, . . . , iL] ∈
ĵL}.
Fingerprint distribution in the joint fingerprint design and distribution scheme. In
the joint fingerprint design and distribution scheme, the MPEG-2-based finger-
print distribution scheme for video on demand applications is shown in Figure 7.6.
Assume that Kmulti is a key that is shared by all users, Ki1,...,il is a key shared by a
subgroup of users Ui1,...,il , and Ki is the ith user’s secret key. The encryption method
in the joint fingerprint design and distribution scheme is the same as that in the
general fingerprint multicast. The key steps in the fingerprint embedding and dis-
tribution process at the server’s side are as follows.

(i) For each user i, the fingerprint si is generated as in (7.10).
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Figure 7.6. The MPEG-2-based joint fingerprint design and distribution scheme for video-on-
demand applications: (a) the fingerprint embedding and distribution process at the server’s side; (b)
the decoding process at the user’s side.

(ii) The compressed bit stream is split into two parts: the first one includes
motion vectors, quantization factors, and other side information and is not al-
tered, and the second one contains the coded DCT coefficients and is variable-
length decoded.

(iii) Only the values of the DCT coefficients are modified, and the first part of
the compressed bit stream is intact. For each DCT coefficient, if it is not embed-
dable, it is variable-length coded with other nonembeddable DCT coefficients. If it
is embeddable, first, it is inversely quantized. If it belongs to xl, for each subgroup
Ui1,...,il = {[ j1, . . . , jL] : j1 = i1, . . . , jl = il}, the corresponding fingerprint compo-
nent in sli1,...,il is embedded using spread-spectrum embedding, and the resulting
fingerprinted coefficients are quantized and variable-length coded with other fin-
gerprinted coefficients in yl

i1,...,il .
(iv) The nonembeddable DCT coefficients are encrypted with key Kmulti and

multicasted to all users, together with the positions of the embeddable coefficients
in the 8 × 8 DCT blocks, motion vectors, and other shared information. For 1 ≤
l < L, the fingerprinted coefficients in yl

i1,...,il are encrypted with key Ki1,...,il and
multicasted to the users in the subgroup Ui1,...,il . The fingerprinted coefficients in
yL
i are encrypted with the ith user’s secret key and unicasted to him.
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The decoder at the ith user’s side is similar to that in the general fingerprint
multicast scheme. The difference is that the decoder has to listen to L+1 bit streams
in the joint fingerprint design and distribution scheme instead of 2 in the general
fingerprint multicast scheme.

7.4.3. Addressing the computation constraints

Compared with the general fingerprint multicast scheme, the joint fingerprint de-
sign and distribution scheme further reduces the communication cost by mul-
ticasting some of the fingerprinted coefficients that are shared by a subgroup of
users to them. However, it increases the total number of multicast groups that the
sender needs to manage and the number of channels that each receiver downloads
data from.

In the general fingerprint multicast scheme shown in Figure 7.2, the sender
sets up and manages 1 multicast group, and each user listens to 2 bit streams si-
multaneously to reconstruct the fingerprinted video sequence. In the joint finger-
print design and distribution scheme, the sender has to set up a multicast group
for every subgroup of users represented by a node in the upper L− 1 levels in the
tree. For a tree with L = 4 and [D1,D2,D3,D4] = [4, 5, 5, 100], the total number
of multicast groups needed is 125. Also, each user has to listen to L = 4 different
multicast groups and 1 unicast channel. In practice, the underlying network might
not be able to support so many multicast groups simultaneously, and it could be
beyond the sender’s capability to manage this huge number of multicast groups at
one time. It is also possible that the receivers can only listen to a small number of
channels simultaneously due to computation and buffer constraints.

To address these computation constraints, we adjust the joint fingerprint de-
sign and distribution scheme to minimize the overall communication cost under
the computation constraints.

For a fingerprint tree of level L and degrees [D1, . . . ,DL], if the sender sets
up a multicast group for each subgroup of users represented by a node in the up-
per l levels in the tree, then the total number of multicast groups is MG(l) �
1 +D1 + · · ·+

∏l
m=1 Dm. Also, each user listens to RB(l) � l + 2 channels. Assume

that MG is the maximum number of multicast groups that the network can sup-
port and the sender can manage at once, and each receiver can only listen to no
more than RB channels. We define L′ � max{l : MG(l) ≤ MG, RB(l) ≤ RB}.

To minimize the communication cost under the computation constraints, we
adjust the fingerprint distribution scheme in Section 7.4.2 as follows. Steps 1, 2,
and 3 are not changed, and Step 4 is modified to the following.

(i) The coded nonembeddable DCT coefficients are encrypted with key Kmulti

and multicasted to all users, together with the positions of the embeddable coeffi-
cients in the 8× 8 DCT blocks, motion vectors, and other shared information.

(ii) For each subgroup of users Ui1,...,il corresponding to a node [i1, . . . , il] at
level l ≤ L′ in the tree, a multicast group is set up and the fingerprinted coefficients
in yl

i1,...,il are encrypted with key Ki1,...,il and multicasted to users in Ui1,...,il .
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(iii) For each subgroup of users Ui1,...,iL′ ,...,im , where L′ < m ≤ L − 1, there are
two possible methods to distribute the fingerprinted coefficients in ym

i1,...,iL′ ,...,im to
them and the one that has a smaller communication cost is chosen.

(a) First, after encrypting the encoded fingerprinted coefficients in
ym
i1,...,iL′ ,...,im with key Ki1,...,im , the encrypted bit stream can be multi-

casted to the users in the subgroup Ui1,...,iL′ . Since Ki1,...,im is known
only to the users in the subgroup Ui1,...,im , only they can decrypt the
bit stream and reconstruct ym

i1,...,iL′ ,...,im .
(b) The fingerprinted coefficients in ym

i1,...,iL′ ,...,im can also be unicasted to
each user in the subgroup Ui1,...,im after encryption, the same as in the
general fingerprint multicast scheme.

(iv) The fingerprinted coefficients in yL
i1,...,iL are encrypted with the ith user’s

secret key K (i) and unicasted to him.

7.5. Analysis of bandwidth efficiency

To analyze the bandwidth efficiency of the secure fingerprint multicast schemes,
we compare their communication costs with that of the pure unicast scheme. In
this section, we assume that the fingerprinted copies in all schemes are encoded at
the same targeted bit rate.

To be consistent with general Internet routing where hop count is the widely
used metric for route-cost calculation [125], we use the hop-based link usage to
measure the communication cost and set the cost of all edges to be the same. To
transmit a package of length Lenunit to a multicast group of size M, it was shown
in [107, 125] that the normalized multicast communication cost can be approxi-
mated by Cunit

multi(M)/Cunit
uni (M) =MEoS, where Cunit

multi(M) is the communication cost
using multicast, Cunit

uni (M) is the average communication cost per user using uni-
cast, and EoS is the economies-of-scale factor. It was shown in [107] that EoS is
between 0.66 and 0.7 for realistic networks. In this chapter, we choose EoS ≈ 0.7.

7.5.1. “Multicast only” scenario

For the purpose of performance comparison, we consider another special scenario
where the video streaming applications require the service provider to prevent out-
siders from estimating the video’s content, but do not require the traitor tracing
capability. In this scenario, we apply the general index mapping to encrypt the
DC coefficients in the intrablocks and the motion vectors in interblock; and the
AC coefficients are left unchanged and transmitted in clear text. Since the copies
that are distributed to different users are the same, the service provider can use
a single multicast channel for the distribution of the encrypted bit stream to all
users. We call this particular scenario, which does not require the traitor tracing
capability and uses multicast channels only the “multicast only”; and we compare
the communication cost of the “multicast only” with that of the secure fingerprint
multicast schemes to illustrate the extra communication overhead introduced by
the traitor tracing requirement.
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For a given video sequence and a targeted bit rate R, we assume that in the
pure unicast scheme, the average size of the compressed bit streams that are uni-
casted to different users is Lenpu. Define Lenmo as the length of the bit stream that
is multicasted to all users in the “multicast only” scenario. In the pure unicast
scheme, the streaming cipher that we applied to the AC coefficients in each fin-
gerprinted copy does not increase the bit rate and keep the compression efficiency
unchanged. Consequently, we have Lenmo ≈ Lenpu.

For a multicast group of size M, we further assume that the communica-
tion cost of the pure unicast scheme is Cpu, and Cmo is the communication cost
in the “multicast only.” We have Cpu(M) = M × Cunit

uni (M) × Lenpu / Lenunit, and
Cmo(M) = Cunit

multi(M)× Lenmo/Lenunit. We define the communication cost ratio of
the “multicast only” as

ζmo(M) � Cmo(M)
Cpu(M)

≈M−0.3, (7.14)

and it depends only on the total number of users M.

7.5.2. General fingerprint multicast scheme

For a given video sequence and a targeted bit rate R, we assume that in the general
fingerprint multicast scheme, the bit stream that is multicasted to all users is of

length Len
f m
multi, and the average size of different bit streams that are unicasted to

different users is Len
f m
uni . For a multicast group of size M, we further assume that

the communication cost of the general fingerprint multicast scheme is C fm. We

have C fm(M) = Cunit
multi(M) × Len

f m
multi / Lenunit +M × Cunit

uni (M) × Len
f m
uni / Lenunit.

We define the coding parameter as CP � (Len
f m
multi + Len

f m
uni)/ Lenpu, and the unicast

ratio as UR � Len
f m
uni /(Len

f m
multi + Len

f m
uni). Then the communication cost ratio of

the general fingerprint multicast scheme is

ζ f m(M) � C fm(M)
Cpu(M)

≈ CP
{

UR +(1−UR)M−0.3}. (7.15)

The smaller the communication cost ratio ζ f m, the more efficient the general fin-
gerprint multicast scheme. Given the multicast group size M, the efficiency of the
general fingerprint multicast scheme is determined by the coding parameter and
the unicast ratio.

Coding parameters. Four factors affect the coding parameters.
(i) For each fingerprinted copy, two different sets of motion vectors and quan-

tization factors are used: the general fingerprint multicast scheme uses those calcu-
lated from the original unfingerprinted copy, while the pure unicast scheme uses
those calculated from the fingerprinted copy itself. Since the original unfinger-
printed copy and the fingerprinted copy are similar to each other, so are both sets
of parameters. Therefore, the difference between these two sets of motion vectors
and quantization factors has negligible effect on the coding parameters.
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(ii) In the general fingerprint multicast scheme, headers and side information
have to be inserted in each unicasted bit stream for synchronization. We follow the
MPEG-2 standard and observe that this extra overhead consumes no more than
0.014 bit per pixel (bpp) per copy and is much smaller than the targeted bit rate R.
Therefore, its effect on the coding parameters can be ignored.

(iii) In the variable-length coding stage, the embeddable and the nonembed-
dable coefficients are coded together in the pure unicast scheme while they are
coded separately in the general fingerprint multicast scheme. Figure 7.7 shows
the histograms of the (run length, value) pairs of the “carphone” sequence at
R = 1 Mbps (1.3 bpp) in both schemes. From Figure 7.7, the (run length, value)
pairs generated by the two schemes have approximately the same distribution.
Thus, encoding the embeddable and the nonembeddable coefficients together or
separately does not affect the coding parameters. The same conclusion can be
drawn for other sequences and for other bit rates.

(iv) In the general fingerprint multicast scheme, the positions of the embed-
dable coefficients have to be encoded and transmitted to the decoders. The encod-
ing procedure is as follows.

(a) For each 8×8 DCT block, first, an 8×8 mask is generated where a bit
“0” is assigned to each nonembeddable coefficient and a bit “1” is as-
signed to each embeddable coefficient. Since DC coefficients are not
embedded with fingerprints [24], the mask bit at the DC coefficient’s
position is skipped and only the 63 mask bits at the AC coefficients’
positions are encoded.

(b) Observing that most of the embeddable coefficients are in the low
frequencies, the 63 mask bits are zigzag scanned in the same way as
in the JPEG baseline compression.

(c) Run-length coding is applied to the zigzag scanned mask bits fol-
lowed by Huffman coding.

(d) An “end of block” (EoB) marker is inserted after encoding the last
mask bit whose value is 1 in the block.

Communication cost ratio. We choose three representative sequences: “Miss Amer-
ica” with large smooth regions, “carphone” that is moderately complicated and
“flower” that has large high-frequency coefficients. Figure 7.8a shows the commu-
nication cost ratios of the three sequences at R = 1.3 bpp.

For M in the range between 1000 and 10000, compared with the pure uni-
cast scheme, the general fingerprint multicast scheme reduces the communication
cost by 48% to 84%, depending on the values of M and the characteristics of se-
quences. Given a sequence and a targeted bit rate R, the performance of the general
fingerprint multicast scheme improves as the multicast group size M increases. For
example, for the “carphone” sequence at R = 1.3 bpp, ζ f m = 0.41 when there are a
total of M = 1000 users, and it drops to 0.34 when M is increased to 10000. Also,
given M, the performance of the general fingerprint multicast scheme depends on
the characteristics of video sequences. For sequences with large smooth regions,
the embedded fingerprints are shorter. Therefore, fewer bits are needed to encode
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Figure 7.7. Histograms of the (run length, value) pairs of the “carphone” sequence that are variable-
length coded in the two schemes. R = 1 Mbps. The indices of the (run length, value) pairs are sorted
first in the ascending order of the run length, and then in the ascending order of the value: (a) in the
intracoded blocks; (b) in the intercoded blocks.

the positions of the embeddable coefficients, and fewer DCT coefficients are trans-
mitted through unicast channels. So the general fingerprint multicast scheme is
more efficient. On the contrary, for sequences where the high-frequency band has
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Figure 7.8. Bandwidth efficiency of the general fingerprint multicast scheme at R = 1.3 bpp: (a)
ζ f m(M) and ζmo(M) versus M; (b) M versus ζ .

large energy, more DCT coefficients are embeddable and have to be unicasted.
Thus, the general fingerprint multicast scheme is less efficient. When there are a
total of M = 5000 users, ζ f m is 0.18 for sequence “Miss America” and is 0.46 for
sequence “flower.”

If we compare the communication cost of the general fingerprint multicast
with that of the “multicast only” scenario, enabling traitor tracing in video stream-
ing applications introduces an extra communication overhead of 10% to 40%,
depending on the characteristics of video sequences. For sequences with fewer
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embeddable coefficients, for example, “Miss America,” the length of the embedded
fingerprints is shorter, and applying digital fingerprinting increases the communi-
cation cost by a smaller percentage (around 10%). For sequences that have much
more embeddable coefficients, for example, “flower,” more DCT coefficients are
embedded with unique fingerprints and have to be transmitted through unicast
channels, and it increases the communication cost by a larger percentage (approx-
imately 40%).

In addition, the general fingerprint multicast scheme performs worse than the
pure unicast scheme when M is small. Therefore, given the coding parameter and
the unicast ratio, the pure unicast scheme is preferred when the communication
cost ratio ζ is larger than a threshold ζ , that is, when M is smaller than M, where

M =
⌈(

1−UR

ζ/ CP−UR

)10/3
⌉
. (7.16)

The ceil function �x� returns the minimum integer that is not smaller than x. M
of different sequences for different ζ are shown in Figure 7.8b. For example, for
ζ = 0.8 and R = 1.3 bpp, M is 5 for sequence “Miss America,” 13 for “carphone”
and 32 for “flower.”

7.5.3. Joint fingerprint design and distribution scheme

For a given video sequence and a targeted bit rate R, we assume that in the joint
fingerprint design and distribution scheme, the bit stream that is multicasted to

all users is of length Len
joint
multi, where Len

joint
multi = Len

f m
multi. For any two nodes [i1, . . . ,

il] �= [ j1, . . . , jl] at level l in the tree, we further assume that the bit streams that
are transmitted to the users in the subgroups Ui1,...,il and U j1,..., jl are approximately

of the same length Len
joint
l .

In the joint fingerprint design and distribution scheme, all the fingerprinted
coefficients inside one frame are variable-length coded together. Therefore, the
histograms of the (run length, value) pairs in the joint fingerprint design and dis-
tribution scheme are the same as that in the general fingerprint multicast scheme.
If we ignore the impact of the headers/markers that are inserted in each bit stream,
we have

Len
joint
1 + · · · + Len

joint
L ≈ Len

f m
uni ,

Len
joint
multi +

∑L
l=1 Len

joint
l

Lenpu ≈ CP .
(7.17)

Furthermore, fingerprints at different levels are embedded into the host signal pe-
riodically. In the simple example shown in Figure 7.4, the period is 4 seconds. If
this period is small compared with the overall length of the video sequence, we can
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have the approximation that

Len
joint
1 : · · · : Len

joint
L ≈ N1 : · · · : NL,

Len
joint
l ≈ Nl

N
· Len

f m
uni .

(7.18)

In the joint fingerprint design and distribution scheme, to multicast the
nonembeddable DCT coefficients and other shared side information to all users,
the communication cost is

C
joint
multi = Cunit

multi(M)× Len
joint
multi

Lenunit , (7.19)

where M is the total number of users. For l ≤ L′, to multicast the fingerprinted
coefficients in yl

i1,...,il to the users in Ui1,...,il , the communication cost is

C
joint
l = Cunit

multi(Ml)× Len
joint
l

Lenunit , (7.20)

where Ml � ∏L
m=l+1 Dm, and there are M/Ml such subgroups. For L′ < l ≤ L − 1,

to distribute the fingerprinted coefficients in yl
i1,...,iL′ ,...,il to users in Ui1,...,iL′ ,...,il , the

communication cost is

C
joint
l = min

{
Cunit

multi(ML′)× Len
joint
l

Lenunit , Ml · Cunit
uni (Ml)× Len

joint
l

Lenunit

}
, (7.21)

where the first term is the communication cost if they are multicasted to users in
the subgroup Ui1,...,iL′ , and the second term is the communication cost if they are
unicasted to each user in the subgroup Ui1,...,iL′ ,...,il . Finally, the communication cost
of distributing the fingerprinted coefficients in yL

i1,...,iL to the ith user is

C
joint
L =M · Cunit

uni (M)× Len
joint
L

Lenunit . (7.22)

The overall communication cost of the joint fingerprint design and distribu-

tion scheme is Cjoint = C
joint
multi +

∑L
l=1(M/Ml) · Cjoint

l , and the communication cost
ratio ζ joint � Cjoint/Cpu is

ζ joint ≈ CP

{
(1−UR) ·M−0.3 + UR ·

L′∑
l=1

Nl

N
·M−0.3

l

+ UR ·
L−1∑

l=L′+1

Nl

N
·min

(
M0.7

L′

Ml
, 1
)

+ UR ·NL

N

}
.

(7.23)

Listed in Table 7.1 are the communication cost ratios of the joint fingerprint
design and distribution scheme under different L′ for sequence “Miss America,”
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Table 7.1. The communication cost ratios of the joint fingerprint design and distribution scheme.
L′ = 0 is the general fingerprint multicast scheme. R = 1.3 bpp, p = 0.95.

L′ MG RB Miss America Carphone Flower Multicast only

M = 1000, L = 3,
D = [2, 5, 100],
ρ = [1/4, 1/4, 1/2]

0 1 2 0.23 0.41 0.52

1 3 3 0.22 0.34 0.43 0.13

2 13 4 0.20 0.31 0.39

M = 5000, L = 4,
D = [2, 5, 5, 100],
ρ = [1/6, 1/6, 1/6, 1/2]

0 1 2 0.18 0.35 0.46

0.08
1 3 3 0.16 0.30 0.39

2 13 4 0.15 0.27 0.35

3 65 5 0.14 0.25 0.32

M = 10000, L = 4,
D = [4, 5, 5, 100],
ρ = [1/6, 1/6, 1/6, 1/2]

0 1 2 0.16 0.34 0.43

0.06
1 5 3 0.14 0.28 0.37

2 25 4 0.13 0.26 0.33

3 125 5 0.13 0.23 0.30

“carphone,” and “flower.” L′ = 0 corresponds to the general fingerprint multi-
cast scheme. We consider three scenarios where the numbers of users are 1000,
5000, and 10000, respectively. The tree structures of the three scenarios are listed
in Table 7.1. In the three cases considered, compared with the pure unicast scheme,
the joint fingerprint design and distribution scheme reduces the communication
cost by 57% to 87%, depending on the total number of users, network and com-
putation constraints, and the characteristics of video sequences.

Given a sequence, the larger the L′, that is, the larger the MG and RB, the
more efficient the joint fingerprint design and distribution scheme. This is because
more fingerprinted coefficients can be multicasted. Take the “carphone” sequence
with M = 1000 users as an example, in the general fingerprint multicast scheme,
γ f m = 0.41. If L′ = 1, the joint fingerprint design and distribution scheme reduces
the communication cost ratio to 0.34, and it is further dropped to 0.31 if MG ≥ 13
and RB ≥ 4.

Also, compared with the general fingerprint multicast scheme, the extra com-
munication cost saved by the joint fingerprint design and distribution scheme
varies from sequence to sequence. For sequences that have more embeddable coef-
ficients, the joint fingerprint design and distribution improves the bandwidth effi-
ciency by a much larger percentage. For example, for M = 5000 and L′ = 2, com-
pared with the general fingerprint multicast scheme, the joint fingerprint design
and distribution scheme further reduces the communication cost by 10% for se-
quence “flower,” while it only further improves the bandwidth efficiency by 3% for
sequence “Miss America.” However, for sequence “Miss America” with M = 5000
users, the general fingerprint multicast scheme has already reduced the communi-
cation cost by 82%. Therefore, for sequences with fewer embeddable coefficients,
the general fingerprint multicast scheme is recommended to reduce the bandwidth
requirement at a low computation cost. The joint fingerprint design and distribu-
tion scheme is preferred on sequences with much more embeddable coefficients to
achieve higher bandwidth efficiency under network and computation constraints.
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Compared with the “multicast only” scenario, the joint fingerprint design and
distribution scheme enables the traitor tracing capability by increasing the com-
munication cost by 6% to 30%, depending on the characteristics of the video se-
quence as well as on the network and computation constraints. Compared with
the “multicast only,” for sequences with fewer embeddable coefficients, the joint
fingerprint design and distribution scheme increases the communication cost by
a smaller percentage (around 6% to 10% for sequence “Miss America”); while
for sequences with much more embeddable coefficients, the extra communication
overhead introduced is larger (around 24% to 30% for sequence “flower”).

7.6. Robustness of the embedded fingerprints

In this section, we take the group-oriented fingerprint design as an example, and
compare the robustness of the embedded fingerprints in different schemes. In the
pure unicast scheme and the general fingerprint multicast scheme, we use the
CDMA-based fingerprint modulation in order to resist interleaving-based collu-
sion attacks; and in the joint fingerprint design and distribution scheme, the joint
TDMA and CDMA fingerprint modulation scheme introduced in Section 7.4.2 is
used. In this section, we compare the collusion resistance of the fingerprints em-
bedded using the joint TDMA and CDMA fingerprint modulation scheme with
that of the fingerprints embedded using the CDMA-based fingerprint modulation.

7.6.1. Digital fingerprinting system model

At the content owner’s side, spread-spectrum embedding is used to embed finger-
prints into the host signal, and the block-based human visual models in [24] are
used to control the energy and the imperceptibility of the embedded fingerprints.

During collusion, assume that there are a total of K colluders and SC is the set
containing their indices. In the joint TDMA and CDMA fingerprint modulation,
the colluders can apply the interleaving-based collusion attacks, where they divide
themselves into L subgroups and {SC(l) ⊆ SC}l=1,...,L contain the indices of the
colluders in the L subgroups, respectively. The colluders in subgroup SC(l) gener-
ate the lth part of the colluded copy by yl = g({yl

i}i∈SC(l)) + dl, where g(·) is the
collusion function and dl is an additive noise to further hinder the detection. In
the CDMA-based fingerprint modulation, the colluders cannot distinguish finger-
prints at different levels in the tree and cannot apply interleaving-based collusion.
Consequently, SC(1) = · · · = SC(L) = SC for collusion attacks on the CDMA-
based fingerprint modulation. Following the discussion in Chapter 4, we consider
the averaging collusion only, since the nonlinear collusion can be modeled as the
averaging collusion followed by an additive noise.

In the interleaving-based collusion attacks on the joint TDMA and CDMA
fingerprint modulation, we consider two types of collusion. In Type I interleaving-
based collusion, colluders in subgroup SC(L− 1) and colluders in subgroup SC(L)
are under different branches of the tree and SC(L− 1)∩ SC(L) = ∅. The example
shown in Figure 7.5 belongs to this type of interleaving-based collusion attacks.
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In the Type II interleaving-based collusion, SC(L) = SC but SC(l) ⊂ SC for some
l < L. Take the fingerprint tree in Figure 7.3 as an example, if users 1, 2, 4, and
7 are the colluders, and if the colluders choose SC(1) = {7}, SC(2) = {4}, and
SC(3) = {1, 2, 4, 7}, then this is a Type II interleaving-based collusion attack.

At the detector’s side, we consider a nonblind detection scenario, where the
host signal x is available to the detector and is first removed from the colluded
copy y before fingerprint detection and colluder identification. Given the extracted
fingerprint w, the detector applies the detection process as in Section 7.4.2.

7.6.2. Performance criteria

To measure the robustness of the joint TDMA and CDMA fingerprint modulation
scheme against collusion attacks, we adopt the commonly used criteria in the lit-
erature: the probability of capturing at least one colluder (Pd), and the probability
of accusing at least one innocent user (Pf p).

We assume that the colluders apply fair collusion, that is, all colluders share
the same risk and are equally likely to be detected. Assume that A and B are two
nonoverlapping subgroups of colluders, and SC(A) and SC(B) are the sets contain-
ing the indices of the colluders in A and B, respectively. SC(A) ∩ SC(B) = ∅, and
we define the fairness parameter FP(SC(A), SC(B)) as

FP
(
SC(A), SC(B)

)
� Fd

(
SC(A)

)
Fd
(
SC(B)

) , (7.24)

where

Fd
(
SC(A)

) = ∑
i∈SC(A) I

[
i ∈ ŜC

]∣∣SC(A)
∣∣ ,

Fd
(
SC(B)

) = ∑
i∈SC(B) I

[
i ∈ ŜC

]∣∣SC(B)
∣∣ .

(7.25)

In the above equations, I[·] is the indication function, |SC(A)| and |SC(B)| are the
numbers of colluders in SC(A) and SC(B), respectively, and ŜC is the estimated col-
luder set output by the detector. If FP(SC(A), SC(B)) ≈ 1 for any SC(A)∩ SC(B) =
∅, then the collusion attack is fair and all colluders are equally likely to be detected.
If FP(SC(A), SC(B)) � 1 or FP(SC(A), SC(B)) � 1 for some pair of (SC(A), SC(B)),
some colluders are more likely to be detected than others and the collusion attack
is not fair.

7.6.3. Comparison of collusion resistance

Resistance-to-interleaving-based collusion attacks. Our simulation is set up as fol-
lows. For the tested video sequences, the number of embeddable coefficients is
in the order of 106 per second. So we choose N = 106 and assume that there
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are a total of M = 104 users. Following the group-oriented fingerprint design in
[120], we consider a symmetric tree structure with L = 4 levels, [D1,D2,D3,D4] =
[4, 5, 5, 100], and [ρ1, ρ2, ρ3, ρ4] = [1/6, 1/6, 1/6, 1/2]. In our simulations, the basis
fingerprints {a} in the fingerprint tree follow Gaussian distribution N (0, σ2

W ) with
σ2
W = 1/9. In the joint TDMA and CDMA fingerprint modulation, for simplicity,

we let p2,2 = · · · = pL,L = p for the matrix PJoint in (7.4) and choose p = 0.95
for the above fingerprint tree structure. A smaller value of p should be used if L is
larger or the total number of nodes at the upper L− 1 levels in the tree is larger.

At the attackers’ side, we consider the most effective collusion pattern on the
group-oriented fingerprint design, where colluders are from all the 100 subgroups
at level 3. We assume that each of the 100 subgroups has the same number of
colluders. As an example of the interleaving-based collusion attacks, we choose
different subgroups of colluders as SC1 = {i = [i1, i2, i3, i4] ∈ SC : i1 = 1}, SC2 =
{i = [i1, i2, i3, i4] ∈ SC : i1 = 2}, and SC3 = {i = [i1, i2, i3, i4] ∈ SC : i1 = 3}. In the
Type I interleaving-based collusion attacks, we choose SC4 = SC\SC3.5 In the Type
II interleaving-based collusion attacks, SC4 = SC. In the CDMA-based fingerprint
modulation scheme, similarly, we assume that colluders are from all the 100 sub-
groups at level 3 in the tree, and each subgroup at level 3 in the tree has equal
number of colluders. In the CDMA-based fingerprint modulation, the colluders
cannot distinguish fingerprints at different levels, and they apply the pure averag-
ing collusion attack, where SC1 = · · · = SCL = SC. In addition to the multiuser
collusion, we assume that the colluders also add an additive noise d to further hin-
der the detection. For simplicity, we assume that the additive noise d is i.i.d. and
follows distribution N (0, σ2

d ). In our simulations, we let σ2
d = 2σ2

W , where σ2
W is

the variance of the embedded fingerprints, and other values of σ2
n give the same

trend and are not shown here.
Figure 7.9 shows the simulation results of the Type I interleaving-based col-

lusion. In Figure 7.9a, given the total number of colluders K , we compare Pd of
the joint TDMA and CDMA fingerprint modulation under the interleaving-based
collusion attacks with that of the CDMA-based fingerprint modulation scheme
under the pure averaging collusion attacks. From Figure 7.9a, the performance of
the joint TDMA and CDMA fingerprint modulation under the Type I interleaving-
based collusion is even better than the CDMA-based fingerprint modulation un-
der the pure averaging collusion. This is because, in the pure averaging collusion,
all colluders contribute their leaf-node fingerprints that uniquely identify each at-
tacker; while in the Type I interleaving-based collusion, the number of colluders
who contribute their leaf-node fingerprints is |SC(4)| and it is smaller than |SC|.
Therefore, compared with the pure averaging collusion, the energy of each leaf-
node fingerprint in the interleaving-based collusion is reduced by a smaller ratio,
and therefore, it gives the detector more information about the colluders’ identi-
ties. Figure 7.9b plots the fairness parameter in the Type I interleaving-based collu-
sion in the joint TDMA and CDMA fingerprint modulation, and we observe that
FP(SC(3), SC(4)) � 1. Consequently, the colluders in the subgroup SC(4) have a

5For two sets A and B, where B ⊆ A, A \ B � {i : i ∈ A, i �∈ B}.
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Figure 7.9. (a) Pd and (b) FP(SC(L− 1), SC(L)) the joint TDMA and CDMA fingerprint modulation
scheme against the Type I interleaving-based collusion attacks. L = 4, [D1,D2,D3,D4] = [4, 5, 5, 100],
and [ρ1, ρ2, ρ3, ρ4] = [1/6, 1/6, 1/6, 1/2]. N = 106, σ2

d = 2σ2
W , and P f p = 10−2. p = 0.95. In this type of

interleaving-based collusion, SC(1) = {[i1, i2, i3, i4] ∈ SC : i1 = 1}, SC(2) = {[i1, i2, i3, i4] ∈ SC : i1 =
2}, SC(3) = {[i1, i2, i3, i4] ∈ SC : i1 = 3}, and SC(4) = SC \ SC(3).

much larger probability to be detected than colluders in the subgroup SC(3), and
this type of interleaving collusion is not fair.

Figure 7.10 shows the simulation results of the Type II interleaving-based
collusion. Figure 7.10a compares Pd of the joint TDMA and CDMA fingerprint
modulation under the Type II interleaving-based collusion attacks with that of
the CDMA-based fingerprint modulation scheme under the pure averaging collu-
sion attacks. From Figure 7.10a, these two have similar performance. Figure 7.10b
shows the fairness parameters of the Type II interleaving-based collusion, and we
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Figure 7.10. (a) Pd and (b) FP(SC(L − 1), SC \ SC(L − 1)) of the joint TDMA and CDMA fin-
gerprint modulation scheme against interleaving-based collusion attacks. L = 4, [D1,D2,D3,D4] =
[4, 5, 5, 100], and [ρ1, ρ2, ρ3, ρ4] = [1/6, 1/6, 1/6, 1/2]. N = 106, σ2

d = 2σ2
W , and P f p = 10−2.

p = 0.95. In this type of interleaving-based collusion, SC(1) = {[i1, i2, i3, i4] ∈ SC : i1 = 1},
SC(2) = {[i1, i2, i3, i4] ∈ SC : i1 = 2}, SC(3) = {[i1, i2, i3, i4] ∈ SC : i1 = 3}, and SC(4) = SC .

find that FP(SC(3), SC \ SC(3)) ≈ 1.9. Consequently, for colluders in the subgroup
SC(3), their probability of being detected is approximately twice of the other col-
luders’ risk of being caught, and therefore, this Type II interleaving collusion is not
a fair collusion either.

To summarize, the performance of the joint TDMA and CDMA fingerprint
modulation scheme under the interleaving-based collusion attacks is approxi-
mately the same as, and may be even better than, that of the CDMA fingerprint
modulation scheme under the pure averaging collusion attacks. Furthermore, we
have shown that neither of the two types of interleaving-based collusion attacks are
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fair in the joint TDMA and CDMA fingerprint modulation scheme, and some col-
luders are more likely to be captured than others. Consequently, to guarantee the
absolute fairness of the collusion attacks, the colluders cannot use the interleaving-
based collusion attacks in the joint TDMA and CDMA fingerprint modulation.

Resistance to the pure averaging collusion attacks. In this section, we study the de-
tection performance of the joint TDMA and CDMA fingerprint modulation under
the pure averaging collusion attacks, where SC(1) = SC(2) = · · · = SC(L) = SC .
We compare the detection performance of the joint TDMA and CDMA fingerprint
modulation with that of the CDMA fingerprint modulation. In both fingerprint
modulation schemes, all colluders have equal probability of detection under this
type of collusion, and the pure averaging attacks are fair collusion attacks. The
simulation setup is the same as in the previous section and Figure 7.11 shows the
simulation results. We consider two possible collusion patterns. In the first one, we
assume that one region at level 1 is guilty and it has two guilty subregions at level
2. For each of the two guilty regions at level 2, we assume that all its five children
at level 3 are guilty and colluders are present in 10 out of 100 subgroups at level 3.
This collusion pattern corresponds to the case where the fingerprint tree matches
the hierarchical relationship among users. In the second one, we assume that all
the 100 subgroups at level 3 are guilty, and this collusion pattern happens when
the fingerprint tree does not reflect the real hierarchical relationship among users.
We assume that each guilty subgroup at level 3 has the same number of colluders
in both collusion patterns.

From Figure 7.11, the two fingerprint modulation schemes have approxi-
mately the same performance under the pure averaging collusion attacks, and both
perform better when the fingerprint tree design matches the collusion patterns and
the colluders are present in fewer subgroups in the tree.

To summarize, under the constraint that all colluders share the same risk and
have equal probability of detection, the joint TDMA and CDMA fingerprint mod-
ulation has approximately identical performance as the CDMA-based fingerprint
modulation, and the embedded fingerprints in the three secure fingerprint distri-
bution schemes have the same collusion resistance.

7.7. Fingerprint drift compensation

In both the general fingerprint multicast scheme and the joint fingerprint de-
sign and distribution scheme, the video encoder and the decoder use the recon-
structed unfingerprinted and fingerprinted copies, respectively, as references for
motion compensation. The difference, which is the embedded fingerprint, will
propagate to the next frame. Fingerprints from different frames will accumulate
and cause the quality degradation of the reconstructed frames at the decoder’s side.
A drift compensation signal, which is the embedded fingerprint in the reference
frame(s) with motion, has to be transmitted to each user. It contains confidential
information of the embedded fingerprint in the reference frame(s) and is unique
to each user. Therefore, it has to be transmitted seamlessly with the host signal to
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Figure 7.11. Pd of the joint TDMA and CDMA fingerprint modulation scheme under the pure av-
eraging collusion. L = 4, [D1,D2,D3,D4] = [4, 5, 5, 100], and [ρ1, ρ2, ρ3, ρ4] = [1/6, 1/6, 1/6, 1/2].
N = 106, σ2

d = 2σ2
W , and P f p = 10−2. p = 0.95. (a) Colluders are from 10 subgroups at level 3 in the

tree. (b) Colluders are from all the 100 subgroups at level 3 in the tree.

the decoder through unicast channels. Since the embedded fingerprint propagates
to both the embeddable coefficients and the nonembeddable ones, fully compen-
sating the drifted fingerprint will significantly increase the communication cost.

To reduce the communication overhead introduced by full-drift compensa-
tion, we compensate the drifted fingerprint that propagates to the embeddable
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Figure 7.12. The fingerprint drift compensation scheme in the general fingerprint multicast for VoD
applications.

coefficients only and ignore the rest. Shown in Figure 7.12 is the fingerprint drift
compensation scheme in the general fingerprint multicast scheme for video-on-
demand applications. The one in the joint fingerprint design and distribution
scheme is similar and omitted. The calculation of the drift compensation signal
is similar to that in [126]. Step 3 in the fingerprint embedding and distribution
process is modified as follows. For each DCT coefficient, if it is not embeddable, it
is variable-length coded with other nonembeddable coefficients. Otherwise, first,
it is inversely quantized. Then for each user, the corresponding fingerprint compo-
nent is embedded, the corresponding drift compensation component is added, and the
resulting fingerprinted and compensated coefficient is quantized and variable-length
coded with other fingerprinted and compensated coefficients.

In Table 7.2, we compare the quality of the reconstructed sequences at the de-
coder’s side in three scenarios: PSNR f is the average PSNR of the reconstructed
frames with full drift compensation; PSNRn is the average PSNR of the recon-
structed frames without drift compensation; and PSNRp is the average PSNR of
the reconstructed frames in the proposed drift compensation scheme. Compared
with the reconstructed frames with full-drift compensation, the reconstructed
frames without drift compensation have an average of 1.5 ∼ 2 dB loss in PSNR,
and those using the proposed drift compensation have an average of 0.5 dB loss in
PSNR. Therefore, the proposed drift compensation scheme improves the quality
of the reconstructed frames at the decoder’s side without extra communication
overhead.
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Table 7.2. Perceptual quality of the reconstructed frames at the decoder’s side at bit rate R = 1.3 bpp.

Sequence PSNR f (dB) PSNRn (dB) PSNRp (dB)

Miss America 44.89 42.73 44.31

Carphone 40.45 38.05 39.88

Flower 31.53 30.01 30.92

7.8. Chapter summary

In this chapter, we have investigated secure fingerprint multicast for video stream-
ing applications that require strong traitor tracing capability, and have developed
two schemes: the general fingerprint multicast scheme and the group-oriented
joint fingerprint design and distribution scheme. We have analyzed their perfor-
mance, including the communication cost and the collusion resistance, and stud-
ied the tradeoff between bandwidth efficiency and computation complexity. We
have also introduced a fingerprint drift compensation scheme to improve the per-
ceptual quality of the reconstructed sequences at the decoder’s side without extra
communication cost.

We first developed the general fingerprint multicast scheme that can be used
with most spread-spectrum-embedding-based fingerprinting systems. Compared
with the pure unicast scheme, it reduces the communication cost by 48% to 84%,
depending on the total number of users and the characteristics of sequences. To
further reduce the bandwidth requirement, we utilized the tree structure of the
fingerprint design and presented the group-oriented joint fingerprint design and
distribution scheme. Compared with the pure unicast scheme, it reduces the band-
width requirement by 57% to 87%, depending on the number of users, the char-
acteristics of sequences, and network and computation constraints. We have also
shown that under the constraints that all colluders have equal probability of de-
tection, the embedded fingerprints in these two schemes have approximately the
same robustness against collusion attacks.

If we compare the three distribution schemes; the pure unicast scheme, the
general fingerprint multicast scheme, and the joint fingerprint design and distri-
bution scheme, the pure unicast scheme is preferred when there are only a few
users in the system (e.g., around ten or twenty users); and the other two should
be used when there are a large number of users (e.g., thousands of users). Com-
pared with the general fingerprint multicast scheme, the joint fingerprint design
and distribution scheme further improves the bandwidth efficiency by increasing
the computation complexity of the systems. Therefore, for sequences that have
fewer embeddable coefficients, for example, “Miss America,” the general finger-
print multicast scheme is preferred to achieve the bandwidth efficiency at a low
computational cost. For sequences with much more embeddable coefficients, for
example, “flower,” the joint fingerprint design and distribution scheme is recom-
mended to minimize the communication cost under network and computation
constraints.
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Finally, we studied the perceptual quality of the reconstructed sequences at the
receiver’s side. We have shown that the proposed fingerprint drift compensation
scheme improves PSNR of the reconstructed frames by an average of 1 ∼ 1.5 dB
without increasing the communication cost.
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8
Fingerprinting curves

This chapter presents a new data hiding method for curves. The proposed algo-
rithm parameterizes a curve using the B-spline model and adds a spread-spectrum
sequence to the coordinates of the B-spline control points. In order to achieve ro-
bust fingerprint detection, an iterative alignment-minimization algorithm is pro-
posed to perform curve registration and to deal with the nonuniqueness of B-
spline control points. We demonstrate through experiments the robustness of the
proposed data hiding algorithm against various attacks such as collusion, crop-
ping, geometric transformations, vector/raster-raster/vector conversions, printing
and scanning, and some of their combinations. We also show the feasibility of our
method for fingerprinting topographic maps as well as writings and drawings.

8.1. Introduction

Maps represent geospatial information ubiquitous in government, military, intel-
ligence, and commercial operations. The traditional way of protecting a map from
unauthorized copying and distribution is to place deliberate errors in the map,
such as spelling “Nelson Road” as “Nelsen Road,” bending a road in a wrong way,
and/or placing a nonexisting pond. If an unauthorized user has a map containing
basically the same set of errors, this is a strong piece of evidence on piracy that can
be presented in court. One of the classic lawsuits is the Rockford Map Pub. versus
Dir. Service Co. of Colorado, 768 F.2d 145, 147 (7th Cir., 1985), where phony mid-
dle initials of names in a map spelled out “Rockford Map Inc.” when read from the
top of the map to the bottom and thus copyright infringement was found. How-
ever, the traditional protection methods alter the geospatial meanings conveyed
by a map, which can cause serious problems in critical government, military, in-
telligence, and commercial operations that require high-fidelity geospatial infor-
mation. Furthermore, in the situations where distinct errors serve as fingerprints
to trace individual copies, such deliberately placed errors can be easily identified
and removed by computer programs after multiple copies of a map are brought to
the digital domain. All these limitations of the traditional methods prompt for a
modern way of map protection that can be more effective and less intrusive.
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Curves are one of the major components appearing in maps as well as draw-
ings and signatures. A huge amount of curve-based documents are being brought
to the digital domain owing to the popularity of scanning devices and pen-based
devices (such as TabletPC). Digital maps and drawings are also generated directly
by various computer programs such as map-making software and CAD systems.
Having the capability of hiding digital watermarks or other secondary data in
curves can facilitate digital rights management of important documents in gov-
ernment, military, and commercial operations. For example, trace-and-track ca-
pabilities can be provided through invisibly embedding a unique ID, referred to
as a digital fingerprint, to each copy of a document before distributing it to a user
[17, 50]. In this chapter, we present a new, robust data hiding technique for curves
and investigate its feasibility for fingerprinting maps.

As a forensic mechanism to deter information leakage and to trace traitors,
digital fingerprints must be difficult to remove. For maps and other visual doc-
uments, the fingerprint has to be embedded in a robust way against common
processing and malicious attacks. Some examples include collusion, where sev-
eral users combine information from several copies, which have the same content
but different fingerprints, to generate a new copy in which the original fingerprints
are removed or attenuated [50]; various geometric transformations, such as rota-
tion, scaling, and translation (RST); and D/A-A/D conversions such as printing
and scanning. On the other hand, the fingerprint must be embedded in a visu-
ally nonintrusive way without changing the geographical and/or visual meanings
conveyed by the document. This is because the intrusive changes may have serious
consequences in critical military and commercial operations, for example, when
inaccurate data are given to troops or fed into navigation systems.

There are a very limited amount of existing works on watermarking maps
[127], and few exploit curve features or address fingerprinting issues. A text-based
geometric normalization method was proposed in [128], whereby text labels are
first used to normalize the orientation and scale of the map image, and conven-
tional robust watermarking algorithms for grayscale images are then applied. As
maps can be represented as a set of vectors, two related works on watermarking
vector graphics perturb vertices through Fourier descriptors of polygonal lines
[129] or spectral analysis of mesh models [130] to embed copyright marks. The
embedding in [129] introduces visible distortions, as shown by the experimen-
tal results in the paper. The watermarking approach in [130] has high complexity
resulting from the mesh spectral analysis, and cannot be easily applied to maps
beyond urban areas, where curves become essential components in mapping a
vast amount of land and underwater terrains. Since curve-based documents can
also be represented as binary bitmap images (known as the raster representa-
tion), we expand the literature survey to data embedding works for general bi-
nary images. The data hiding algorithm in [131] enforces the ratio of black versus
white pixels in a block to be larger or smaller than 1, and flippable pixels are de-
fined and used in [132, 133] to enforce specific block-based relationship to embed
data. The fragility of these embedding techniques and the dependence on precise
sampling of pixels for correct decoding pose challenges in surviving geometric
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transformations, printing and scanning, and malicious removal in fingerprinting
applications. A few other works embed information in dithered images by manip-
ulating the dithering patterns, in fax images by manipulating the run-length [134],
and in textual images by changing the line spacing and character spacing [135].
These works cannot be easily extended to robustly mark curve-based documents.

Several watermarking algorithms on graphic data explore compact represen-
tations of curves or surfaces for data embedding, such as through the nonuniform
rational B-spline (NURBS) model. The work in [136] concerns how to embed
data in NURBS curves and surfaces without changing the shape or increasing the
number of B-spline parameters. The approach demonstrated in the paper relies on
reparameterizing a curve or surface using a rational linear function that has an off-
set determined by the bits to be embedded. The embedded data are fragile and can
be removed by perturbing the NURBS parameters or another round of reparam-
eterization. The work in [137, 138] focuses on 3D surfaces and extracts NURBS
features from a 3D surface to form a few 2D arrays. Through DCT-domain em-
bedding in these virtual images, a watermark is embedded into the 3D NURBS
surfaces. Registration techniques for 3D NURBS surfaces such as [139] may be
employed to facilitate the alignment of the test surfaces with the original refer-
ence surface prior to watermark detection. These prior works provide enlightening
analogy for watermarking 2D curves in the B-spline feature domain. As most exist-
ing exploration either has limited robustness or targets mainly at 3D surfaces, there
are few discussions on robust fingerprinting of curves. To our best knowledge, no
existing watermarking work has demonstrated the robustness under curve format
conversion and D/A-A/D conversion, or addressed collusion resistance and traitor
tracing issues for curves.

In this chapter, we propose a robust curve watermarking method and apply
it to fingerprinting maps without interfering with the geospatial meanings con-
veyed by the map [140, 141, 142]. We select B-spline control points of curves as
the feature domain and add mutually independent, noise-like sequences as digital
fingerprints to the coordinates of the control points. A proper set of B-spline con-
trol points forms a compact collection of salient features representing the shape
of the curve, which is analogous to the perceptually significant components in the
continuous-tone images [23]. The shape of curves is also invariant to such chal-
lenging attacks as printing and scanning and the vector/raster-raster/vector con-
versions. The additive spread-spectrum embedding and the corresponding corre-
lation-based detection generally provide a good tradeoff between imperceptibility
and robustness [23], especially when the original host signal is available to the
detector as in most of the fingerprinting applications [50]. To determine which
fingerprint sequence(s) is(are) present in a test curve, registration with the orig-
inal unmarked curve is an indispensable preprocessing step. B-splines have in-
variance to affine transformations in that the affine transformation of a curve is
equivalent to the affine transformation of its control points. This affine invariance
property of B-splines can facilitate automatic curve registration. Meanwhile, as a
curve can be approximated by different sets of B-spline control points, we propose
an iterative alignment-minimization (IAM) algorithm to simultaneously align the
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curves and identify the corresponding control points with high precision. Through
the B-spline-based data hiding plus the IAM algorithm for robust fingerprint de-
tection, our curve watermarking technique can sustain a number of challeng-
ing attacks, such as collusion, cropping, geometric transformations, vector/raster-
raster/vector conversions, and printing and scanning, and is therefore capable of
building collusion-resistant fingerprinting for maps and other curve-based docu-
ments.

The chapter is organized as follows. Section 8.2 discusses the feature domain
in which data hiding is performed and presents the basic embedding and detec-
tion algorithms with experimental results on marking simple curves. Section 8.3
details the proposed iterative alignment-minimization algorithm for the finger-
print detection and analyzes its robustness. Experimental results on fingerprinting
topographic maps are presented in Section 8.4 to demonstrate the robustness of
our method against a number of distortions and attacks. Finally, chapter summary
is given in Section 8.5.

8.2. Basic embedding and detection

Our proposed algorithm employs B-spline control points of curves as the feature
domain and adopts spread-spectrum embedding [23] for robustly watermarking
the coordinates of the control points. The fingerprints for different users are ap-
proximately orthogonal and generated by pseudorandom number generators with
different keys, and the detection is based on correlation statistics. In the follow-
ing subsections, we explain the main steps of the basic embedding and detection
method in detail.

8.2.1. Feature extraction

A number of approaches have been proposed for curve modeling, including us-
ing chain codes, Fourier descriptors, autoregressive models, and B-splines [143].
Among them, B-splines are particularly attractive and have been extensively used
in computer-aided design and computer graphics. This is mainly because the B-
spline model provides a bounded and continuous approximation of a curve with
excellent local shape control and is invariant to affine transformations [144]. These
advantages also lead to our choosing B-splines as the feature domain for embed-
ding data in curves.

B-splines are piecewise polynomial functions that provide local approxima-
tions of curves using a small number of parameters known as the control points
[143]. Let {p(t)} denote a curve, where p(t) = (px(t), py(t)) and t is a continuous
indexing parameter. Its B-spline approximation {p[B](t)} can be written as

p[B](t) =
n∑
i=0

ciBi,k(t), (8.1)

where t ranges from 0 to n−1, ci = (cxi , cyi) is the ith control point (i = 0, 1, . . . ,n),
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and Bi,k(t) is the weight of the ith control point for the point p[B](t) and is known
as the kth order B-spline blending function. Bi,k(t) is recursively defined as

Bi,1(t) =
1, ti ≤ t < ti+1,

0, otherwise,

Bi,k(t) =
(
t − ti

)
Bi,k−1(t)

ti+k−1 − ti
+

(
ti+k − t

)
Bi+1, k−1(t)

ti+k − ti+1
, k = 2, 3, . . . ,

(8.2)

where {ti} are parameters known as knots and represent locations where the B-
spline functions are tied together [143]. The placement of knots controls the form
of B-spline functions and in turn the control points.

As a compact representation, the number of B-spline control points necessary
to represent a curve at a desired precision can be much smaller than the number
of points that can be sampled from the curve. Thus, given a set of samples on
the curve, finding a smaller set of control points for its B-spline approximation
that minimizes the approximation error to the original curve can be formulated
as a least-squares problem. Coordinates of the m + 1 samples on the curve can be
represented as an (m + 1)× 2 matrix

P =


p0

p1

...

pm

 =

px0 py0

px1 py1

...
...

pxm pym

 �
(

px, py
)
. (8.3)

The indexing values of the B-spline blending functions corresponding to these
m+ 1 samples are t = s0, s1, s2, . . . , sm, where s0 < s1 < s2 < · · · < sm. Further, let C
represent a set of n + 1 control points

C =


c0

c1

...

cn

 =

cx0 cy0

cx1 cy1

...
...

cxn cyn

 �
(

cx, cy
)
. (8.4)

Then we can write the least-squares problem with its solution as

min
C
‖BC− P‖2 �⇒ C = (

BTB
)−1

BTP = B†P, (8.5)

where {B} ji is the value of the kth-order B-spline blending function Bi,k(t) in (8.2)
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Figure 8.1. The basic embedding and detection process of data hiding in curves.

evaluated at t = s j for the ith control point and † denotes the pseudoinverse of a
matrix. Due to the natural decoupling of the x and y coordinates in the B-spline
representation, we can solve the problem separately along each of the two coordi-
nates as

min
cx
‖Bcx − px‖2

min
cy
‖Bcy − py‖2 �⇒

cx = B†px

cy = B†py.
(8.6)

8.2.2. Fingerprinting in the control-point domain

The control points of a curve are analogous to the perceptually significant compo-
nents of a continuous-tone image [23] in that they form a compact set of salient
features for curves. In such a feature domain, we apply spread-spectrum embed-
ding and correlation-based detection, as shown in Figure 8.1.

In the embedding, we use mutually independent, noise-like sequences as dig-
ital fingerprints to represent different users/IDs for trace-and-track purposes. As
each of the n + 1 control points has two coordinate values x and y, the overall
length of the fingerprint sequence is 2(n + 1). To apply spread-spectrum embed-
ding on a curve, we add a scaled version of the fingerprint sequence (wx, wy) to
the coordinates of a set of control points obtained from the previous subsection.
This results in a set of watermarked control points (c′x, c′y) with

c′x = cx + αwx,

c′y = cy + αwy ,
(8.7)

where α is a scaling factor adjusting the fingerprint strength. A watermarked curve
can then be constructed by the B-spline synthesis equation (8.1) using these wa-
termarked control points.

To determine which fingerprint sequence(s) is(are) present in a test curve,
we first need to perform registration using the original unmarked curve that is
commonly available to a detector in fingerprinting applications. After registration,
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control points (c̃x, c̃y) are extracted from the test curve. The accurate registration
and correct extraction of control points are crucial to the detection of fingerprints,
which will be detailed in Section 8.3. Assuming we have the set of sample points
given by (p̃x, p̃y) = (B(cx+αwx), B(cy+αwy)), we can extract the test control points
(c̃x, c̃y) from (p̃x, p̃y) using (8.6). After getting (c̃x, c̃y), we compute the difference
between the coordinates of the test and the original control points to arrive at an
estimated fingerprint sequence

w̃x = c̃x − cx
α

,

w̃y =
c̃y − cy

α
.

(8.8)

The estimated fingerprint sequence consists of one or several users’ contribu-
tion as well as some noise coming from distortions or attacks. The problem of find-
ing out which user(s) has (have) contributed to the estimated fingerprint can be
formulated as hypothesis testing [58, 59], which is commonly handled by evaluat-
ing the similarity between the estimated fingerprint sequence and each fingerprint
sequence in the database through a correlation-based statistic. Various correlation-
based statistics share a kernel term measuring the total correlation 〈w̃, w〉 (where
w̃ � [w̃x, w̃y] and w � [wx, wy]) and differ in how they are normalized. To fa-
cilitate the evaluation of detection performance, we often normalize the detection
statistic to make it have a unit variance and follow approximately a Gaussian dis-
tribution under distortions and attacks. There are several ways to do so [60], for
example, to normalize using the product of the noise’s standard deviation and the
watermark’s L2-norm, or through a logarithm-based transformation to be intro-
duced later. As we discussed in Chapters 2 and 3, among several correlation-based
statistics analyzed and compared in the literature, the Z statistic shows excellent
robustness against different collusion attacks and does not require the explicit es-
timation of the noise variance. These advantages make it attractive to handle our
problem.

In our fingerprint detection problem from the control point domain, the
number of samples in the statistic test is L = 2(n+ 1). Denoting the average values
of the components in w̃ and w as µ̃ and µ, respectively, we compute the sample
correlation coefficient r between w̃ and w by

r =
∑L

i=1

(
w̃i − µ̃

)(
wi − µ

)√∑L
j=1

(
w̃ j − µ̃

)2 ∑L
k=1

(
wk − µ

)2
. (8.9)

Using the above r, the Z statistic is defined as below:

Z �
√
L− 3

2
log

1 + r

1− r
. (8.10)
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It was shown that it follows a unit-variance Gaussian distribution when (w, w̃)
forms a bivariate normal population:

Z ∼ N
(√

L− 3
2

log
1 + ρ

1− ρ
, 1
)

, (8.11)

where ρ is the correlation coefficient of this bivariate normal population (W ,Y),
as discussed in Chapter 2. It is worth mentioning that, when the noise introduced
by attacks does not follow a Gaussian distribution and/or the noise samples are
mutually correlated, the Z statistics with the true traitors may be somewhat differ-
ent from the unit-variance Gaussian distribution. The actual distribution of the Z
statistics and the detection performance in terms of the detection probability and
the false alarm probability will be presented in our experimental results.

8.2.3. Fidelity and robustness considerations

Fingerprint construction

The collusion resistance requirement makes the fingerprinting problem more chal-
lenging than robustly embedding a meaningful ID label, as the simple encoding of
IDs can be vulnerable to collusion (e.g., different users average their copies of the
same content to remove the IDs). Designing a collusion-resistant code is one of the
possible approaches and has been studied in [80]. Such coded approach requires
that each code symbol be reliably embedded, which consumes a nontrivial amount
of markable features per embedded bit. The markable feature for our curve water-
marking problem is the coordinates of control points. As the number of control
points is limited and the changes have to be small, orthogonal modulation that
uses (approximately) orthogonal signals to represent different users is more at-
tractive than the coded modulation.The general collusion resistance of orthogonal
fingerprinting has been studied in [58, 59], which shows that the maximum num-
ber of colluders the system can resist is a function of the watermark-to-noise ratio,
the number of markable features, the total number of users, as well as the false
positive and negative requirements.

While the orthogonal design of fingerprints is conceptually simple and easy to
analyze, the practical implementation often employs pseudorandom number gen-
erators to produce a sequence of independent random numbers as a fingerprint
and uses different seeds for different users [60, 80, 145]. In this way, the actual
fingerprints would be statistically uncorrelated, but they can have nonzero corre-
lation. This correlation can accommodate a larger number of fingerprint vectors
than the vector’s dimension, but it also affects the detection performance to some
degree. Since the correlation is very low between the independent fingerprints, the
impact is small. This can be seen from our experimental results of the detection
performance in Sections 8.2.4 and 8.4.
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Curvature-based sampling

The overall distortion introduced by the embedding process on a curve consists of
two parts: one is from the watermark signals added to the control point coordi-
nates, and the other is from the B-spline modeling. To make the B-spline synthe-
sized curve as close to the original curve as possible and thus keep the modeling
error low, the knots connecting adjacent segments of B-splines should be wisely
placed and the sample points properly chosen to feed into the least-squares esti-
mator for the control points. Uniform sampling can be used when there are no
abrupt changes in a curve segment, while nonuniform sampling is desirable for
curve segments that exhibit substantial variations in curvature.

Inspired by [146, 147], we employ a curvature-based method to select sam-
ple points from raster curves. Formally, the curvature [148] of a point p(t) =
(px(t), py(t)) on a curve {p(t)} is defined as

k(t) �
p′x p′′y − p′y p′′x(
p′x

2 + p′ y
2)3/2 , (8.12)

where p′x = dpx/dt, p′x = d2px/dt2, p′y = dpy/dt, and p′y = d2py/dt2. In practical
implementations, we approximate the curvature of each point on the curve by
measuring the angular changes in the tangent line at its location. Specifically, we
perform a first-order polynomial curve fitting on an l-pixel interval before and
after the curve point p(t) to get two slopes k1 and k2. The approximate curvature

k̂(t) is computed by k̂(t) = | arctan(k1)−arctan(k2)|. Based on k̂(t), we select more
sample points from higher-curvature segments and fewer from lower-curvature
segments.

After selecting the m + 1 sample points (px, py) as defined in (8.3), we need
to determine their indexing values t = s0, s1, s2, . . . , sm for evaluating their B-spline
blending function values Bi,k(t). In our tests, we employ the uniform nonperiodic
B-spline blending function of order k = 3 and the knot parameters {ti} are deter-
mined as [t0, t1, . . . , tn+3] = [0, 0, 0, 1, 2, 3, . . . ,n−2,n−1,n−1,n−1]. One way of
the indexing value assignment is known as the chord length method [149], which
increases t values of the sample points in proportion to the chord length

s j = s j−1 +
∥∥p j − p j−1

∥∥ n− 1∑m
i=1

∥∥pi − pi−1
∥∥ , j = 1, 2, . . . ,m, (8.13)

where s0 = 0 and ‖p j − p j−1‖ denotes the chord length between points p j and
p j−1.

In the vector curve case, we are generally given a set of discrete, nonuniformly
spaced points for each curve. Since a vector curve can be rendered as a raster curve
by interpolation, we can determine its sample points with their indexing values
by rendering it to be a raster curve and then performing curvature-based sam-
pling and the chord length method as described above. A simpler alternative is
to directly use the given discrete points as sample points but assign their index-
ing values according to a curvature-based rule. Specifically, we approximate the
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curvature of each sample point (px(s j), py(s j)) by

k̂
(
s j
) = ∣∣∣∣∣ arctan

py
(
s j+1

)− py
(
s j
)

px
(
s j+1

)− px
(
s j
) − arctan

py
(
s j
)− py

(
s j−1

)
px
(
s j
)− px

(
s j−1

) ∣∣∣∣∣ (8.14)

and then increase t values of the sample points in inverse proportion to their cur-
vature. The higher the curvature, the smaller the increase in the t value. This is
equivalent to having more control points for higher-curvature segments. With
more “resources” in terms of B-spline control points assigned to segments with
more details (i.e., higher-curvature segments), it allows for a better B-spline ap-
proximation.

Determining the fingerprint length and strength

The number of control points is an important parameter for tuning. Depending
on the shape of the curve, using too few control points could cause the details of
the curve to be lost, while using too many control points may lead to overfitting
and bring artifacts even before data embedding. One simple method of determin-
ing the number of control points is to compute the approximate curvature of each
sample point as in (8.14) and assign higher weights to points with higher cur-
vature. We then determine the number of control points according to the total
weights of all sample points on the curve. The number of control points not only
affects the distortion introduced by the embedding, but also determines the finger-
print robustness against noise and attacks. The more the control points, the longer
the fingerprint sequence, and in turn the more robust the fingerprint against noise
and attacks. Too many control points, however, may lead to overfitting and incur
visible distortions even before data embedding. In our tests, the number of control
points is about 5%–8% of the total number of curve pixels.

The scaling factor α also affects the invisibility and robustness of the finger-
print. The larger the scaling factor, the more robust the fingerprint, but the larger
the distortion resulted in. For cartographic applications, industrial standards pro-
vide guidelines on the maximum allowable changes [130]. Perturbation of 2 to 3
pixels is usually considered acceptable. We use random number sequences with a
unit variance as fingerprints and set α to 0.5 in our tests. The difference between
two curves can be quantified using such metric as the Hausdorff distance [150] in
a max-min sense. More specifically, let d(a, b) be the distance between two points
a and b, which are on two curves A and B, respectively. We further define the dis-
tance from point a to curve B as d(a,B) � infb∈B d(a, b), and the distance from
curve A to curve B as dB(A) � supa∈A d(a,B). Thus, the Hausdorff distance be-
tween curves A and B is

h(A,B) � dB(A) + dA(B). (8.15)
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Figure 8.2. Fingerprinting a hand-drawn “Swan” curve: (a) original curve, (b) fingerprinted curve,
(c) control points overlaid on the original curve.

Nonblind detection

The basic fingerprint detection presented earlier makes use of the original un-
marked copy and is known as nonblind detection. While blind detection is pre-
ferred for a few major data hiding applications (such as ownership verification,
authentication, and annotation), nonblind detection is considered as a reasonable
assumption for many fingerprinting applications [17, 44, 80], which is also the
focus of this chapter. The rationale for nonblind detection is that the fingerprint
verification is usually handled by the content owner or by an authorized central
server, who can have access to the original host signal and use it in detection to
answer the primary question of whose fingerprint is in the suspicious document.
The availability of the original unmarked copy in the detection gives a high equiv-
alent watermark-to-noise ratio, thus allowing for high resistance against noise and
attacks. Additionally, using the original unmarked copy as a reference copy, the
detector can register a test copy that suffers from geometric distortions, which en-
ables the resilience to various geometric transformations as to be demonstrated
later in this chapter.

8.2.4. Experiments with simple curves

To demonstrate our basic embedding and detection algorithms, we first present
the fingerprinting results on two simple curves, the “Swan” curve in Figure 8.2a
and the “W” curve in Figure 8.3a. These two curves were hand-drawn on a
TabletPC and stored as binary images of size 329 × 392 and 521 × 288, respec-
tively. We use the contour following algorithm in [147] to traverse the curve and
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Figure 8.3. Fingerprinting a hand-drawn “W” curve: (a) original curve, (b) fingerprinted curve, (c)
detection statistics.

obtain a set of ordered curve points. When fingerprinting these two curves, we
perform uniform sampling on the curve points and determine the indexing val-
ues of the sample points using the chord length method. We highlight the control
points of the “Swan” curve in Figure 8.2c. The fingerprinted curves are shown in
Figures 8.2b and 8.3b, where we have marked 101 control points for each curve.
With the marked control points, we construct a fingerprinted curve with the same
number of points as the original curve by evaluating the B-spline synthesis for-
mula (8.1) at indexing values uniformly sampled between t = 0 and t = n− 1. As
for the fidelity of the fingerprinting, the Hausdorff distance between the original
and marked curves is 5.0 for the “Swan” curve, and 3.4 for the “W” curve. The
differences are hardly visible to human eyes.

In the detection, uniform sampling on the fingerprinted curves constructed
before can give us an approximation of the set of sample points (p̃x, p̃y) = (B(cx +
αwx), B(cy + αwy)) assumed in Section 8.2.2. We then estimate the test control
points and perform correlation-based detection. The detection results on the fin-
gerprinted “W” curve are shown in Figure 8.3c, which illustrates a high Z value for
the correct positive detection with the 1000th sequence corresponding to the true
user and very small Z statistics for the correct negative detection with other se-
quences of the innocent users. To quantify the detection performance, we generate
1000 different sets of fingerprint sequences and each set consists of 1000 indepen-
dent fingerprint sequences that are approximately orthogonal to each other. For
each set, we embed each of the 1000 fingerprint sequences to form a fingerprinted
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Figure 8.4. Histogram and Gaussian approximation of the Z statistics for the “W” curve.

curve, and then estimate a fingerprint sequence from the fingerprinted curve and
compute the Z values with the 1000 fingerprint sequences. In this way, we col-
lect a total of 1000 × 1000 = 1 × 106 values for the fingerprint presence case and
1000 × 1000 × 999 ≈ 1 × 109 values for the fingerprint absence case. Using these
data, we plot in Figure 8.4 the histogram of the Z values for both fingerprint pres-
ence and absence cases. For each of these two sets of data, we calculate its mean
and variance, and plot the Gaussian distributions with these means and variances.
As shown by the dashed curves in Figure 8.4, the two Gaussian approximations
N (11.22, 0.87) and N (−0.0009, 1.00) fit the observed Z values very well. We can
see that we indeed get an approximate Gaussian distribution with a large positive
mean under the presence of a fingerprint and a zero mean under the absence.

We further examine the measured and the Gaussian approximated probabili-
ties of detection and false alarm for different thresholds on the Z statistic. We see
from the results in Table 8.1 that the Gaussian approximation works well in re-
gions close to the mean, while slightly deviates from Gaussian in regions farther
from the mean. In the meantime, we note that in the tail region where the Gauss-
ian approximation becomes loose, the approximated order of magnitude matches
very well with the measured distribution from our experiments. The probability of
miss or false alarm concerned there is already very small (below 10−5). Therefore,
for many practical applications, either the probability may be deemed as zero or
an approximation on the order of magnitude would be sufficient. The table also
shows that a threshold of 6 on the detection statistics gives a false alarm probabil-
ity of 10−9, which is sufficiently low for most applications. Thus we choose 6 as
the detection threshold in our tests. The detection result for the “Swan” curve is
similar and will not be repeated here.

To examine the survivability of our proposed basic fingerprinting mechanism
that employs the coordinates of the B-spline control points as the embedding
domain and approximately orthogonal spread-spectrum signals as fingerprints,
we perform a printing-and-scanning test with manual registration between the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


218 Fingerprinting curves

Table 8.1. Measured detection performance and its Gaussian approximation for the “W” curve.

Threshold on Z 3 4.5 6 7.5 9

1− Pd
Measured 0 0 0 4.1× 10−5 8.7× 10−3

Gaussian approx. 6.6× 10−19 3.1× 10−13 1.1× 10−8 3.4× 10−5 8.7× 10−3

P f a
Measured 1.4× 10−3 4.1× 10−6 2.0× 10−9 0 0

Gaussian approx. 1.3× 10−3 3.4× 10−6 0.97× 10−9 3.1× 10−14 1.1× 10−19
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Figure 8.5. Printing-and-scanning test for the “W” curve: (a) fingerprinted curve after printing and
scanning, (b) detection statistics.

scanned fingerprinted curve and the original unmarked curve. We print out the
fingerprinted “W” curve using an HP laser printer and scan it back as a 527× 288
binary image as shown in Figure 8.5a. In addition to manual registration, a thin-
ning operation is performed to extract a one-pixel-wide skeleton from the scanned
curve that is usually several pixels wide after high resolution scanning. As we
can see from the detection results in Figure 8.5b, despite that the curve is sim-
ple and the number of control points is relatively small, the fingerprint survives
the printing-and-scanning process and gives a detection statistic higher than the
detection threshold. The issue of automating the registration process will be ad-
dressed in the next section.
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8.3. Iterative alignment-minimization algorithm for
robust fingerprint detection

The set of test sample points (p̃x, p̃y) assumed in Section 8.2.2 is not always avail-
able to a detector, especially when a test curve undergoes vector-raster conversion,
undergoes geometric transformations (such as rotation, translation, and scaling),
and/or is scanned from a printed hard copy. A preprocessing step preceding the
basic fingerprint detection module is needed to align the test curve with the orig-
inal one. While manual registration between the test curve and the original un-
marked curve shown in Section 8.2.4 is a possible way to overcome simple geo-
metric distortions, automated registration is more desirable to improve the ac-
curacy and efficiency of this indispensable preprocessing step. It should also be
noted that the test curve should be registered with the original unmarked curve,
and any “clean/undistorted” fingerprinted copies known to the detector should
not be used as a reference for registering the test curve. This is not only because
which fingerprints are present in the test curve still remains to be determined, but
also because using a fingerprinted copy as a reference for registration may increase
the false alarm in determining the presence or absence of the corresponding fin-
gerprint.

With the affine invariance property, B-splines have been used in a few exist-
ing curve alignment works. In the moment-based approach of [146], two affine
related curves are fitted by two separate B-splines, and the transform parame-
ters are estimated by using weighted B-spline curve moments. The method re-
quires taking integration as well as the second-order curve derivatives to obtain
the moments. In a recent method employing a super curve [151], two affine re-
lated curves are superimposed with each other in a single frame and then this
combined super curve is fitted by a single B-spline. Through minimizing the B-
spline fitting error, both transform parameters and control points of the fitting
B-spline can be estimated simultaneously. Since neither integration nor differen-
tiation is needed, this method is robust to noise and will serve as a building block
in our work.

Another problem related to the test sample points assumed before is the inher-
ent nonuniqueness of B-spline control points, which refers to the fact that a curve
can be well approximated by different sets of B-spline control points. We have seen
from Section 8.2.1 that B-spline control points are estimated from a set of sample
points from the curve. With a different set of sample points or a different indexing
value assignment, we may induce a quite different set of control points that can
still accurately describe the same curve. It is possible for the differences between
two sets of unmarked control points to be much larger than the embedded fin-
gerprint sequence, as demonstrated by the example in Figure 8.6. Therefore, if we
cannot find from a test curve a set of control points corresponding to the one used
in the embedding, we may not be able to detect the fingerprint sequence. Consid-
ering the one-to-one relationship between sample points (including their indexing
values {s j}) and control points, we try to find the set of sample points from a test
curve that corresponds to the set of sample points used in the embedding. We
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Figure 8.6. Nonuniqueness of B-spline control points: (a) a set of control points for the original un-
marked curve and its fingerprinted version, (b) two different sets of control points for modeling the
same unmarked curve.

will refer to this problem as the point correspondence problem. As we will see, the
nonuniqueness issue of B-spline control points can be addressed through finding
the point correspondence.

In the following subsections, we first formulate the curve registration and
point correspondence problem in the context of fingerprint detection. We then
take the curve alignment method introduced in [151] as a building block and
propose an iterative alignment-minimization (IAM) algorithm that can perform
curve registration and solve the point correspondence problem simultaneously.
Finally, we present a detection example for a single curve using the IAM algorithm
and discuss the robustness issues.
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8.3.1. Problem formulation

We use “View-I” to refer to the geometric setup of the original unmarked curve
and “View-II” the setup of the test curve. Thus we can register the two curves
by transforming the test curve from “View-II” to “View-I,” or transforming the
original curve from “View-I” to “View-II.” We focus on registration under affine
transformations, which can represent combinations of scaling, rotation, transla-
tion, reflection, and shearing. These are common geometric transformations and
can well model common scenarios in printing and scanning.

We call two curves affine related if each point (x, y) on one curve is related to
its corresponding point (x̃, ỹ) on another curve via

[
x̃

ỹ

]
=
[
a11 a12

a21 a22

][
x

y

]
+

[
a13

a23

]
, (8.16)

where {ai j} are parameters representing the collective effect of scaling, rotation,
translation, reflection, and shearing. The transform parameters can also be rep-
resented in a homogeneous coordinate by two column vectors ax and ay , or by a
single matrix A:

x̃ỹ
1

 =
a11 a12 a13

a21 a22 a23

0 0 1


xy

1

 =
 aTx

aTy
0 0 1


xy

1

 = A

xy
1

 . (8.17)

Similarly, the inverse transform can be represented by

xy
1

 = A−1

x̃ỹ
1

 �

 gT
x

gT
y

0 0 1


x̃ỹ

1

 . (8.18)

The original curve available to the detector in fingerprinting applications can
be a raster curve or a vector curve. The detector also knows the original set of
sample points (px, py) ≈ (Bcx, Bcy) that is used for estimating the set of control
points upon which spread-spectrum embedding is applied. The test curve can be
a vector curve with sampled curve points (ṽx, ṽy) or a raster curve with pixel co-
ordinates (r̃x, r̃y). A relatively simple case is that the set of discrete points in a test
vector curve corresponds to the set of sample points used in the embedding except
with possible affine transformations and noise addition. In this case, the test vector
points (ṽx, ṽy) and the original set of control points (cx, cy) are related by

ṽx =
[

B
(

cx + αwx
)

B
(

cy + αwy
)

1
]

ax + nx,

ṽy =
[

B
(

cx + αwx
)

B
(

cy + αwy
)

1
]

ay + ny ,
(8.19)
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where (nx, ny) represents additional noise applied to the transformed fingerprint-
ed vector points, and 1 is a column vector with all 1’s. With the point correspon-
dence information, the only issue is curve alignment and it can be solved by di-
rectly applying the curve alignment method in [151]. However, in addition to
possible affine transformations between the original and the test curve, the correct
point correspondence information may not always be available. This is especially
the case after a fingerprinted curve goes through vector-raster conversions and/or
printing and scanning. Under this situation, not only transform parameters for
the curve alignment but also the point correspondence must be estimated in order
to locate the fingerprinted control points successfully. We consider that both the
original and the test curves are represented in raster format as a vector curve can
be rendered as a raster curve by interpolation, and that the sample points used in
fingerprinting the original curve are known to the detector. The problem can be
formulated as follows.

Problem 8.1. Given an original raster curve with a set of sample points (px, py)
and a test raster curve (r̃x, r̃y), we register the test curve with the original curve and
extract the control points of the test curve. Both transform parameters (ax, ay) (or
equivalently (gx, gy)) and a set of sample points (p̃x, p̃y) corresponding to the one
used in the fingerprint embedding must be found from the test curve.

8.3.2. Iterative alignment-minimization algorithm

To align the test curves with the original curves and in the meantime identify the
point correspondence of the sample points, we develop an iterative alignment-
minimization (IAM) algorithm. As shown in Figure 8.7, the IAM algorithm con-
sists of three main steps and the last two steps will be executed iteratively. We first
obtain an initial estimation of the test sample points. With the estimated point
correspondence, we then perform “super” curve alignment to estimate both the
transform parameters and the control points of the test curve. With the estimated
transform parameters, we refine the estimation of point correspondence through
a nearest-neighbor rule. A detailed block diagram of the proposed IAM-based fin-
gerprint detection is shown in Figure 8.8.

Step 1. Initial estimation of sample points on the test curve.

We initialize the sample points (p̃(1)
x , p̃(1)

y ) on the test curve using the following
simple estimator. Let M and M̃ be the number of points on the original and the
test raster curve, respectively. From the known indices J = [ j0, j1, j2, . . . , jm] of the
original curve’s m + 1 sample points, where j0 < j1 < j2 < · · · < jm are integers
ranging from 0 to M − 1, we estimate the indices of the test curve’s m + 1 sample
points by J̃ = round(((M̃−1)/(M−1))·J). Using this estimated index vector J̃, we
can identify the corresponding sample points from the test curve and take them as
the initial estimate.
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Figure 8.7. Basic flow and main modules of the proposed iterative alignment minimization algorithm.

Step 2. Curve alignment with the estimated sample points.

Given the estimated point correspondence with sample points (p̃(i)
x , p̃(i)

y ) for
the test curve in the ith iteration, we apply the curve alignment method in [151]
to estimate the transform parameters and the control points of the test curve.
More specifically, let the transform parameters from View-I (the original curve)

to View-II (the test curve) be (a(i)
x , a(i)

y ). The sample points on the test curve can

be transformed back to View-I by (g(i)
x , g(i)

y ). We then fit these transformed test
sample points as well as the original sample points with a single B-spline curve
(referred to as a “super curve” in [151]) and search for both the transform param-
eters (ĝ(i)

x , ĝ(i)
y ) and the B-spline control points (ĉ(i)

x , ĉ(i)
y ) to minimize the fitting
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Figure 8.8. Block diagram of curve registration and fingerprint detection using the proposed IAM
algorithm.

error

f
(

ĉ(i)
x , ĉ(i)

y , ĝ(i)
x , ĝ(i)

y

)
=
∥∥∥∥∥
[

B
B

]
ĉ(i)
x −

[
px

P̃(i)ĝ(i)
x

]∥∥∥∥∥
2

+

∥∥∥∥∥
[

B
B

]
ĉ(i)
y −

[
py

P̃(i)ĝ(i)
y

]∥∥∥∥∥
2

,
(8.20)

where P̃(i) �
[

p̃(i)
x p̃(i)

y 1
]

and 1 is a column vector with all 1’s. The partial

derivatives of the fitting error function with respect to ĝ(i)
x , ĝ(i)

y , ĉ(i)
x , and ĉ(i)

y being
zero is the necessary condition for the solution to this optimization problem. Thus
we obtain an estimate of the transform parameters and the B-spline control points
as

ĝ(i)
x = C(i)D(i)px, ĝ(i)

y = C(i)D(i)py ,

ĉ(i)
x = D(i)px, ĉ(i)

y = D(i)py ,
(8.21)

where

C(i) �
(

P̃(i)T P̃(i))†P̃(i)TB,

D(i) �
(
2BTB− BT P̃(i)C(i))†BT .

(8.22)

The estimated control points (ĉ(i)
x , ĉ(i)

y ) can then be used to estimate the embedded
fingerprint sequence and further compute the detection statistic Z(i), as described
in Section 8.2.

Step 3. Refinement of sample point estimation on the test curve.
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Given the estimated transform parameters (ĝ(i)
x , ĝ(i)

y ), we align the test raster
curve (r̃x, r̃y) with the original curve by transforming it to View-I:

r̃ (i)
x,I =

[
r̃x r̃y 1

]
ĝ(i)
x ,

r̃ (i)
y,I =

[
r̃x r̃y 1

]
ĝ(i)
y .

(8.23)

As the fingerprinted sample points (B(cx + αwx), B(cy + αwy)) are located at the
neighborhood of their corresponding unmarked version (Bcx, Bcy), we apply a
nearest-neighbor rule to get a refined estimation of the test curve’s sample points.
More specifically, for each point of (Bcx, Bcy), we find its closest point from the

aligned test raster curve ( r̃ (i)
x,I , r̃ (i)

y,I) and then denote the collection of these closest

points as (p̃(i+1)
x,I , p̃(i+1)

y,I ). These nearest neighbors form refined estimates of the test

sample points in View-I and are then transformed with parameters (â(i)
x , â(i)

y ) back
to View-II as new estimates of the test sample points:

p̃(i+1)
x =

[
p̃(i+1)
x,I p̃(i+1)

y,I 1
]

â(i)
x ,

p̃(i+1)
y =

[
p̃(i+1)
x,I p̃(i+1)

y,I 1
]

â(i)
y .

(8.24)

After this update, we increase i and go back to Step 2. The iteration will con-
tinue until convergence or for an empirically determined number of times. A total
of 15 rounds of iterations are used in our experiments.

8.3.3. Detection example and discussion

We present a detection example employing the proposed IAM algorithm on a
curve taken from a topographic map. Shown in Figure 8.9a are the original curve
and a fingerprinted curve having undergone vector-raster conversion and some
geometric transformations. The original curve consists of 3796 raster pixels and
367 of them are used to estimate a set of 200 control points for data embedding.
Then, a fingerprinted curve with 367 vector points is generated, rendered, and
transformed to be a raster curve with 3587 raster pixels. After the vector-raster
conversion, the point correspondence is no longer directly available from the raster
curve representation. We apply the IAM algorithm to align the test curve with the
original one and estimate the correspondence between sample points. The esti-
mated sample points for the test curve after one iteration and 15 iterations are
shown in Figures 8.9b and 8.9c, respectively. We can see that the initial estimates
deviate from the true values by a nontrivial amount, while after 15 iterations the
estimated values converge to the true values. We plot the six estimated transform
parameters for each iteration in Figure 8.10a, which shows an accurate registra-
tion by the proposed IAM algorithm. Upon convergence, we use the estimated

control points (ĉ(i)
x , ĉ(i)

y ) to perform detection with the fingerprint involved. The
high fingerprint detection statistic value shown in Figure 8.10b suggests the posi-
tive identification of the correct fingerprint by using the proposed IAM algorithm.
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Figure 8.9. Registering a curve using the proposed IAM algorithm: (a) the original curve and a fin-
gerprinted curve undergone vector-raster conversion and affine transformation, (b) estimated sample
points after one iteration, (c) estimated sample points after 15 iterations.

The computation time for this experiment is as follows. The IAM algorithm
is implemented in Matlab 6.5 and tested on a Pentium-4 2.0 GHz PC with 512 M
RAM. Each iteration of the algorithm takes about 0.5 second, and the total 15 it-
erations plus the initialization take 7.61 seconds. Together with the 0.56 second
required for computing Z statistics with 1000 fingerprint sequences, the total du-
ration of the detection process is 8.17 seconds.

The above example shows that through the IAM algorithm, we can register
the test curve with the original unmarked curve and extract the fingerprinted
control points with high accuracy. With good estimation of affine transform pa-
rameters, our data embedding method for curves is resilient to combinations of
scaling, rotation, translation, and shearing. The explicit estimation of point corre-
spondence also provides resilience against the vector-raster conversion and vector-
raster-vector conversion. In the vector-raster conversion case, a fingerprinted curve
stored in vector format is rendered as a raster curve, and thus the point correspon-
dence is no longer directly available from the raster curve representation. In the
case of vector-raster-vector conversion, the intermediate raster curve is converted
to a vector curve with a new set of vector points that are likely to be different
from the initial vector points prior to the conversion, even though there is little
visual difference between these two vector curves. Again the point correspondence
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Figure 8.10. Convergence results on estimated transform parameters and detection statistics for the
example curve in Figure 8.9 using the proposed IAM algorithm: (a) the estimated transform parameters
after each iteration, (b) the fingerprint detection statistic after each iteration.

is likely to get corrupted by this conversion, and accurate estimation of point
correspondence is a necessary step to the successful detection of the fingerprint.
With the robustness resulting from spread-spectrum embedding in B-spline con-
trol points and the IAM algorithm, our curve fingerprinting approach can resist a
number of challenging attacks and distortions. For example, the distortion from
printing and scanning involves both vector-raster rendering and a certain amount
of rotation, scaling, and translation; a fingerprinted curve in vector format may
be rendered as a raster image and then affine transformed before reaching the de-
tector; in the collusion scenario, colluders may construct a colluded copy, print it
out, and then distribute it out of the allowed circle. In the next section, we use our

A print edition of this book can be purchased at
http://www.hindawi.com/spc.4.html

http://www.amazon.com/dp/9775945186

http://www.hindawi.com/spc.4.html
http://www.amazon.com/dp/9775945186


228 Fingerprinting curves

curve-based data hiding approach to fingerprint topographic maps and demon-
strate the robustness of our approach against various attacks and distortions.

8.4. Experiments with maps

We now present experimental results of the proposed curve fingerprinting algo-
rithm in the context of tracing and tracking topographic maps. A topographic
map provides a two-dimensional representation of the earth’s three-dimensional
surface. Vertical elevation is shown with contour lines (also known as level lines)
to represent the earth’s surfaces that are of equal altitude. Contour lines in topo-
graphic maps often exhibit a considerable amount of variations and irregularities,
prompting the need of nonuniform sampling of curve points in the parametric
modeling of the contours. We will first examine the fidelity of the fingerprinted
map, and then evaluate the robustness of the fingerprints against collusion, crop-
ping, geometric transformation, format conversion, curve smoothing, point dele-
tion, printing and scanning, and some combinations of these distortions.

Fingerprinted topographic maps

A 1100 × 1100 topographic vector map obtained from http://www.ablesw.com is
used in our experiment. Starting with the original map shown in Figure 8.11a, we
mark nine curves that are sufficiently long. For each of these nine curves, a set of
nonuniformly spaced vector points is defined. We directly use these given points
as sample points and determine their indexing values according to the curvature-
based rule presented in Section 8.2.3. A total of 1331 control points are used to
carry the fingerprint. We overlay in Figure 8.11b these nine original and marked
curves using solid lines and dotted lines, respectively. To help illustrate the fidelity
of our method, we enlarge a portion of the overlaid image in Figure 8.11c. We can
see that the fingerprinted map preserves the geospatial information in the original
map with high precision. The perturbation can be adapted to be compliant with
cartographic industry standards and/or the need of specific applications.

Resilience to collusion

To demonstrate the resistance of the proposed method against collusion, we
present in Figure 8.12 the detection statistics under two different types of collu-
sion attacks. Figure 8.12a shows the collusion results under a random interleaving
attack, where the control points for each curve are equiprobably taken from two
differently fingerprinted maps. The collusion attack for Figures 8.12b and 8.12c
is known as averaging, where the coordinates of the corresponding control points
from two and five differently fingerprinted maps are averaged, respectively. We as-
sume the correct point correspondence is available in this test and the cases with
unknown point correspondence will be addressed in the later subsections. As we
can see from the detection statistics, the embedded fingerprints from all contribut-
ing users survive the collusion attacks and are identified with high confidence. For
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Figure 8.11. Fingerprinting topographic maps: (a) original map, (b) original and fingerprinted curves
overlaid with each other, (c) a zoomed-in view of (b).

the cases of 2-user random interleaving collusion and 5-user averaging collusion,
we use 20 different sets of fingerprint sequences to evaluate the detection perfor-
mance using a similar experiment setup to the one discussed in Section 8.2.4. The
histograms and the Gaussian approximations in Figure 8.13 show a very good sep-
aration between the Z values for the presence and absence of true fingerprints.
Compared with 2-user averaging collusion, the 2-user random interleaving leads
to more substantial coordinate changes in control points when a detector performs
B-spline parametrization, and such coordinate changes may follow a distribution
different from i.i.d. Gaussian. This is reflected by a reduced mean and a nonunit
variance for the fingerprint presence case.
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Figure 8.12. Collusion test on fingerprinted vector maps: (a) 2-user random interleaving collusion,
(b) 2-user averaging collusion, (c) 5-user averaging collusion.

Resilience to cropping

As shown in Figures 8.14a and 8.14b, we crop an area of a fingerprinted vector map
and use it as the test map. Among the nine curves used for carrying the fingerprint,
only two curves are retained with sufficiently large size. We perform detection on
these two retained segments and obtain the detection result shown in Figure 8.14c.
As we can see, the detection statistic with the correct fingerprint is still high enough
so that its corresponding user can be identified with high confidence.

Resilience to affine transformations on vector maps

To demonstrate the resilience of our approach to a substantial amount of affine
transformations, we take a fingerprinted vector map and apply a combination of
rotation, scaling, and translation. More specifically, we rotate it by −30 degrees,
then scale it by 120% or 80% in X and Y directions, respectively, followed by 100-
and 200-pixel translation in X and Y directions, respectively. The resulting vector
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Figure 8.13. Histogram and the Gaussian approximation of the Z detection statistics for collu-
sion attacks: (a) 2-user random interleaving collusion with Gaussian approximations N (0, 1.00)
and N (28.45, 2.48), (b) 5-user averaging collusion with Gaussian approximations N (0, 1.00) and
N (24.90, 1.00).

map is rendered in Figure 8.15a. In this test, we assume correct point correspon-
dence is available. Thus, the super curve alignment method can be directly applied
to register the original and the test curves and to extract the control points. Shown
in Figure 8.15b is the registered vector map and Figure 8.15c are the detection
statistics. We can see that the embedded fingerprint can survive affine transfor-
mations and the detection statistic with the correct fingerprint is high after the
registration.

Resilience to vector-raster conversion

We now examine the resilience to vector-to-raster conversion coupled with pos-
sible affine transformations. Shown in Figure 8.16a is a fingerprinted vector map
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Figure 8.14. Cropping test on fingerprinted vector maps: (a) fingerprinted map with the cropping
area marked by a rectangular box, (b) cropped map for fingerprint detection, (c) Z statistics.

after raster rendering as a 1100×1100 image and affine transformations. The affine
transformation consists of 10-degree rotation, 80% and 140% scaling in X and Y
directions, and 10- and 20-pixel translation in X and Y directions, respectively.
As the point correspondence is no longer directly available after the vector-raster
conversion, we apply the proposed IAM algorithm to estimate the transform pa-
rameters and locate the sample points on test curves corresponding to those used
in the embedding. After 15 iterations, we get the registered raster map as shown
in Figure 8.16b and the detection statistics as shown in Figure 8.16c. The detec-
tion statistic results suggest that the embedded fingerprint is identified with high
confidence. Using the same settings on the computing system as in Section 8.3.3,
we measure the detection time required for this transformed raster map. The to-
tal duration of the detection process is 42.43 seconds, including 40.05 seconds for
curve registration and fingerprint extraction from nine curves, and 2.38 seconds
for evaluating Z statistics with 1000 fingerprint sequences.
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Figure 8.15. Affine transformation test on fingerprinted vector map: (a) the test map, (b) the aligned
map, (c) Z statistics.

Similar to the collusion test, we plot in Figure 8.17 the histogram and the
Gaussian approximation of the Z statistics for this vector-raster conversion test
combined with geometric transformations. The transform parameters are ran-
domly selected from the following ranges with a uniform distribution: −20 ∼ +20
degrees of rotation, 60% ∼ 140% scaling in X and Y directions, and 20 ∼ 40 pixels’
translation in X and Y directions. As the impact from registration and resampling
errors are not always i.i.d. Gaussian distributed, we observe a variance larger than
1 for the Z values in the fingerprint presence case.

Resilience to curve smoothing

Similar to lowpass filtering for images, curve smoothing can be applied to to-
pographic maps as an attempt to remove the embedded fingerprint. In order to
demonstrate the resilience of the proposed method to curve smoothing, we first
render a fingerprinted vector map as a raster map and then apply a moving av-
erage filter to each marked curve. A curve point with coordinate (rxi , ryi) will be
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Figure 8.16. Affine transformation test on fingerprinted raster map: (a) the test map, (b) the aligned
map, (c) Z statistics.

replaced by a new point, whose coordinate (r(s)
xi , r(s)

yi ) is obtained by

r(s)
xi =

1
2S + 1

S∑
j=−S

rxi+ j ,

r(s)
yi =

1
2S + 1

S∑
j=−S

ryi+ j ,

(8.25)

where 2S + 1 is the filter length. Finally, we apply the proposed IAM algorithm
to these smoothed curves and compute the detection statistics. Two different fil-
ter lengths, 5 and 21, are used in our experiments. As shown in Figure 8.18, the
detection statistic with the correct fingerprint under 5-point averaging is 24.61
and under 21-point averaging is 9.45. Indeed, the fingerprint is weakened by the
smoothing operation, but the detection statistics are still well above the threshold
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Figure 8.17. Histogram and the Gaussian approximation N (0, 1.00) and N (21.69, 2.28) of the Z de-
tection statistics for the combined vector-raster conversion and geometric transformation.

for a correct positive detection. In the latter case when a long filter is used in the
smoothing attack, some visual details have been lost from the curves. This study
shows that the proposed method is robust against curve smoothing, provided that
the smoothing does not severely change the shape of the curves and the fingerprint
sequence is sufficiently long to help the detector collect information for a positive
detection.

Resilience to vector-raster-vector conversion

To demonstrate the resilience of our method to vector-raster-vector conversion,
we first render a fingerprinted vector map as a raster map, and then uniformly
sample it to be a new vector map with the same number of vector points as prior
to the conversion but at different sampling locations. In the detection process, we
first render this “new” vector map as a raster map by linear interpolation and then
apply our IAM algorithm. From the high detection statistic shown in Figure 8.19a,
we can see that our approach is robust against the vector-raster-vector attack.

Resilience to point deletion in vector and raster maps

As we have seen throughout the chapter, traitor tracing applications usually in-
volve adversaries who have strong incentives to remove fingerprints. Attackers may
delete a certain number of points from a fingerprinted vector/raster map while
keeping similar shapes of its contour lines. Shown in Figures 8.19b and 8.19c are
detection statistics after point deletion in a fingerprinted vector and raster map,
respectively. For the vector map, 20% of points are randomly chosen and removed
from each fingerprinted curve, while in the raster map 70% of the black pixels on
the curve are randomly chosen and removed. We can see that the embedded fin-
gerprints can survive point deletion applied to both vector maps and raster maps.
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Figure 8.18. Curve smoothing test on fingerprinted raster maps: (a) Z statistics for window size 5, (b)
Z statistics for window size 21.

Similar to the last test, linear interpolation and the IAM algorithm are used in the
fingerprint detection.

Resilience to printing-and-scanning

To show the robustness of our approach against the printing-and-scanning attack,
we render a fingerprinted vector map by taking a screen shot of its display in Mat-
lab, print out the image using an HP laser printer, and then scan it back as a binary
image by a Canon scanner with 360 dpi resolution. Preprocessing before detection
includes a thinning operation to extract one-pixel wide skeletons from the scanned
curves that are usually several-pixel wide after high resolution scanning. As we can
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Figure 8.19. Detection results after various attacks: (a) Z statistics for vector-raster-vector conversion,
(b) Z statistics for point deletion in vector maps, (c) Z statistics for point deletion in raster maps.

see from the detection results in Figure 8.20a, the fingerprint survives the printing-
and-scanning test and gives a reliable positive detection with the detection statistic
much higher than the detection threshold.

To further examine our approach under the combined attack of collusion
and printing and scanning, we first generate a colluded map by averaging coor-
dinates of the control points from four users’ fingerprinted maps, then render and
print it out, and scan it back as a binary image. From the detection statistics in
Figure 8.20b, we can see that the embedded fingerprints from all the four col-
luders can be correctly identified after this combined attack involving collusion,
vector-raster conversion, filtering, and affine transformations.

8.5. Chapter summary

In this chapter, we have presented a new data hiding algorithm for curves by
parameterizing a curve using the B-spline model and adding spread-spectrum
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Figure 8.20. Printing-and-scanning test: (a) Z statistics for printing and scanning, (b) Z statistics for
4-user averaging collusion combined with printing and scanning.

sequences to curve parameters. In conjunction with the basic embedding and de-
tection techniques, we have proposed an iterative alignment-minimization algo-
rithm to allow for robust fingerprint detection under unknown geometric trans-
formations and in absence of explicit point correspondence. We have demon-
strated the fidelity of our method as well as its robustness against collusion, crop-
ping, affine transformations, vector-raster and vector-raster-vector conversions,
curve smoothing, point deletion, printing and scanning, and their combinations.
Our work has shown the feasibility of the proposed algorithm in fingerprinting ap-
plications for tracing and tracking topographic maps as well as writings/drawings
from pen-based inputs. The protection of such documents has increasing impor-
tance to emerging digital operations in government, military, intelligence, and
commerce.
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ACC fingerprinting, see anticollusion coded

fingerprinting
additive embedding, 65, 100, 102, see also

Type-I embedding
additive noise, 13, 65, 68, 83, 84, 92, 94, 107,

194, 196
robustness against, 63
statistical model, 16, 17

additive white Gaussian noise, 17
adversaries, 3, 4, 11, 15, 25, 26, 28, 101, 135,

235, see also attacks
anticollusion-coded fingerprinting, 137

AND-ACC, definition, 149
balanced incomplete block designs, 150
coding efficiency, 152
combinatorial-design-based, 148
definition, 143
derived code, 142, 156, 164
detection strategy, 94, 156

adaptive sorting approach, 157, 158, 161
hard detection, 156
sequential algorithm, 157, 161

attackers, see adversaries
attacks, 3–4, 8–21, 25–61, 63–122, 138–168,

172–202, 205–237, see also collusion,
averaging based; security

averaging multiple copies, 26, 68, 70, 83,
155

collusion attacks, 4
framing attack, 172
geometric distortion, 11, 14, 219

authentication, 8, 9, 215
AWGN, see additive white Gaussian noise

B
balanced incomplete block design, see

combinatorial designs
bandwidth, 171, 173, 174, 176, 180, 181

communication cost ratio, 187, 188, 191–
193

efficiency, 179, 186, 190
BIBD, see balanced incomplete block design
blind detection, see detection
block DCT transform, 12, 92, see also DCT

block-based data hiding, 206
Boneh-Shaw code, see fingerprinting, for

generic data
Bose construction, see combinatorial designs

C

c-secure codes, see fingerprinting, for generic
data

CDM, see code-division modulation/
multiplexing

channels, 10, 175, 185

AWGN, 17

Costa’s code, 11

model for data embedding, 10

cipher, see cryptography, encryption

code-division modulation/multiplexing, 166

collusion

averaging based, 34

cut-and-paste, 27, 28

fairness, 195–197, 199

interleaving based, see collusion,
cut-and-paste

intracontent, 14

maximum, 46

medium, 28

minimum, 46

minmax, 34

modified negative (modneg), 40

multiuser, 14, 26, 172, 196

nonlinear, 25, 103

randomized negative (randneg), 40

collusion resistance, 4, 23, 63–68, 71, 77, 153,
179, 195

performance criteria, 66, 84, 135, 136

scenarios, 64

catch all, 118

catch more, 116

catch one, 112

combinatorial designs, 141, 143–168

balanced incomplete block design, 144

Bose construction, 146, 154

incidence matrix, 145, 146, 148, 150, 151
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combinatorial designs (continued)
quasigroup, 147
Steiner triple systems, 146, 147, 154

compression, 14, 15, 172, 175, 187
H.26x, 22
JPEG, 22, 132, 163
lossy, 8, 9, 11, 13
MPEG, 22

content authentication, see authentication
correlation-based detection, 207, 210, 216

correlator with normalized variance, 211
distribution of detection statistics, 212
optimality, 16
weighted correlator, 17

countermeasures
against geometric attack, 14
against RST (rotation, scaling, and

translation), 206
cover media

definition, 9
cryptography, see also encryption, 3, 7, 8
curve

B-spline, 205, 227, 229
control-point domain embedding, 210–228
feature extraction, 208
fingerprinting, 205
iterative alignment-minimization

algorithm, 219–238

D
data hiding

advantages, 7
framework, 9

data hiding applications
access control, 3, 9
annotation, 9, 215
content authentication, 215
conveying side information, 9
copy control, 9
device control, 206
fingerprinting, 205
ownership protection, 8, 9
rights management, 2
traitor tracing, see fingerprinting

DCT, 175, 184, 185, 188
block-DCT embedding, see block DCT

transform; block-based data hiding
DCT-domain visual model, 21, 58, 174
quantized coefficients, 175, 184

derived code, see under anticollusion-coded
fingerprinting

detectable mark, see fingerprinting, for
generic data

detection, 8, 11, 23, 167, 215, see also
correlation-based detection

Bayesian rule, 17
blind detection, 8, 11, 23, 97, 163, 167, 215
hypothesis testing formulation, 15
Neyman-Pearson rule, 17
nonblind detection, 23
statistics, see detection statistics

detection statistics, 13, 26, 96, 156, 211
correlation-based, 17, 18
Fisher’s Z statistic, 18, 41, 43, 45, 46, 52, 56,

211
q statistic, 19, 41, 43, 45, 46, 52, 56

detector
maximum likelihood, 64
thresholding, 64, 68, 71, 72, 77

digital rights management (DRM), 2, 206
distance measures, 214, 216

MSE (mean square error), 36, 47, 84, 94,
100, 112

perceptual model based, 16
PSNR, 90, 98, 132, 163, 201
WNR (watermark-to-noise ratio), 11, 16,

20, 64, 67–100, 129, 159–161
distortion, 9–228

additive noise, 13, 84, 94, 194
by attacks, 11
histogram enhancement, 13
lossy compression, 8, 9, 11
lowpass filtering, 13

distribution
detection statistics, 16, 17, 41, 212
Gaussian, 63, 85–90
of order statistics, 29–30

E
embedded data

definition, 9
embedding capacity, 11, 63
embedding domain

DCT, 12, 21–22, 175, 184
DFT, 13

embedding mechanisms, see also Type-I
embedding; Type-II embedding

additive, 11
spread spectrum, 11–24, 27, 28, 33, 57
Type-I, see Type-I embedding
Type-II, see Type-II embedding

encryption, 7, 8, 172, 183, 186
enforcement embedding, 11, see also Type-II

embedding
error analysis

false alarm probability, 14, 19, 96, 97, 161,
212
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error analysis (continued)
false negative, see error analysis, miss

detection probability
false positive probability, see error analysis,

false alarm probability
miss detection probability, 112
receiver operating characteristic (ROC)

curves, 19

exhaustive searches, 168
undo geometric distortion, 14

extracted fingerprint, 52
preprocessing, 52

F
false alarm probability, 19, 96, 97, 110, 126,

212
under Bayesian detection, 16
under Neyman-Pearson detection, 17

feature extraction, 208
curve, 208

fidelity, 100, 112, 205, 212, 216, 228, 238
fingerprint multicast, 174, 175

bandwidth efficiency, 179
computation complexity, 185, 202
fingerprint drift compensation, 201–203
general scheme, 174, 186, 201
joint fingerprint design and distribution

scheme, 176–184, 191–195, 202
pure unicast scheme, 173, 187, 188, 193,

194, 202
fingerprinting

anticollusion coded, see
anticollusion-coded fingerprinting

collusion attacks on, see collusion
collusion resistance, see collusion

resistance
combinatorial design based, see

anticollusion coded fingerprinting
error correcting code based, 168
for generic data, 139

Boneh-Shaw code, 141, 173
c-secure codes, 138, 139, 141, 165
detectable mark, 139
marking assumptions, 63, 138, 139, 141

for multimedia data, 63, 138, 141
system model, 33

group-oriented, see group-oriented
fingerprinting

orthogonal, see orthogonal
fingerprinting

tree-structure-based, see under
group-oriented fingerprinting

unified formulation on fingerprinting
strategies, 164

Fisher’s inequality, 146, 153
forensics, 3

multimedia forensics, 3
Fourier transform, 13
framing attack, 172
frequency domain, 21

block-based transform, 22
perceptual property in, 22

G
Gaussian distribution, 18, 21, 41, 44, 46, 63,

85, 86, 90, 107, 109, 154, 177, 182, 196,
212, 217

Gaussian watermarks, 29
bounded Gaussian-like, 53
unbounded, 43

geometric distortion, 11, 14, 219
global embedding, 25
group-oriented fingerprinting, 4, 101–136

tree-structure-based, 121
two-tier, 105–121

H
host media

definition, 7, 9, 10
host signal, 10
human visual system (HVS) model, 21

DCT-domain visual model, 21, 58
grayscale images, 22
masking, 21

HVS, see human visual system model
hypothesis testing, 15, 211

antipodal, 15
on-off keying, 17

I
images, 12, 13, 21–23, 28–60, 64–100, 102–

136, 138–169, 206–237
color images, 12
grayscale images, 206
registration, 23, 217–225

imperceptibility, 8, 12, 21, 22, 33, 51, 91, 133,
174, 194

incidence matrix, see under combinatorial
designs

J
JND, see just-noticeable-difference
JPEG, 14, 22, 163
just-noticeable-difference (JND), 15, 34,

see also human visual system (HVS)
model

embeddable components, 21
embedding, used for, 21
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just-noticeable-difference (JND) (continued)
JND models, 15
unembeddable components, 21

L
linear attack, 26, 28
linear correlation, 36

M
marked media

definition, 9
marking assumptions, see fingerprinting, for

generic data
masking

visual frequency domain, 21
maximum-likelihood detection, 64, 88
modulation and multiplexing

CDM (code division modulation/
multiplexing), 166

comparison, 178
joint TDMA and CDMA fingerprint

modulation, 180
orthogonal modulation, 23, 63, 212
TDM (time division modulation/

multiplexing), 176
MPEG, 22
MSE, 36, 47, 84, 94, 103, 112

JND based, 36
multiple bit embedding, 11, see also

modulation and multiplexing
multiuser communication, 166

N
natural images, 136
noise

additive, 13
compression, by, 15
Gaussian model, 16
quantization noise, 24

nonblind detection, see detection
normalization, 12, 21, 35

unit-variance, 18, 19, 212

O
one-bit embedding, 24
order statistics

distribution, 30
original signal, see host signal
orthogonal fingerprinting, xii, 4, 23, 61, 63,

79, 98, 129, 137, 165
collusion resistance, 4, 23
modulation, see modulation and

multiplexing
tree-structured detection strategy, 94

ownership protection, see data hiding
applications

P
perceptual model, see HVS
perceptual quality

measurement, 36
perceptually adaptive embedding, 9
performance

collusion resistance criteria, see collusion
resistance

detection, 14
ROC curves, see ROC curves

pseudorandom number, 208

Q
q detection statistics, see under detection

statistics
quantization, 24

JPEG default quantization table, 22
noise, 24

quasigroup, see under combinatorial designs

R
random numbers, 23, see also pseudorandom

number
random signals, 130, 141
receiver operating characteristic curves, 19,

20, 130, 131
reference patterns, 14
reference watermarks, 13
registration

image registration, see images
robust watermark, 3

spread-spectrum embedding, see
embedding mechanisms, spread
spectrum

robustness, 8–238
ROC curves, see receiver operating

characteristic curves
rotation, 11, 13, 206, 219, 221, 226, 230, 233

attacks with, 13
countermeasure against, 206

S
SDMI, see Secure Digital Music Initiative
Secure Digital Music Initiative, 7
security, 1–173
security of watermarking/data hiding

adversaries, 3
SDMI systems, 2

spread spectrum, see embedding
mechanisms, spread spectrum
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Steiner triple systems, see combinatorial
designs

streaming

secure video streaming, 171–202
strength, see also HVS

embedding, 22
synchronization

iterative alignment-minimization
algorithm, see curve

T
TDM, see time division modulation/

multiplexing
test media

definition, 9
test statistics, see detection statistics
time division modulation/multiplexing, 176
tracing capability, 64
traitor, tracing, 174, 202
Type-I embedding, 10

examples, 28
properties, 21
spread spectrum, 11–21

Type-II embedding, 10

U
unauthorized content usage, 2

V
video, 1, 2, 172, 176, 183, 184, 186, 199

MPEG compression, 22
streaming, 171–202

W
watermark

attacks, see attacks
for grayscale images, 206
for video, 22, 171, 202
imperceptible, 12, 43
robust, 3

Z
Z detection statistics, see detection statistics
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