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Genomic signal processing: perspectives

Edward R. Dougherty, Ilya Shmulevich, Jie Chen,
and Z. Jane Wang

No single agreed-upon definition seems to exist for the term bioinformatics, which
has been used to mean a variety of things, ranging in scope and focus. To cite
but a few examples from textbooks, Lodish et al. state that “bioinformatics is the
rapidly developing area of computer science devoted to collecting, organizing, and
analyzing DNA and protein sequences” [1]. A more general and encompassing
definition, given by Brown, is that bioinformatics is “the use of computer meth-
ods in studies of genomes” [2]. More general still, “bioinformatics is the science of
refining biological information into biological knowledge using computers” [3].
Kohane et al. observe that the “breadth of this commonly used definition of bioin-
formatics risks relegating it to the dustbin of labels too general to be useful” and
advocate being more specific about the particular bioinformatics techniques em-
ployed [4].

Genomic signal processing (GSP) is the engineering discipline that studies the
processing of genomic signals, by which we mean the measurable events, princi-
pally the production of mRNA and protein, that are carried out by the genome.
Based upon current technology, GSP primarily deals with extracting information
from gene expression measurements. The analysis, processing, and use of genomic
signals for gaining biological knowledge constitute the domain of GSP. The aim
of GSP is to integrate the theory and methods of signal processing with the global
understanding of functional genomics, with special emphasis on genomic regula-
tion [5]. Hence, GSP encompasses various methodologies concerning expression
profiles: detection, prediction, classification, control, and statistical and dynam-
ical modeling of gene networks. GSP is a fundamental discipline that brings to
genomics the structural model-based analysis and synthesis that form the basis of
mathematically rigorous engineering.

Recent methods facilitate large-scale surveys of gene expression in which tran-
script levels can be determined for thousands of genes simultaneously. In par-
ticular, expression microarrays result from a complex biochemical-optical sys-
tem incorporating robotic spotting and computer image formation and analysis
[6, 7, 8, 9, 10]. Since transcription control is accomplished by a method that inter-
prets a variety of inputs, we require analytical tools for the expression profile data
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2 Genomic signal processing: perspectives

that can detect the types of multivariate influences on decision making produced
by complex genetic networks. Put more generally, signals generated by the genome
must be processed to characterize their regulatory effects and their relationship to
changes at both the genotypic and phenotypic levels. Application is generally di-
rected towards tissue classification and the discovery of signaling pathways.

Because transcriptional control is accomplished by a complex method that
interprets a variety of inputs, the development of analytical tools that detect mul-
tivariate influences on decision making present in complex genetic networks is
essential. To carry out such an analysis, one needs appropriate analytical method-
ologies. Perhaps the most salient aspect of GSP is that it is an engineering disci-
pline, having strong roots in signals and systems theory. In GSP, the point of depar-
ture is that the living cell is a system in which many interacting components work
together to give rise to execution of normal cellular functions, complex behavior,
and interaction with the environment, including other cells. In such systems, the
“whole” is often more than the “sum of its parts,” frequently referred to as emer-
gent or complex behavior. The collective behavior of all relevant components in a
cell, such as genes and their products, follows a similar paradigm, but gives rise to
much richer behavior, that is characteristic of living systems. To gain insight into
the behavior of such systems, a systems-wide approach must be taken. This re-
quires us to produce a model of the components and their interactions and apply
mathematical, statistical, or simulation tools to understand its behavior, especially
as it relates to experimental data.

In this introductory chapter, we comment on four major areas of GSP re-
search: signal extraction, phenotype classification, clustering, and gene regulatory
networks. We then provide brief descriptions of each of the contributed chapters.

Signal extraction

Since a cell’s specific functionality is largely determined by the genes it is express-
ing, it is logical that transcription, the first step in the process of converting the
genetic information stored in an organism’s genome into protein, would be highly
regulated by the control network that coordinates and directs cellular activity. A
primary means for regulating cellular activity is the control of protein produc-
tion via the amounts of mRNA expressed by individual genes. The tools to build
an understanding of genomic regulation of expression will involve the character-
ization of these expression levels. Microarray technology, both complementary
DNA (cDNA) and oligonucleotide, provides a powerful analytic tool for genetic
research. Since our concern is GSP, not microarray technology, we confine our
brief discussion to cDNA microarrays.

Complementary DNA microarray technology combines robotic spotting of
small amounts of individual, pure nucleic acid species on a glass surface, hybridiza-
tion to this array with multiple fluorescently labeled nucleic acids, and detection
and quantitation of the resulting fluor-tagged hybrids with a scanning confocal
microscope. cDNA microarrays are prepared by printing thousands of cDNAs in
an array format on glass microscope slides, which provide gene-specific hybridiza-
tion targets. Distinct mRNA samples can be labeled with different fluors and then
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Edward R. Dougherty et al. 3

cohybridized onto each arrayed gene. Ratios or direct intensity measurements of
gene-expression levels between the samples can be used to detect meaningfully
different expression levels between the samples for a given gene, the better choice
depending on the sources of variation [11].

A typical glass-substrate and fluorescent-based cDNA microarray detection
system is based on a scanning confocal microscope, where two monochrome im-
ages are obtained from laser excitations at two different wavelengths. Monochrome
images of the fluorescent intensity for each fluor are combined by placing each im-
age in the appropriate color channel of an RGB image. In this composite image,
one can visualize the differential expression of genes in the two cell types: the test
sample typically placed in the red channel, the reference sample in the green chan-
nel. Intense red fluorescence at a spot indicates a high level of expression of that
gene in the test sample with little expression in the reference sample. Conversely,
intense green fluorescence at a spot indicates relatively low expression of that gene
in the test sample compared to the reference. When both test and reference sam-
ples express a gene at similar levels, the observed array spot is yellow. Assuming
that specific DNA products from two samples have an equal probability of hy-
bridizing to the specific target, the fluorescent intensity measurement is a function
of the amount of specific RNA available within each sample, provided samples
are wellmixed and there is sufficiently abundant cDNA deposited at each target
location.

When using cDNA microarrays, the signal must be extracted from the back-
ground. This requires image processing to extract signals, variability analysis, and
measurement quality assessment [12]. The objective of the microarray image anal-
ysis is to extract probe intensities or ratios at each cDNA target location and then
cross-link printed clone information so that biologists can easily interpret the out-
comes and high-level analysis can be performed. A microarray image is first seg-
mented into individual cDNA targets, either by manual interaction or by an au-
tomated algorithm. For each target, the surrounding background fluorescent in-
tensity is estimated, along with the exact target location, fluorescent intensity, and
expression ratios.

In a microarray experiment, there are many sources of variation. Some types
of variation, such as differences of gene expressions, may be highly informative as
they may be of biological origin. Other types of variation, however, may be un-
desirable and can confound subsequent analysis, leading to wrong conclusions. In
particular, there are certain systematic sources of variation, usually owing to a par-
ticular microarray technology, that should be corrected prior to further analysis.
The process of removing such systematic variability is called normalization. There
may be a number of reasons for normalizing microarray data. For example, there
may be a systematic difference in quantities of starting RNA, resulting in one sam-
ple being consistently overrepresented. There may also be differences in labeling or
detection efficiencies between the fluorescent dyes (e.g., Cy3, Cy5), again leading
to systematic overexpression of one of the samples. Thus, in order to make mean-
ingful biological comparisons, the measured intensities must be properly adjusted
to counteract such systematic differences.
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4 Genomic signal processing: perspectives

A major barrier to an effective understanding of variation is the large num-
ber of sources of variance inherent in microarray measurements. In many statisti-
cal analysis publications, the measured gene expression data are assumed to have
multiple noise sources: noise due to sample preparation, labeling, hybridization,
background fluorescence, different arrays, fluorescent dyes, and different printing
locations. In attempting to quantify the noise level in a set of experiments, some
studies employ ANOVA models in which the log-transformed gene expression sig-
nal is represented by true signal plus an additive noise [13, 14]. Other proposed
models for expression signals include mixture models for gene effect [15], mul-
tiplicative model (not logarithm-transformed) [16, 17], ratio-distribution model
[12, 18], binary model [19], rank-based models not sensitive to noise distributions
[20], replicates using mixed models [21], quantitative noise analysis [22, 23], and
design of reverse dye microarrays [24]. In addition to the many studies on noise
estimation in microarrays, there is a large literature dealing with methods to iso-
late and eliminate the noise component from the measured signal. These studies
suffer from the daunting complexity and inhomogeneity of the noise.

Classification

Pattern classification plays an important role in genomic signal analysis. For in-
stance, cDNA microarrays can provide expression measurements for thousands of
genes at once, and a key goal is to perform classification via different expression
patterns. This requires designing a classifier that takes a vector of gene expression
levels as input, and outputs a class label that predicts the class containing the in-
put vector. Classification can be between different kinds of cancer, different stages
of tumor development, or a host of such differences. Early cancer studies include
leukemias [25] and breast cancer [26, 27]. Classifiers are designed from a sample
of expression vectors by assessing expression levels from RNA obtained from the
different tissues with microarrays, determining genes whose expression levels can
be used as classifier variables, and then applying some rule to design the classifier
from the sample microarray data.

An expression-based classifier provides a list of genes whose product abun-
dance is indicative of important differences in a cell state, such as healthy or dis-
eased, or one particular type of cancer or another. Among such informative genes
are those whose products play a role in the initiation, progression, or maintenance
of the disease. Two central goals of molecular analysis of disease are to use such
information to directly diagnose the presence or type of disease and to produce
therapies based on the mitigation of the aberrant function of gene products whose
activities are central to the pathology of a disease. Mitigation would be accom-
plished either by the use of drugs already known to act on these gene products or
by developing new drugs targeting these gene products.

Three critical statistical issues arise for expression-based classification [28].
First, given a set of variables, how does one design a classifier from the sample
data that provides good classification over the general population? Second, how
does one estimate the error of a designed classifier when data is limited? Third,
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Edward R. Dougherty et al. 5

given a large set of potential variables, such as the large number of expression level
determinations provided by microarrays, how does one select a set of variables
as the input vector to the classifier? The difficulty of successfully accomplishing
these tasks is severely exacerbated by the fact that small samples are ubiquitous
in studies employing expression microarrays, meaning that the potential number
of variables (gene expressions) is huge in comparison to the sample size (number
of microarrays) [29]. As with most studies, due to cost and patient availability,
this investigation will be in the small-sample category. Three points must be taken
into consideration: (1) to avoid overfitting, simple classifiers should be employed
[28, 30, 31]; (2) again to avoid overfitting, small feature sets are required [32, 33,
34, 35]; and (3) because samples are small and error estimation must be performed
using the training data, the choice of error estimation rule is critical [36, 37], with
feature-set ranking being of particular importance in gene discovery [38].

The problem of small-sample error estimation is particularly troublesome. An
error estimator may be unbiased but have a large variance, and therefore, often be
low. This can produce a large number of feature sets and classifiers with low error
estimates. In the other direction, a small sample size enhances the possibility that a
designed classifier will perform worse than the optimal classifier. Combined with
a high error estimate, the result will be that many potentially good diagnostic gene
sets will be pessimistically evaluated.

Not only is it important to base classifiers on small numbers of genes from
a statistical perspective, there are compelling biological reasons for small classi-
fier sets. As previously noted, correction of an aberrant function would be accom-
plished by the use of drugs. Sufficient information must be vested in gene sets small
enough to serve as either convenient diagnostic panels or as candidates for the very
expensive and time-consuming analysis required to determine if they could serve
as useful targets for therapy. Small gene sets are necessary to allow construction
of a practical immunohistochemical diagnostic panel. In sum, it is important to
develop classification algorithms specifically tailored for small samples.

Clustering

A classifier takes a single data point (expression vector) and outputs a class label
(phenotype); a cluster operator takes a set of data points (expression vectors) and
partitions the points into clusters (subsets). Clustering has become a popular data-
analysis technique in genomic studies using gene-expression microarrays [39, 40].
Time-series clustering groups together genes whose expression levels exhibit simi-
lar behavior through time. Similarity indicates possible coregulation. Another way
to use expression data is to take expression profiles over various tissue samples,
and then cluster these samples based on the expression levels for each sample, the
motivation being the potential to discriminate pathologies based on their differ-
ential patterns of gene expression. A host of clustering algorithms has been pro-
posed in the literature and many of these have been applied to genomic data: k-
means, fuzzy c-means, self-organizing maps [41, 42, 43], hierarchical clustering,
and model-based clustering [44, 45].
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6 Genomic signal processing: perspectives

Many validation techniques have been proposed for evaluating clustering re-
sults. These are generally based on the degree to which clusters derived from a
set of sample data satisfy certain heuristic criteria. This is significantly different
than classification, where the error of a classifier is given by the probability of
an erroneous decision. Validation methods can be roughly divided into two cat-
egories (although this categorization can certainly be made finer)—internal and
external.

Internal validation methods evaluate the clusters based solely on the data,
without external information. Typically, a heuristic measure is defined to indicate
the goodness of the clustering. It is important to keep in mind that the measure
only applies to the data at hand, and therefore is not predictive of the worth of
a clustering algorithm—even with respect to the measure itself. Since these kinds
of measures do not possess predictive capability, it appears difficult to assess their
worth—even what it means to be “worthy.” But there have been simulation studies
to observe how they behave [46].

External validation methods evaluate a clustering algorithm by comparing
the resulting clusters with prespecified information [47]. Agreement between the
heuristic and algorithm-based partitions indicates algorithm accuracy. It also in-
dicates that the scientific understanding behind the heuristic partition is being re-
flected in the measurements, thereby providing supporting evidence for the mea-
surement process.

With model-based clustering, a Bayesian approach can be taken to determine
the best number of clusters. Two models can be compared relative to the sample
data by a Bayes factor [48, 49].

To recognize the fundamental difference between clustering and classifica-
tion, we note two key characteristics of classification: (1) classifier error can be
estimated under the assumption that the sample data arise from an underlying
feature-label distribution; and (2) given a family of classifiers, sample data can
be used to learn the optimal classifier in the family. Once designed, the classifier
represents a mathematical model that provides a decision mechanism relative to
real-world measurements. The model represents scientific knowledge to the extent
that it has predictive capability. The purpose of testing (error estimation) is quan-
tifying the worth of the model. Clustering has generally lacked both fundamental
characteristics of classification. In particular, lacking inference in the context of a
probability model, it has remained essentially a subjective visualization tool. Jain et
al. wrote, “Clustering is a subjective process; the same set of data items often needs
to be partitioned differently for different applications. This subjectivity makes the
process of clustering difficult” [50]. Duda et al. stated the matter radically, “The
answer to whether or not it is possible in principle to learn anything from un-
labeled data depends upon the assumptions one is willing to accept—theorems
cannot be proved without premises” [51]. These criticisms raise the question as to
whether clustering can be used for scientific knowledge. This issue has been raised
specifically in the context of gene-expression microarrays by Kerr and Churchill
when they wrote, “A great deal of effort has gone into identifying the best clus-
tering techniques for microarray data. However, another question that is at least
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Edward R. Dougherty et al. 7

as important has received less attention; how does one make statistical inferences
based on the results of clustering?” [52]. Indeed, how is one going to judge the
relative worth of clustering algorithms unless it is based on their inference capa-
bilities?

For clustering to have a sound scientific basis, error estimation must be ad-
dressed in the context of an appropriate probabilistic model. Ipso facto, since a
clustering algorithm partitions a set of data points, error estimation for cluster-
ing must assume that clusters resulting from a cluster algorithm can be compared
to the correct clusters for the data set in the context of a probability distribution,
thereby providing an error measure. The key to a general probabilistic theory of
clustering, including both error estimation and learning, is to recognize that clas-
sification theory is based on operators on random variables, and that the theory of
clustering needs to be based on operators on random points sets [53]. Once clus-
tering has been placed into a probabilistic context, proposed clustering algorithms
can be rigorously evaluated as estimators, rules can be developed from designing
clustering algorithms from data (analogous to the design of classifiers via classifi-
cation rules), and these rules can be evaluated based on the kinds of criteria used
for classification rules, such as consistency, approximation, and sample size.

Gene regulatory networks

Cellular control and its failure in disease result from multivariate activity among
cohorts of genes. Thus, for therapeutic purposes, it is important to model this
multivariate interaction. In the literature, two somewhat distinct approaches have
been taken to carry out this modeling. The first approach is based on constructing
detailed biochemical network models for particular cellular reactions of interest
and makes use of ordinary differential equations, partial differential equations, and
their variants [54]. While this method yields insights into the details of individual
reaction pathways, it is not clear how the information obtained can be used to de-
sign a therapeutic regimen for a complex disease like cancer, which simultaneously
involves many genes and many signaling pathways. A major problem for fine-scale
modeling is its large data requirement. A second approach involves building coarse
models of genetic interaction using the limited amount of microarray gene ex-
pression data that is usually available. Paradigms that have been considered in this
context include directed graphs, Bayesian networks, Boolean networks, general-
ized logical networks, and probabilistic gene regulatory networks (PGRNs), which
include the special case of probabilistic Boolean networks (PBNs).

Gene regulatory systems comprise an important example of a natural system
composed of individual elements that interact with each other in a complex fash-
ion, in this case, to regulate and control the production of proteins viable for cell
function. Development of analytical and computational tools for the modeling
and analysis of gene regulation can substantially help to unravel the mechanisms
underlying gene regulation and to understand gene function [55, 56, 57, 58]. This,
in turn, can have a profound effect on developing techniques for drug testing and
therapeutic intervention for effective treatment of human diseases.
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8 Genomic signal processing: perspectives

A model of a genetic regulatory network is intended to capture the simultane-
ous dynamical behavior of various elements, such as transcript or protein levels,
for which measurements exist. There have been numerous approaches for mod-
eling the dynamical behavior of genetic regulatory networks, ranging from de-
terministic to fully stochastic, using either a discrete-time or a continuous-time
description of the gene interactions [54]. One way to proceed is to devise theo-
retical models, for instance, based on systems of differential equations intended
to represent as faithfully as possible the joint behavior of all of these constituent
elements [59]. The construction of the models, in this case, can be based on ex-
isting knowledge of protein-DNA and protein-protein interactions, degradation
rates, and other kinetic parameters. Additionally, some measurements focusing
on small-scale molecular interactions can be made, with the goal of refining the
model. However, global inference of network structure and fine-scale relationships
between all the players in a genetic regulatory network is currently an unrealistic
undertaking with existing genome-wide measurements produced by microarrays
and other high-throughput technologies.

With the understanding that models are intended to predict certain behav-
ior, be it steady-state expression levels of certain groups of genes or functional
relationships among a group of genes, we must then develop them with an aware-
ness of the types of available data. For example, it may not be prudent to attempt
inferring dozens of continuous-valued rates of change and other parameters in
differential equations from only a few discrete-time measurements taken from a
population of cells that may not be synchronized with respect to their gene activi-
ties (e.g., cell cycle), with a limited knowledge and understanding of the sources of
variation due to the measurement technology and the underlying biology. From
an engineering perspective, a model should be sufficiently complex to capture the
relations necessary for solving the problem at hand, and not so complex that it
cannot be reliably estimated from the data. With the advent of microarray tech-
nology, a significant effort has been directed at building coarse models of genetic
interaction using the limited amount of microarray gene expression data that is
usually available. Paradigms that have been considered in this context include
Bayesian networks [60], Boolean networks [61], and PBNs (and their extension
to PGRNs) [62].

There are two important aspects of every genetic regulatory system that have
to be modeled and analyzed. The first is the topology (connectivity structure), and
the second is the set of interactions between the elements, the latter determining
the dynamical behavior of the system [63, 64, 65]. Exploration of the relationship
between topology and dynamics can lead to valuable conclusions about the struc-
ture, behavior, and properties of genetic regulatory systems [66, 67].

In a discrete-time functional network, the state of a gene at time t + 1 is con-
sidered to be a function of a set of genes in a regulatory set at time t. The connec-
tivity of the network is defined by the collection of regulatory sets and the inter-
actions are defined by the functions, which are often called predictors. A predictor
must be designed from data, which ipso facto means that it is an approximation
of the predictor whose action one would actually like to model. The precision of
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Edward R. Dougherty et al. 9

the approximation depends on the design procedure and the sample size. Even for
a relatively small number of predictor genes, good design can require a very large
sample; however, one typically has a small number of microarrays. The problems
of classifier design apply essentially unchanged when learning predictors from
sample data. To be effectively addressed, they need to be approached within the
context of constraining biological knowledge, since prior knowledge significantly
reduces the data requirement.

The oldest model for gene regulation is the Boolean network [61, 68, 69, 70,
71]. In a Boolean network, each gene is represented by a binary value, 0 or 1, in-
dicating whether it is down- or up-regulated, and each gene value at the next time
point is determined by a function of the gene values in its regulatory set. The ac-
tion of the network is deterministic and after some finite time, it will settle into an
attractor, which is a set of states though which it will endlessly cycle. The Boolean
model has recently been extended so that instead of a single predictor function,
each gene has a set of predictor functions, one of which is chosen at each time
point. This extension results in the class of PBNs [62, 72]. In the early PBN papers,
regulatory sets were chosen based on the coefficient of determination, which mea-
sures the degree to which the prediction of a target’s random variable is improved
by observation of the variables in the regulatory set relative to prediction of the tar-
get variable using only statistical information concerning the target variable itself
[73, 74, 75]. If the predictor choice is random at each time point, then the network
is said to be instantaneously random; the predictor is held fixed and only allowed
to switch depending on some binary random variable, then the network is said to
be context sensitive. The latter case results in a family of Boolean networks com-
posing the PBN, with one of the constituent networks governing gene activity for
some period of time. This reflects the effect of latent variables, not incorporated
into the model. A PGRN has the same structure as a PBN except that each gene
may take on a value within a discrete interval [0, r], with r not being constrained
to 0 or 1.

A key objective of network modeling is to use the network to design different
approaches for affecting the evolution of the gene state vector over time—for in-
stance, in the case of cancer to drive the network away from states associated with
cell proliferation. There have been a number of studies regarding intervention in
the context of PBNs . These include resetting the state of the PBN, as necessary, to
a more desirable initial state and letting the network evolve from there [76] and
manipulating external (control) variables that affect the transition probabilities of
the network and can, therefore, be used to desirably affect its dynamic evolution
over a finite-time horizon [77, 78]. The latter approach is particularly promising
because it involves the use of automatic control theory to derive optimal treatment
strategies over time—for instance, using dynamic programming.

Overview of the book

This edited book provides an up-to-date and tutorial-level overview of genomic
signal processing (GSP) and statistics. Written by an interdisciplinary team of
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authors, the book is accessible to researchers in academia and industry, who are
interested in cross-disciplinary areas relating to molecular biology, engineering,
statistics, and signal processing. Our goal is to provide audiences with a broad
overview of recent advances in the important and rapidly developing GSP disci-
pline.

In the following, we give a brief summary of the contents covered in this book.
The book consists of twelve book chapters.

(i) In the first part, we focus on signal processing and statistics techniques
in sequence analysis. In “Representation and analysis of DNA sequences,” by Paul
Dan Cristea, the author presents results in the analysis of genomic information
at the scale of whole chromosomes or whole genomes based on the conversion
of genomic sequences into genomic signals, concentrating on the phase analy-
sis.

(ii) In the second part, we focus on signal processing and statistics methodolo-
gies in gene selection: classification, clustering, and data extraction. In “Gene fea-
ture selection,” by Ioan Tabus and Jaakko Astola, the authors overview the classes
of feature selection methods, and focus specially on microarray problems, where
the number of measured genes (factors) is extremely large, in the order of thou-
sands, and the number of relevant factors is much smaller. Classification plays an
important role in genomic signal analysis. In “Classification,” by Ulisses Braga-
Neto and Edward Dougherty, the authors present various techniques in classifica-
tion, including classifier design, regularization, and error estimation. In “Cluster-
ing: revealing intrinsic dependencies in microarray data,” by Marcel Brun, Charles
D. Johnson, and Kenneth S. Ramos, the authors address clustering algorithms, in-
cluding interpretation, validation, and clustering microarray data. In “From
biochips to laboratory-on-a-chip system,” by Lei Wang, Hongying Yin, and Jing
Cheng, the authors review various aspects related to biochips with different func-
tionality and chip-based integrated systems.

(iii) In the third part, we focus on signal processing in genomic network mod-
eling and analysis. In “Modeling and simulation of genetic regulatory networks by
ordinary differential equations,” by Hidde de Jong and Johannes Geiselmann, the
authors review various methods for modeling and simulating genetic regulatory
network and propose differential equations for regulatory network modeling. In
“Modeling genetic regulatory networks with probabilistic Boolean networks,” by
Ilya Shmulevich and Edward R. Dougherty, the authors present a recently pro-
posed mathematical rule-based model, the probabilistic Boolean networks
(PBNs), to facilitate the construction of gene regulatory networks. In “Bayesian
networks for genomic analysis,” by Paola Sebastiani, Maria M. Abad, and Marco
F. Ramoni, the authors show how to apply Bayesian networks in analyzing various
types of genomic data, from genomic markers to gene expression data. In “Statisti-
cal inference of transcriptional regulatory networks,” by Xiaodong Wang, Dimitris
Anastassiou, and Dong Guo, the authors present parameter estimation methods
for known network structures, including equation-based methods and Bayesian
methods. They also discuss Bayesian techniques for inferring network structures.
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(iv) In the last part of this book, we focus on microarray imaging, signal pro-
cessing in systems biology, and applications in disease diagnosis and treatments. In
“Compressing genomic and proteomic microarray images for statistical analyses,”
by Rebecka Jörnsten and Bin Yu, the authors propose a multilayer data structure
as the principle for both lossless and lossy compression of microarray images. In
“Cancer genomics, proteomics, and clinic applications,” by X. Steve Fu, Chien-an
A. Hu, Jie Chen, Jane Wang, and K. J. Ray Liu, the authors focus on genomics and
proteomics of cancer, and discuss how cutting-edge technologies, like microar-
ray technology and nanotechnology, can be applied in clinical oncology. In “Inte-
grated approach for computational systems biology,” by Seungchan Kim, Phillip
Stafford, Michael L. Bittner, and Edward B. Suh, the authors address integrated
approaches for computational systems biology including biological data and mea-
surement technologies, systems for biological data integration, mathematical and
computational tools for computational systems biology, and supercomputing and
parallel applications.

Finally, the coeditors would like to thank the authors for their contributions.
We hope that readers enjoy this book.
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1
Representation and analysis of
DNA sequences

Paul Dan Cristea

1.1. Introduction

Data on genome structural and functional features for various organisms is being
accumulated and analyzed in laboratories all over the world, from the small uni-
versity or clinical hospital laboratories to the large laboratories of pharmaceutical
companies and specialized institutions, both state owned and private. This data
is stored, managed, and analyzed on a large variety of computing systems, from
small personal computers using several disk files to supercomputers operating on
large commercial databases. The volume of genomic data is expanding at a huge
and still growing rate, while its fundamental properties and relationships are not
yet fully understood and are subject to continuous revision. A worldwide system
to gather genomic information centered in the National Center for Biotechnology
Information (NCBI) and in several other large integrative genomic databases has
been put in place [1, 2]. The almost complete sequencing of the genomes of several
eukaryotes, including man (Homo sapiens [2, 3, 4]) and “model organisms” such
as mouse (Mus musculus [5, 6]), rat (Rattus norvegicus [7]), chicken (Gallus-gallus
[8]), the nematode Caenorhabditis elegans [9], and the plant Arabidopsis thaliana
[10], as well as of a large number of prokaryotes, comprising bacteria, viruses,
archeia, and fungi [1, 2, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19], has created the op-
portunity to make comparative genomic analyses at scales ranging from individual
genes or control sequences to whole chromosomes. The public access to most of
these data offers to scientists around the world an unprecedented chance to data
mine and explore in depth this extraordinary information depository, trying to
convert data into knowledge.

The standard symbolical representation of genomic information—by sequen-
ces of nucleotide symbols in DNA and RNA molecules or by symbolic sequences of
amino acids in the corresponding polypeptide chains (for coding sections)—has
definite advantages in what concerns storage, search, and retrieval of genomic in-
formation, but limits the methodology of handling and processing genomic infor-
mation to pattern matching and statistical analysis. This methodological limitation
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determines excessive computing costs in the case of studies involving feature ex-
traction at the scale of whole chromosomes, multiresolution analysis, comparative
genomic analysis, or quantitative variability analysis [20, 21, 22].

Converting the DNA sequences into digital signals [23, 24] opens the possibil-
ity to apply signal processing methods for the analysis of genomic data [23, 24, 25,
26, 27, 28, 29, 30, 31, 32] and reveals features of chromosomes that would be dif-
ficult to grasp by using standard statistical and pattern matching methods for the
analysis of symbolic genomic sequences. The genomic signal approach has already
proven its potential in revealing large scale features of DNA sequences maintained
over distances of 106–108 base pairs, including both coding and noncoding re-
gions, at the scale of whole genomes or chromosomes (see [28, 31, 32], and Section
1.4 of this chapter). We enumerate here some of the main results that will be pre-
sented in this chapter and briefly outline the perspectives they open.

1.1.1. Unwrapped phase linearity

One of the most conspicuous results is that the average unwrapped phase of DNA
complex genomic signals varies almost linearly along all investigated chromo-
somes, for both prokaryotes and eukaryotes [23]. The magnitude and sign of the
slope are specific for various taxa and chromosomes. Such a behavior proves a
rule similar to Chargaff ’s rule for the distribution of nucleotides [33]—a statis-
tics of the first order, but reveals a statistical regularity of the succession of the
nucleotides—a statistics of the second order. As can be seen from equation (1.11)
in Section 1.4, this rule states that the difference between the frequencies of positive
and negative nucleotide-to-nucleotide transitions along a strand of a chromosome
tends to be small, constant, and taxon & chromosome specific. As an immediate
practical use of the unwrapped phase quasilinearity rule, the compliance of a cer-
tain contig with the large scale regularities of the chromosome to which it belongs
can be used for spotting errors and exceptions.

1.1.2. Cumulated phase piecewise linearity in prokaryotes

Another significant result is that the cumulated phase has an approximately piece-
wise linear variation in prokaryotes, while drifting around zero in eukaryotes. The
breaking points of the cumulated phase in prokaryotes can be put in correspon-
dence with the limits of the chromosome “replichores”: the minima with the ori-
gins of the replication process, and the maxima with its termini.

The existence of large scale regularities, up to the scale of entire chromosomes,
supports the view that extragene DNA sequences, which do not encode proteins,
still play significant functional roles. Moreover, the fact that these regularities ap-
ply to both coding and noncoding regions of DNA molecules indicates that these
functionalities are also at the scale of the entire chromosomes. The unwrapped and
cumulated phases can be linked to molecule potentials produced by unbalanced
hydrogen bonds and can be used to describe “lateral” interaction of a given DNA
segment with proteins and with other DNA segments in processes like replication,
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transcription, or crossover. An example of such a process is the movement of DNA
polymerase along a DNA strand during the replication process, by operating like a
“Brownian machine” that converts random molecule movements into an ordered
gradual advance.

1.1.3. Linearity of the cumulated phase for the reoriented
exons in prokaryotes

A yet other important result is the finding that the cumulated phase becomes linear
for the genomic signals corresponding to the sequences obtained by concatenat-
ing the coding regions of prokaryote chromosomes, after reorienting them in the
same positive direction. This is a property of both circular and linear prokaryote
chromosomes, but is not shared by most plasmids. This “hidden linearity” of the
cumulated phase suggests the hypothesis of an ancestral chromosome structure,
which has evolved into the current diversity of structures, under the pressure of
processes linked to species separation and protection.

The rest of this chapter presents the vector and complex representations of
nucleotides, codons, and amino acids that lead to the conversion of symbolic ge-
nomic sequences into digital genomic signals and presents some of the results ob-
tained by using this approach in the analysis of large scale properties of nucleotide
sequences, up to the scale of whole chromosomes.

Section 1.2 briefly describes aspects of the DNA molecule structure, relevant
for the mathematical representation of nucleotides. Section 1.3 presents the vector
(3D, tetrahedral) and the complex (2D, quadrantal) representations of nucleotides
(Section 1.3.1), codons, and amino acids (Section 1.3.2). It is shown that both the
tetrahedral and the quadrantal representations are one-to-one mappings, which
contain the same information as the symbolic genomic sequences. Their main
advantage is to reveal hidden properties of the genetic code and to conveniently
represent significant features of genomic sequences.

Section 1.4 presents the phase analysis of genomic signals for nucleotide se-
quences and gives a summary of the results obtained by using this methodology.
The study of complex genomic signals using signal processing methods facilitates
revealing large scale features of chromosomes that would be otherwise difficult to
find.

Based on the phase analysis of complex genomic signals, Section 1.5 presents
a model of the “patchy” longitudinal structure of chromosomes and advances the
hypothesis that it derives from a putative ancestral highly ordered chromosome
structure, as a result of processes linked to species separation and specificity pro-
tection at molecular level. As mentioned above, it is suggested that this structure
is related to important functions at the scale of chromosomes.

In the context of operating with a large volume of data at various resolutions
and visualizing the results to make them available to humans, the problem of data
representability becomes critical. Section 1.6 presents a new approach to this prob-
lem using the concept of data scattering ratio on a pixel. Representability analysis
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Figure 1.1. Schematic model of the DNA molecule.

is applied to several cases of standard signals and genomic signals. It is shown that
the variation of genomic data along nucleotide sequences, specifically the cumu-
lated and unwrapped phase, can be visualized adequately as simple graphic lines
for low and large scales, while for medium scales (thousands to tens of thousands
of base pairs), the statistical descriptions have to be used.

1.2. DNA double helix

This section gives a brief summary of the structure, properties, and functions of
DNA molecules, relevant to building mathematical representations of nucleotides,
codons, and amino acids and in understanding the conditions to be satisfied by the
mappings of symbolic sequences to digital signals. The presentation is addressed
primarily to readers with an engineering background, while readers with a medical
or biological training can skip this section.

The main nucleic genetic material of cells is represented by DNA molecules
that have a basically simple and well-studied structure [34]. The DNA double he-
lix molecules comprise two antiparallel intertwined complementary strands, each
a helicoidally coiled heteropolymer. The repetitive units are the nucleotides, each
consisting of three components linked by strong covalent bounds: a monophos-
phate group linked to a sugar that has lost a specific oxygen atom—the deoxyri-
bose, linked in turn to a nitrogenous base, as schematically shown in Figure 1.1
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Figure 1.2. Structure of a nucleotide.

and detailed in Figure 1.2. Only four kinds of nitrogenous bases are found in DNA:
thymine (T) and cytosine (C)—which are pyrimidines, adenine (A) and guanine
(G)—which are purines. As can be seen in Figures 1.3 and 1.5, purine molecules
consist of two nitrogen-containing fused rings (one with six atoms and the other
with five), while pyridmidine molecules have only a six-membered nitrogen-
containing ring. In a ribonucleic acid (RNA) molecule, apart of the replacement
of deoxyribose with ribose in the helix backbone, thymine is replaced by uracil
(U), a related pyrimidine. As shown in Figure 1.3, along the two strands of the
DNA double helix, a pyrimidine in one chain always faces a purine in the other,
and only the base pairs T−A and C−G exist. As a consequence, the two strands
of a DNA helix are complementary, store the same information, and contain ex-
actly the same number of A and T bases and the same number of C and G bases.
This is the famous first Chargaff ’s rule [33], found by a chemical analysis of DNA
molecules, before the crucial discovery of the double helix structure of DNA by
Watson and Crick [34], and fully confirmed by this model. The simplified model
in Figure 1.1 shows schematically how the nucleotides are structured, the single
and double stranded DNA molecules, and gives a sketchy representation of the
DNA secondary structure—the double helix resulting from the energy minimiza-
tion condition. The figure does not show other significant features of the DNA
longitudinal structure, such as the major and minor grooves. The hydrogen bonds
within the complementary base pairs keep the strands together. When heating
double stranded DNA at temperatures around 90◦C, the hydrogen bonds melt and
the two strands separate, resulting in “DNA denaturation.” If lowering again the
temperature, the reverse process—called “DNA renaturation”—reestablishes the
double helix structure. The pair A−T contains only two hydrogen bonds, while the
couple C−G contains three hydrogen bonds, so that the second link is stronger.
This is reflected in an increased melting temperature for DNA molecules with a
higher C-G concentration. Along each chain, there is a well-defined positive direc-
tion, given by the 5′ to 3′ direction in which the strand can grow by the addition of
new nucleotides. The growth of a DNA chain is quite a complex process requiring
the fulfillment of several conditions, from which we mention only the most im-
portant few. The normal process of growing a new DNA single-chain molecule is
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Figure 1.3. The chemical model of a double-stranded DNA molecule.

the replication, in which an existing (complementary) strand is used as a template,
along which moves the DNA polymerase—the enzyme that performs the replica-
tion, adding to the growing chain nucleotides complementary to the ones in the
template. A primer is also required; that is, the DNA polymerase can only prolong
an already existing strand, by interacting with both the template strand and the
strand to which it adds the nucleotide. The replication process consumes energy,
so that the molecules that are needed by DNA polymerase to perform the addition
of a nucleotide to the chain are not directly the nucleosine monophosphates, the
monomers in the DNA strand, but the nucleosine triphosphates, which contain
three phosphate groups and have the necessary free energy stored in the two phos-
phoanhydride bonds. Figure 1.4 gives the chemical model of adenosine triphos-
phate (ATP), the nucleosine triphosphate needed to add an adenine nucleotide to
a DNA strand. The energy is released by the hydrolysis of the phosphoanhydride
bonds and the loss of the two additional phosphate groups. This mechanism is so
successful that nature uses ATP molecules not only for the replication of DNA but
also for any other biochemical process that requires additional energy, ATP being
the “molecular currency” of intracellular energy transfer. In the synthesis of nu-
cleic acids, the ATP to AMP conversion mechanism imposes the 5′ to 3′ positive
direction for the growth of DNA strands.
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The entities in the nucleotide chains that encode polypeptides, that is, specify
the primary structure of proteins, are called genes. Genes are divided into exons—
coding regions, interrupted by introns—noncoding regions. According to the cur-
rent GenBank statistics [2], exons in the human genome account for about 3%
of the total DNA sequence, introns for about 30%, and intergenic regions for
the remaining 67%. Different methodologies produce different results in what
concerns the number and size of the coding and noncoding regions. Based on
mRNA and EST (Expressed Sequence Tags) studies, human genes contain on the
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Table 1.1. The genetic code.

Second position in codon
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TTC Phe [F] TCC Ser [S] TAC Tyr [Y] TGC Cys [C] C

TTA Leu [L] TCA Ser [S] TAA Ter [end] TGA Ter [end] A

TTG Leu [L] TCG Ser [S] TAG Ter [end] TGG Trp [W] G

C

CTT Leu [L] CCT Pro [P] CAT His [H] CGT Arg [R] T

CTC Leu [L] CCC Pro [P] CAC His [H] CGC Arg [R] C

CTA Leu [L] CCA Pro [P] CAA Gln [Q] CGA Arg [R] A

CTG Leu [L] CCG Pro [P] CAG Gln [Q] CGG Arg [R] G

A

ATT Ile [I] ACT Thr [T] AAT Asn [N] AGT Ser [S] T

ATC Ile [I] ACC Thr [T] AAC Asn [N] AGC Ser [S] C

ATA Ile [I] ACA Thr [T] AAA Lys [K] AGA Arg [R] A

ATG Met [M] ACG Thr [T] AAG Lys [K] AGG Arg [R] G

G

GTT Val [V] GCT Ala [A] GAT Asp [D] GGT Gly [G] T

GTC Val [V] GCC Ala [A] GAC Asp [D] GGC Gly [G] C

GTA Val [V] GCA Ala [A] GAA Glu [E] GGA Gly [G] A

GTG Val [V] GCG Ala [A] GAG Glu [E] GGG Gly [G] G

average 3 and 10 exons, respectively, having an average length of 631 bp/262 bp
and being separated by introns with average length 6, 106 bp/5, 420 bp. But there
is a very large dispersion, with exon length ranging from just 1 bp/6 bp, up to
12, 205 bp/17, 105 bp. Minimum intron length is 17 bp/1 bp, while the maximum
value reaches 482, 576 bp/1, 986, 943 bp. Protein coding regions are rich in C and
G, while intergene (noncoding) regions are rich in T and A.

Protein coding is governed by the genetic code that gives the mapping of
codons—triplets of successive nucleotides in the corresponding reading frame in
the exons—to the 20 amino acids found in the polypeptide chains and to the ter-
minator that marks the end of an encoding segment. The genetic code is universal,
applying to all known nuclear genetic material, DNA, mRNA, and tRNA, and en-
compasses animals (including humans), plants, fungi, bacteria, and viruses, with
only small variations in mitochondria, certain eubacteria, cilliate, fungi, and al-
gae [2]. From Table 1.1, which gives the standard genetic code, it can be seen that
there is a large redundancy (degeneration) of the genetic code, as there are 43 = 64
codons to specify only 21 distinct outputs. The redundancy is distributed unevenly
among the outputs: there are amino acids encoded by one (2 instances), two (9
instances), three (one instance), four (5 instances), or six (3 instances) distinct
codons, while the terminator is encoded by three codons. Most genes start with
the codon ATG that also encodes the amino acid methionine.

The codon—amino acid mapping comprises two steps: (1) the transcription,
in which a specific enzyme, called transcriptase, copies a section of the DNA tem-
plate into a complementary mRNA (messenger RNA) molecule, in the presence
of a mixture of the four ribonucleotides (ATP, UTP, GTP, and CTP), and (2) the
translation, in which the actual mapping of the codons in the mRNA to amino
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acids is performed by ribosomes, after slicing—the editing of mRNA by the exci-
sion of all introns and the joining of all exons. Quite surprisingly, the number of
nucleotides in an exon is not necessarily a multiple of three, that is, an exon does
not necessarily comprise an integer number of codons. The amino acids for the
protein are brought to the site by tRNA (transfer RNA) molecules, each having
a nucleotide triplet which binds to the complementary sequence on the mRNA.
Each of the 20 amino acids is brought by a specific tRNA. In fact, there are at least
23 tRNAs for the 20 amino acids, as it will be discussed in the following in rela-
tion with the representation of the genetic code. There is a sharp contrast between
the deceivingly simple structure of DNA nucleotide chains—unbranched linear
code written in a four-letter alphabet, and the overwhelming complexity of the
protein 3D structure built of twenty amino acids. As mentioned, there are only
about 30 000 genes in the human genome, but millions of proteins, many of them
transitory. Nevertheless, the nucleotide chains and the proteins are the bearers of
essentially the same genetic information.

1.3. Conversion of genomic sequences into genomic signals

The conversion of genomic sequences from the symbolic form given in the public
genomic databases [1, 2] into digital genomic signals allows using signal process-
ing procedures for processing and analyzing genomic data. We have investigated
a large number of mappings of symbolic genomic data to digital genomic signals
and we have compared how the structure of the genomic code was highlighted
by the various representations and how the features of DNA sequences were re-
vealed by the resulting digital signals [25, 26, 27, 28, 29, 30, 31, 32]. Such a rep-
resentation has to be both truthful and unbiased. The mapping is truthful if all
biologically relevant characteristics of the represented objects are expressed in cor-
responding mathematical properties of the samples in the resulting digital signal.
The mapping is unbiased if none of the features belonging to the mapping itself,
but without correspondent in the properties of the initial sequence, is introduced
as artifacts. The representation must also be simple enough to allow fast and com-
putationally effective conversion and to provide an output readable for a human
operator. The last request favors representations with low dimensions of the out-
put, preferably 1D or 2D. This section briefly presents the digital representation
of nucleotides starting from the essential features of DNA sequences. A detailed
study of the symbolic-to-digital conversion of genomic sequences can be found
in [23].

1.3.1. Nucleotide representation

As schematically shown in Figure 1.5, there are three main dichotomies of the
nitrogenous bases biochemical properties that allow arranging them in classes:
(1) molecular structure—A and G are purines (R), while C and T are pyrimidines
(Y); (2) strength of links—bases A and T are linked by two hydrogen bonds (W—
weak bond), while C and G are liked by three hydrogen bonds (S—strong bond);
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(3) radical content—A and C contain the amino (NH3) group in the large groove
(M class), while T and G contain the keto (C=O) group (K class).

To express the classification of the system of nucleotides in couples of pairs
shown in Figure 1.5, we have proposed the nucleotide tetrahedral representation
[24] shown in Figure 1.6. The nucleotides are mapped to four vectors symmet-
rically placed in the 3D space, that is, oriented towards the vertices of a regular
tetrahedron. Each of the six edges corresponds to one of the classes comprising a
pair of nucleotides. The representation is three dimensional and the axes express
the differences “weak minus strong bonds,” “amino minus keto,” and “purines mi-
nus pyrimidines”:

x = W− S, y = M− K, z = R− Y. (1.1)

By choosing {±1} coordinates for the vertices of the embedding cube, the
vectors that represent the four nucleotides take the simple form:

�a = �i + �j +�k,

�c = −�i + �j −�k,

�g = −�i− �j +�k,

�t = �i− �j −�k.

(1.2)
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This representation is fully adequate for well-defined sequences, when each
entry is uniquely specified. Such sequences are given in the large integrative ge-
nomic databases, which provide a single curated standard sequence with respect
to which single nucleotide polymorphisms (SNPs) or other variations are defined.
But, when working with experimental data that can have ambiguous or multi-
ple values for some entries in the sequence, caused by either noise, or by the true
variability within the population for which the genome is sequenced, the IUPAC
conventions [2] have to be used. Apart of the symbols for the nucleotides (A, C,
G, T), IUPAC conventions include symbols for the classes mentioned at the be-
ginning of this section (S, W, R, Y, M, K), as well as for classes comprising three
nucleotides (B = {C, G, T} =∼ A, D = {A, G, T} =∼ C, H = {A, C, T} =∼ G,
V = {A, C, G =∼ T}), or all four nucleotides (i.e., unspecified nucleotide, N).
The corresponding vector representation is shown in Figure 1.7, in which the ad-
ditional vectors are given by:

�w = �a +�t
2

= �i,

�s = �c + �g
2

= −�i,

�m = �a +�c
2

= �j,

�k = �g +�t
2

= −�j,

�r = �a + �g
2

= �k,

�y = �c +�t
2

= −�k,

�b = �c + �g +�t
3

= −�a
3

,

�d = �g +�t + �a
3

= −�c
3

,

�h = �t + �a +�c
3

= −�g
3

,

�u = �a +�c + �g
3

= −�t
3
.

(1.3)

The dimensionality of the representation can be reduced to two, by project-
ing the nucleotide tetrahedron on an adequately chosen plane. This plane can be
put in correspondence with the complex plane, so that a complex representation
of the nucleotides is obtained. The choice of the projection plane is determined
by the features that have to be conserved as being most relevant in the given con-
text. For the study of large scale features of DNA sequences and for other similar
problems, we have found that the separation within the amino-keto classes is less
significant as compared to the strong-weak and purine-pyrimidine dichotomies.
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Figure 1.7. IUPAC symbols 3D representation.

This corresponds to the projection on the plane xOz and expresses the S−W and
Y−R dichotomies. The resulting complex quadrantal representation of the nu-
cleotides is given in Figure 1.8, in which the pairs of nucleotides are grouped in
the six above-mentioned classes, while the corresponding analytical expressions
are given in the equations:

a = 1 + j,

c = −1− j,

g = −1 + j,

t = 1− j.

(1.4)

In this representation the complementarity of the pairs of bases A−T and
C−G, respectively, is expressed by the symmetry with respect to the real axis (the
representations are complex conjugates: t = a∗, g = c∗), while the purine/pyrimi-
dine pairs have the same imaginary parts. We have investigated several other rep-
resentations, but the complex representation given by (1.4) has shown most ad-
vantages.

It should be noted that both the vector (3D, tetrahedral) and the quadrantal
(2D, complex) nucleotide representations shown above, as well as the real (1D)
representation to be discussed in the following, are one-to-one mappings that al-
low rebuilding the initial symbolic sequence from the vector, complex or real ge-
nomic signals. The information is wholly conserved and so are all the features and
properties of the initial sequences. Nevertheless, there are significant differences in
what concerns the expression of the various significant features and how accessible

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


Paul Dan Cristea 27

Purines

Keto

Pyrimidines C

Strong bonds
− j

Weak bonds

T

N−1 +1
Re = W− S

G A
j

Im = R− Y

Am
in

o

Figure 1.8. Nucleotide complex representation.

or directly readable for a human agent these features become. As in many other
cases, a good representation of a system is an important part in solving various
problems related to that system.

The projection of the vectors in Figure 1.7 on the same xOz plane provides the
complex representation of the IUPAC symbols given in Figure 1.9 and expressed
by the equations:

w = 1,

y = − j,

s = −1,

r = j,

k = m = n = 0,

d = 1
3

(1 + j),

h = 1
3

(1− j),

b = 1
3

(−1− j),

v = 1
3

(−1 + j).

(1.5)

As mentioned above, it is possible to further reduce the dimensionality of
the representation of nucleotide, codon, and amino acid sequences by using a real
one-dimensional mapping. The digits {0, 1, 2, 3} can be attached to the four nu-
cleotides. The three-base codons are interpreted as three-digit numbers written in
base four, that is, the codons along the DNA strands are mapped to the numbers
{0, 1, 2, . . . , 63}. Actually, a whole DNA sequence can be seen as a very large num-
ber written in base four. Nevertheless, it corresponds better to the biological reality
to interpret each codon as a distinct sample of a digital genomic signal distributed
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Table 1.2. Real representation of nucleotides to digits in base four.

Pyrimidines Purines

Thymine = T = 0 Adenine = A = 2

Cytosine = C = 1 Guanine = G = 3

along the DNA strand. There are 4! = 24 choices for attaching the digits 0–3 to
the bases A, C, G, T. The optimal choice given in Table 1.2 results from the con-
dition to obtain the most monotonic mapping of the codons 0–63 to the amino
acids plus the terminator 0–20, leading to best autocorrelated intergene genomic
signals [23].

1.3.2. Codon and amino acid representation

The tetrahedral (3D), complex (2D), and real (1D) representations of nucleotides
can be naturally extended for the representation of codons and amino acids.

A codon consists of a sequence of three nucleotides:

X = B2B1B0, Bi ∈ {A, C, G, T}; i = 0, 1, 2, (1.6)

situated in a coding area of a DNA molecule, that is, in an exon, and having the
start aligned to the correct open reading frame (ORF). There are six possible ORFs,
three in each direction of the DNA strand, shifted with a nucleotide from each
other.

The codon can be seen as a word of three letters, taken from a four-letter
alphabet. The codon can also be seen as a number written in a certain base, using
the four digits Bi. For the vectorial (tetrahedral) representation of nucleotides, we
have chosen the base two and the four-vector digits having the values given in
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Figure 1.10. Example of the vector representation of codons.

equation (1.2). Correspondingly, the codon X is mapped to the vector:

�x = 22�b2 + 21�b1 + 20�b0, �bi ∈
{
�a,�c,�g,�t

}
; i = 0, 1, 2. (1.7)

This is a natural extension of the concept of numeration system to vectorial
(and complex) numbers. The vectorial conversion procedure is repeated for each
of the three nucleotides in a codon, treating them as digits of a three-digit num-
ber written in base two: the vector corresponding to the third, that is, the last
nucleotide in the codon (the least significant digit) is multiplied by 1, the vector
corresponding to the second base in the codon by 2, and the vector corresponding
to the first base of the codon (the most significant digit) by 22 = 4. This results in
the codon vectorial representation illustrated in Figure 1.10 for the special cases of
the codons AAA (4�a+ 2�a+�a ) and AAG (4�a+ 2�a+�g )—encoding lysine, and AAC
(4�a + 2�a + �c ) and AAT (4�a + 2�a + �t )—encoding asparagine. Applying the same
rule for all the 64 codons, the codon tetrahedral representation in Figure 1.11 is
obtained [24]. The first nucleotide in a codon selects one of the four first-order
16-codon tetrahedrons that form together the zero-order tetrahedron of the overall
genetic code, the second nucleotide selects one of the second-order 4-codon tetra-
hedrons that compose the already selected first-order tetrahedron and, finally, the
third nucleotide identifies one of the vertices. In this way, each of the codons is
attached to one of the vertices in a resulting three-level fractal-like tetrahedron
structure. Taking into account the codon-to-amino acid mapping imposed by the
genetic code, the amino acids encoded by the codons can be assigned to one or
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Figure 1.11. Codon tetrahedral representation.

several of the 64 vertices, as shown in Figure 1.12. It turns out that the tetrahe-
dron representation of the genomic code, as well as the mathematical descriptions
based on it, reflects better the metric structure of the genomic code. Specifically,
the codons that correspond to the same amino acid are mapped in neighboring
points, so that related codons are clustered. Moreover, the degeneration is basi-
cally restricted to the second-order tetrahedrons and most pairs of interchangeable
nucleotides are distributed on the edges parallel to the pyrimidines and purines
directions. The tetrahedron representation has also the advantage to naturally de-
termine putative ancestral coding sequences by the simple passage to a lower-level
tetrahedron. Thus, the tetrahedron representation grasps some essential features
of the genetic code which appear as symmetries and regularities of the resulting
3D image. To make the nucleotide and codon sequences easy to read for a human
observer, the three axes of the representation space can be assigned to the three
basic color components of the RGB—red, green, blue system [35]. Consequently,
each point in the representation space—each nucleotide in the case of Figure 1.6,
or each IUPAC symbol in the case of Figure 1.7, corresponds to a distinct hue.
This approach is useful for the fast visual exploration of DNA sequences at the
nucleotide level and can be extended at the codon (Figure 1.11) and amino acid
levels (Figure 1.12). The superposition of the codon tetrahedron and of the amino
acid tetrahedron, as shown in Figure 1.13, is the 3D equivalent of a periodic table
for the genomic code. This representation gives a better image of the regularities of
the genomic code and allows sensing of some aspects of its early evolution before
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Figure 1.12. Amino acid tetrahedral representation.

reaching the current frozen state. It is especially remarkable that the different rep-
resentations of an amino acid, resulting from the redundancy of the genetic code,
are mapped in neighboring points of the codon tetrahedron, with the exception
of the three instances of amino acids degenerated of order six, for which none of
the investigated mapping can obtain the contiguity of the representations. It must
be mentioned, though, that for each of these amino acids, there are two distinct
tRNA (giving the total of 23 tRNAs for the 20 amino acids), each encoded by the
codons of the same cluster.

A complex representation of the codons can be obtained in a similar way,
by considering the codon as a three-digit number in base two and by using the
complex representations (1.4) of its nucleotides as the digits:

x = 22b2 + 21b1 + 20b0, bi ∈ {a, c, g, t}; i = 0, 1, 2. (1.8)

Again, relation (1.8) results from (1.7) by the projection on the xOz plane,
and by taking Ox as the real axis and Oz as the imaginary one. Relation (1.8) can
also be seen as representing the nucleotides in two (bipolar) binary systems, with
mutually orthogonal complex units.

For methionine, to which corresponds the codon ATG that starts any gene,

the vector representation is �M = 4�a + 2�t + �g = 5�i + �j + 3�k, while the complex
representation is M = 4a + 2t + g = 5 + 3 j. For the example in Figure 1.10, the
corresponding complex representation is given in Figure 1.14.
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Figure 1.13. Genetic code vectorial representation.

Applying the same method for the 64 codons, the complete mapping of all
the codons to the complex plane given in Figure 1.15 is obtained [23]. This is
the projection on the xOz plane of the codon tetrahedron in Figure 1.11. Figure
1.16 shows the mapping of the amino acids to the complex plane and can be ob-
tained either by applying the genetic code on the complex representation of the
codons in Figure 1.11, or by projecting the amino acid tetrahedron in Figure 1.12
on the xOz plane. The superposition of the codon and amino acid complex rep-
resentations in Figure 1.17 gives a complex (2D) representation of the genomic
code. The clustering of the codons corresponding to the same tRNAs is obvious,
and this corresponds in 17 of the cases with the clustering of all the codons cor-
responding to the same amino acid in a single contiguous domain. Only for argi-
nine, leucine, and serine, each of them encoded by six codons, the correspond-
ing domains are splitted in two noncontiguous subdomains comprising four and,
respectively, two codons. It is interesting to mention that the clustering refers not
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Figure 1.14. Codon complex representation.
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Figure 1.15. Mapping of the codons on the complex plane.

only to the codons, but also to the features of the amino acids. Amino acids with
similar properties (e.g., which cluster on state transition probability) tend to be
neighbors in the complex representation of the genomic code in Figure 1.17.
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Figure 1.16. Mapping of the amino acids on the complex plane.

As mentioned above, it is possible to further reduce the dimensionality of the
representation of nucleotide, codon, and amino acid sequences by using a real one-
dimensional mapping. Table 1.3 gives the mapping of the digital codons to the nu-
merical codes of the amino acids. The numerical values of the codons result from
the base-four values of the nucleotides given in Table 1.2 and from the “nucleotide
digits” in each codon. The numerical codes assigned to the amino acids result from
the order of their first reference when gradually increasing the values of the codons
from 0 to 63. By convention, the code zero is assigned to the terminator. As can
be seen in the representations of the genetic code in Table 1.1 and in Figures 1.12,
1.13, 1.16, and 1.17, there are only two nondegenerated (one codon—one amino
acid) mappings—for tryptophan and methionine, but nine double, one triple, five
quadruple, and three sextuple degenerations, plus the three codons corresponding
to the terminator. The minimum nonmonotonic dependency has only four rever-
sals of the ascending order: for a terminator sequence and for the three instances of
sextuple degeneration (leucine, serine, and arginine). An exhaustive search for all
the 24 possible correspondences of the nucleotides to the digits 0–3 has shown that
there does not exist a more monotonic mapping. The proposed mapping gives a
piecewise constant function, with only the three mentioned reversals of the order,
as shown in Table 1.3 and in Figure 1.18.

The reference to the various real and complex representations of the nucleo-
tides can be simplified by using the pair of indices (p, q) as described in details
in [23]. The index p specifies the nucleotide permutations and takes values from
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Figure 1.17. Genetic code complex representation.

1 to 24. The index q is used to specify the representation type and has the values:
q = 0 for the real representation, q = 1 for a representation defined by the map-
ping of the nucleotides to pure real/pure imaginary numbers, and q = 2 for the
mapping of nucleotides to quadrantally symmetric complex numbers, as defined
by equation (1.4) and Figure 1.8 (for p = 1).

Despite the fact that the real representations of nucleotides described above
are also one-to-one mappings, having an exact inverse, thus conserving the whole
information in the initial symbolic sequence, the vectorial or complex representa-
tions are better fitted to reveal the basic features of the genomic sequences by their
emphasis on the classes of nucleotides. Unfortunately, the simpler-to-handle real
representations seem to be biased, as they induce some additivity of the properties
of the mathematical representation, which does not have a direct correspondence
in the nucleotide biochemical properties. In the following sections, we will present
results obtained by using the complex (2D) and vectorial (3D) representations.

Complex representations have the advantage of expressing some of the bio-
chemical features of the nucleotides in mathematical properties of their represen-
tations. For instance, the complementarity of the pairs of bases A−T, G−C is ex-
pressed by the fact that their representations are complex conjugates, while purines
and pyrimidines have the same imaginary parts and opposite sign real parts. As al-
ready discussed, the complex representation of the codons and the amino acids
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Table 1.3. Optimal correspondence of real numerical codons to amino acids.

Digital codon Amino acid code Long name Short name Symbol

10, 11, 14 0 Terminator Ter [end]

0, 1 1 Phenylalanine Phe [F]

2, 3, 16, 17, 18, 19 2 Leucine Leu [L]

4, 5, 6, 7, 44, 45 3 Serine Ser [S]

8, 9 4 Tyrosine Tyr [Y]

12, 13 5 Cysteine Cys [C]

15 6 Tryptophan Trp [W]

20, 21, 22, 23 7 Proline Pro [P]

24, 25 8 Histidine His [H]

26, 27 9 Glutamine Gln [Q]

28, 29, 30, 31, 46, 47 10 Arginine Arg [R]

32, 33, 34 11 Isoleucine Ile [I]

35 12 Methionine Met [M]

36, 37, 38, 39 13 Thereonine Thr [T]

40, 41 14 Asparagine Asn [N]

42, 43 15 Lysine Lys [K]

48, 49, 50, 51 16 Valine Val [V]

52, 53, 54, 55 17 Alanine Ala [A]

56, 57 18 Aspartic acid Asp [D]

58, 59 19 Glutamic Acid Glu [E]

60, 61, 62, 63 20 Glycine Gly [G]

shown in Figures 1.15 and 1.16 results simply from the projection of the codon
and amino acid tetrahedrons in Figures 1.11 and 1.12 on the xOz plane. This
leads naturally to the complex representation of the genetic code in Figure 1.17
and allows representing DNA sequences by complex signals at the levels of nu-
cleotides, codons, and amino acids. It can be noticed that this complex mapping
conserves the meaning of the distances between the codons, as resulting from the
genetic code. Specifically, codons corresponding to the same amino acid are clus-
tered in contiguous regions of the complex plane. From the frequency of the amino
acids in the proteins, it results that the genetic code has some of the characteristics
of Huffman (entropy) coding. Higher redundancy (degeneracy) in the encoding
could correspond to primitive, older amino acids, while low redundancy, mean-
ing a higher local resolution of the genetic code, could correspond to more recent
amino acids. This hypothesis allows building models of ancestral proteins in the
early times before the freezing of the genomic code.

Complex values can be attached in various ways to the amino acids. One
modality is to assign to a certain amino acid the average value over the whole area
onto which it is mapped, taking into account the relative frequencies of occurrence
of the different codons that correspond to the amino acid. It has been shown that
the assigning of the complex values to the nucleotides and to the amino acids can
be adapted to various tasks. For instance, the optimum values for detecting the
exons are different from the optimum ones for detecting the reading frames [35].
This gives the flexibility needed for targeting the approach to each application.
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Figure 1.18. Optimal (minimally nonmonotonic) correspondence of numerical codons to amino acid
codes.

For the analysis of large scale DNA features, only the nucleotide to complex map-
ping given in equations (1.4) and (1.5) and Figures 1.8 and 1.9 will be used.

1.4. Phase analysis of DNA sequences

All available complete genomes or available sets of contigs for eukaryote and pro-
karyote taxa have been downloaded from the GenBank [2] database of NIH, con-
verted into genomic signals by using the mapping given in equation (1.4). The
signals have been analyzed focussing on the extraction of large scale features of
DNA sequences, up to the scale of whole chromosomes. Such properties tran-
scend the differences between the coding (exons) and noncoding (introns) re-
gions of DNA sequences, and refer to properties and functions of the chromo-
somes as whole entities. Several tools have been developed for this type of analysis,
some also useful for local feature extraction, and have been presented elsewhere
[23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. This section is devoted to the phase anal-
ysis of the complex genomic signals, which revealed some interesting large scale
DNA features that could be important for better understanding such functions of
chromosomes like replication, transcription, and crossover.

1.4.1. Fundamentals of phase analysis

The phase of a complex number is a periodic magnitude: the complex number
does not change when adding or subtracting any multiple of 2π to or from its
phase. To remove the ambiguity, the standard mathematical convention restricts
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the phase of a complex number to the domain (−π,π] that covers only once all
the possible orientations of the associated vector in the complex plane. For the
genomic signals obtained by using the mapping defined in Figure 1.8 and in equa-
tion (1.4), the phases of the nucleotide representations can have only the values
{−3π/4,π/4,π/4, 3π/4} radians.

The cumulated phase is the sum of the phases of the complex numbers in a
sequence from the first element in the sequence, up to the current element. For
the complex representation (1.4), the cumulated phase at a certain location along
a sequence of nucleotides has the value:

θc = π

4

[
3
(
nG − nC

)
+
(
nA − nT

)]
, (1.9)

where nA, nC, nG, and nT are the numbers of adenine, cytosine, guanine, and
thymine nucleotides in the sequence, from the first to the current location. Con-
sequently, the slope sc of the cumulated phase along the DNA strand at a certain
location is linked to the frequencies of occurrence of the nucleotides around that
location by the equation:

sc = π

4

[
3
(
fG − fC

)
+
(
fA − fT

)]
, (1.10)

where fA, fC, fG, and fT are the nucleotide occurrence frequencies.
The unwrapped phase is the corrected phase of the elements in a sequence

of complex numbers, in which the absolute value of the difference between the
phase of each element in the sequence and the phase of its preceding element is
kept smaller than π by adding or subtracting an appropriate multiple of 2π to or
from the phase of the current element. The unwrapped phase eliminates the phase
jumps introduced by the conventional restriction of the phase domain described
above and allows observing the true global phase trends along a sequence. For the
complex representation given in equation (1.4), the positive transitions A → G,
G → C, C → T, T → A determine an increase of the unwrapped phase, corre-
sponding to a rotation in the trigonometric sense by π/2, the negative transitions
A → T, T → C, C → G, G → A determine a decrease, corresponding to a clock-
wise rotation by −π/2, while all other transitions are neutral. A distinction has
to be made between the exactly (first type) neutral transitions A ↔ A, C ↔ C,
G ↔ G, T ↔ T, for which the difference of phase is zero in each instance, so
that the unwrapped phase does not change, and the “on average” (second type)
neutral transitions A → C, C → A, G → T, T → G, for which the difference
of phase is ±π. Because of the bias introduced by the conventional restriction
of the phase to the domain (−π,π], which favors π over −π, the standard un-
wrapped phase function and the corresponding functions implemented in most
commercial software mathematics libraries, which apply the basic convention for
the phase mentioned above, attach +π to all the “on average” neutral transitions.
This would distort the unwrapped phase and even the cumulated phase, if using
complex representations that include real negative numbers (which is not the case
for equations (1.4)). To avoid this unwanted effect, two solutions have been used:
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(1) for large genomic sequences, from millions to hundreds of millions of nu-
cleotides, uniformly distributed small random complex numbers have been added
to each nucleotide complex representation, so that phases and differences of phase
close to −π are equally probable with the phases close to π and the artificial drift
of the unwrapped phase towards positive values has been eliminated, (2) primarily
for medium or small sequences, for example, when studying virus genomes, but
also for large and very large sequences, a custom unwrapped phase function has
been used that attaches zero phase change for all neutral transitions.

The accuracy of both procedures has been thoroughly verified using artificial
sequences. It has been found that any bias related to the conventional restriction
of the phase domain, which could affect crisp data processed with the standard
unwrapped phase function, has been eliminated.

For the complex representation (1.4), taking the precautions mentioned
above, the unwrapped phase at a certain location along a sequence of nucleotides
has the value:

θu = π

2

(
n+ − n−

)
, (1.11)

where n+ and n− are the numbers of the positive and negative transitions, respec-
tively. The slope su of the variation of the unwrapped phase along a DNA strand is
given by the relation:

su = π

2

(
f+ − f−

)
, (1.12)

where f+ and f− are the frequencies of the positive and negative transitions.
An almost constant slope of the unwrapped phase corresponds to an almost

helicoidal wrapping of the complex representations of the nucleotides along the
DNA strand. The step of the helix, that is, the spatial period over which the helix
completes a turn, is given by

L = 2π
su

. (1.13)

As will be shown in the next subsection, such an almost linear increase of
the unwrapped phase, corresponding to a counter clockwise helix, is a long-range
feature of all chromosomes of Homo sapiens, Mus musculus, and of other animal
eukaryotes, while an opposite winding is common in plants and prokaryotes. The
trend is maintained over distances of tens of millions of bases and reveals a reg-
ularity of the second-order statistics of the distribution of the succession of the
bases which is a new property, distinct of Chargaff ’s laws.

It must be noted that the cumulated phase is related to the statistics of the
nucleotides, while the unwrapped phase id related to the statistics of the pairs of
nucleotides. Thus, the phase analysis of complex genomic signals is able to reveal
features of both the first- and the second-order statistics of nucleotide distribu-
tions along DNA strands.
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Figure 1.19. Cumulated and unwrapped phase along Homo sapiens chromosome 1 (phase 3, total
length 228, 507, 674 bp [2]).

1.4.2. Phase analysis of eukaryote DNA sequences

Using the genomic signal approach, long-range features maintained over distances
of 106–108 of base pairs, that is, at the scale of whole chromosomes, have been
found in all available eukaryote genomes [31, 32]. The most conspicuous feature
is an almost linear variation of the unwrapped phase found in all the investigated
genomes, for both eukaryotes and prokaryotes. The slope is specific for various
taxa and chromosomes.

Figure 1.19 presents the cumulated and unwrapped phase along concatenated
phase-3 data for chromosome 1 of Homo sapiens, downloaded from GenBank [2].
Two main features of these phases are readily noticeable.

(i) The cumulated phase remains close to zero, in accordance to the second
Chargaff ’s law for the distribution nucleotides—a first-order statistics, stating that
the frequency of occurrence of purines and pyrimidines along eukaryote DNA
molecules tend to be equal and balance each other [33].

(ii) The unwrapped phase has an almost linear variation maintained for the
entire chromosome, for more than 228 millions of nucleotides, including both
coding and noncoding regions. Such a behavior proves a rule similar to Chargaff ’s
rule, but reveals a statistical regularity in the succession of the nucleotides—a
second-order statistics, but reveals a statistical regularity in the succession of the
nucleotides—a second-order statistics: the difference between the frequencies of pos-
itive nucleotide-to-nucleotide transitions (A → G, G → C, C → T, T → A) and of
negative transitions (the opposite ones) along a strand of nucleic acid tends to be small,
constant, and taxon- and chromosome-specific [28].

It is worth mentioning that less precise data tend to conform less to this rule,
as can be seen from Figure 1.20 that presents the same plots as in Figure 1.19, but
for all the concatenated contigs of chromosome 1 of Homo sapiens, comprising all
the available 238,329,632 nucleotides, without filtering. As a practical use of the
unwrapped phase quasilinearity rule, the compliance of a certain contig with the
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Figure 1.20. Cumulated and unwrapped phase along all concatenated contigs of Homo sapiens chro-
mosome 1 (nonfiltered data, total length 238, 329, 632 bp [2, 3, 4]).
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Figure 1.21. Cumulated and unwrapped phase along concatenated contigs of Homo sapiens chromo-
some 11 (older release, nonfiltered data, total length xxx bp [2]).

large scale regularities of the chromosome to which it belongs can be a used to
spot out exceptions and errors. Figure 1.21 shows the cumulated phase and un-
wrapped phase along the ensemble of all concatenated contigs of Homo sapiens
chromosome 11. The average slope of the unwrapped phase is su = 0.0667 rad/bp,
while the various contigs have slopes in the range between 0.047 rad/bp = 2.7 de-
gree/bp and 0.120 rad/bp = 6.9 degree/bp. A striking exception is found in the
interval∼ 15.17–15.38 Mbp of the concatenated string of contigs and corresponds
to the contig of accession NT 029410 [2] for which the nucleotide complex rep-
resentation phases are shown in Figure 1.22. On a length of about 210 Kbp, the
unwrapped phase decreases linearly with a sharp average slope su = −0.65 rad/bp
= −37.2 degree/bp, which corresponds to a large negative difference in the fre-
quencies of positive and negative transitions � fpm = f+ − f− = −39.4%/ bp and
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Figure 1.22. Cumulated and unwrapped phase along contig NT 029410 of Homo sapiens chromosome
11 (length xxx bp [2]).
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Figure 1.23. Cumulated and unwrapped phase for the available concatenated contigs of Mus musculus
chromosome 11 (nonfiltered data, total length 99, 732, 879 bp [2, 5, 6]).

to a nucleotide average helix oriented clockwise, completing a turn for about ev-
ery 9.7 bp. At the same time, the cumulated phase increases linearly with a slope
sc = 0.325 rad/bp = 18.6 degree/bp. This data seems to have been dropped from
recent releases of chromosome 11 sequences.

Similar large scale properties can be found in all available eukaryote genomes.
Figure 1.23 shows the phase diagram for the 99,732,879 nucleotides of the con-
catenated contigs of Mus musculus chromosome 11. The unwrapped phase in-
creases also almost linearly with an average slope su = 0.086 rad/bp = 4.93 de-
gree/bp, while the cumulated phase remains again almost constant at the scale of
the diagram.
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Figure 1.24. Unwrapped phase of the genomic signals for the nucleotide sequence of the concatenated
contigs of Homo sapiens chromosomes 1–4 [2].

Such long-range regularities of the DNA molecules reveal a structuring of the
genomic information at the level of whole chromosomes and contradict the asser-
tion that genomes consist of scarce gene oases in an otherwise essentially empty,
unstructured desert. Now it is accepted that the extragene regions can play sig-
nificant functional roles at the level of the whole chromosome, in controlling pro-
cesses like replication, transcription, crossover, and others. Along with many of the
genes, the Homo sapiens and the Mus musculus genomes share twice as much other
extragene DNA sequences. It is conjectured that these sequences must have impor-
tant functions that explain how they were conserved over a divergent evolution of
some 75 million years of the human and mouse lineages [1, 2, 3, 5, 7].

The approximately linear variation with positive slope has been found for the
unwrapped phase of the genomic signals of all the chromosomes of Homo sapiens
and Mus musculus. Figure 1.24 shows the results for the four largest chromosomes
of Homo sapiens, while Figure 1.25 gives the curve for the shortest three chro-
mosomes. Significant segments with negative slopes of the unwrapped phase have
been found in Homo sapiens chromosomes 5, 8, 11, 17, 21, and Y. The average
slope of the unwrapped phase is taxon and chromosome specific and has a func-
tional role, most probably in controlling the movement Brownian machines like
the DNA polymerase and in selecting homologous sites for the crossover exchange
of genomic material. Table 1.4 shows the average slopes of the unwrapped phase
for the concatenated contigs of Homo sapiens chromosomes currently available in
the GenBank [2] data base.

1.4.3. Phase analysis of prokaryote DNA sequences

We start illustrating the phase features of prokaryote DNA sequences with the
case of the well-studied Escherichia coli, for which the genome has been one of
the first completely sequenced [14]. The most striking feature in Figure 1.26 is
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Figure 1.25. Unwrapped phase of the genomic signals for the nucleotide sequence of the concatenated
contigs of Homo sapiens chromosomes 21, 22, Y [2].

Table 1.4. Average slopes of the unwrapped phase for the concatenated contigs of homo sapiens chro-
mosomes.

Chr su (rad/bp) Chr su (rad/bp) Chr su (rad/bp) Chr su (rad/bp)

1 0.072 7 0.066 13 0.057 19 0.084

2 0.064 8 0.062 14 0.066 20 0.073

3 0.063 9 0.066 15 0.072 21 0.057

4 0.056 10 0.067 16 0.075 22 0.091

5 0.060 11 0.069 17 0.078 X 0.057

6 0.062 12 0.068 18 0.060 Y 0.054

that the cumulated phase varies piecewise linearly along two domains of the cir-
cular DNA having almost equal length: a region of positive slope sc+ = 0.0393
rad/bp of length l+ = 2, 266, 409 bp (split into two domains 1–1, 550, 413 bp and
3, 923, 226–4, 639, 221 bp) and a region of negative slope sc− = −0.0375 rad/bp
of length l− = 2, 372, 812 bp. The quite sharp extremes of the cumulated phase
are at 3, 923, 225 bp and 1, 550, 413 bp, respectively, very close to the experimen-
tally found origin and terminus of chromosome replication. Quite similar dia-
grams have been obtained analyzing the difference in the occurrence frequencies
of purines over pyrimidines R − Y = (A + G) − (T + C) (Figure 1.27) and of ke-
tones over amines K−M = (G + T)− (C + A) (Figure 1.28). Figure 1.29 shows the
excess of weak over strong bonds along the Escherichia coli DNA strand. As is well
known, for prokaryotes most of the chromosome comprises encoding regions and
in which cytosine and guanine are in excess over adenine and thymine.

It is rather surprising that the variation closest to (piecewise) linear is found
for the cumulated phase, which has a slope dependent on a mixture of the nu-
cleotide occurrence frequencies given by equation (1.10). Again, the variation of
the unwrapped phase is almost linear for the whole chromosome (Figure 1.30)
and passes without change over the points where the slope of the cumulated phase
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Figure 1.26. Cumulated phase for the circular chromosome of Escherichia coli K12 (NC 000913, com-
plete genome, length 4, 639, 221 bp [2, 14]).
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Figure 1.27. Purine over pyrimidine excess (A + G) − (T + C) along the circular chromosome of
Escherichia coli K12 (NC 000913, complete genome, length 4, 639, 221 bp [2, 14]).

changes sign. This is a general feature, found for all chromosomes and all prokary-
otes, and will be discussed in the next section of this chapter.

Figure 1.31 shows the cumulated and the unwrapped phase along the circu-
lar chromosome of Yersinia pestis [18] (accession number NC 003143 [2]). As in
the case of Escherichia coli, the breaking points are most probably in relation with
the origins and the termini of chromosome replichores, but we are not aware of
the corresponding experimental results. It is to be noticed that, in opposition to
Escherichia coli [14] and Bacillus subtilis [16] which display only one maximum
and one minimum [24], the cumulated phase of Yersinia pestis shows four points
of each type. This corresponds to the fusion of more strains into the circular chro-
mosome of Yersinia pestis and could reveal aspects of the ancestral history of the
pathogen. The change of sign of the cumulated phase slope at the breaking points
shows that there is a cut and a macroswitch of the two DNA strands, so that the
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Figure 1.28. Keto over amino excess (G + T) − (C + A) along the chromosome of Escherichia coli
(NC 000913 [2, 14]).
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Figure 1.29. Weak bonds over strong bonds W − S = (A + T) − (C + C) along the chromosome of
Escherichia coli (NC 000913 [2, 14]).

difference between the frequencies of occurrence of the nucleotides changes the
sign. It is remarkable that, in the same points, there is little or no change in the
unwrapped phase. This will be explained in the next section of this chapter based
on a longitudinal model of the chromosomes’ “patchy” structure.

Similar characteristics have been found for almost all other studied prokary-
otes. Figure 1.32 presents the cumulated and unwrapped phase for an intracellu-
lar pathogen of humans: Chlamydophila pneumoniae CWL029 (NC 000922 [34]).
Again the linear regions correspond to the “replichores” of bacterial circular chro-
mosomes, and the extremes of the cumulated phase are the origin and terminus
of chromosome replication. The differences in nucleotide occurrence frequen-
cies have been explained by the differences in mutation probabilities resulting
from the asymmetry of replication mechanisms for the leading and lagging strands
but, most probably, this statistically ordered nonhomogenity plays a fundamental
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Figure 1.30. Unwrapped phase for the circular chromosome of Escherichia coli (NC 000913 [2, 14]).
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Figure 1.31. Unwrapped and cumulated phase for the circular chromosome of Yersinia pestis
(NC 0003143, complete genome, length 4, 653, 728 bp [2, 18]).

role in the functioning of some “molecular machines,” like DNA polymerase that
moves along a DNA strand by converting the thermal motion in an ordered dis-
placement.

It has been shown recently that DNA molecules have a fractal-like structure
resulting from their long-range correlations [30]. The self-similarity, that is, the
fractal-like structure is revealed by the linearity of the plot log(N) versus log(B),
where N is the number of filled boxes of size B, while the slope gives the fractal di-
mension. From the analysis of the cumulated phase of the circular chromosome of
Chlamydophila pneumoniae CWL029 in Figure 1.32, with a 1024 bp sliding win-
dow, an average fractal dimension of 1.05 has been found, only slightly higher
than one, in accordance with the long correlations observed in the cumulated and
unwrapped phase curves.
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Figure 1.32. Cumulated and unwrapped phase for the circular chromosome of Chlamydophila pneu-
moniae CWL029 (NC 000922, complete genome, length 1, 230, 230 bp [2]).

1.5. Phase analysis of reoriented ORFs

As discussed in Section 1.2, each DNA strand has a well-defined positive direction
(the 5′ → 3′ sense), along which successive nucleotides can be joined to each other
[29]. The two strands of a DNA double helix have opposite positive directions.
DNA molecules have a very “patchy” structure with intertwined coding and non-
coding segments oriented in both direct and inverse sense [36]. For most currently
sequenced genomes, the information about the direct or inverse orientation of the
coding regions—the ORF—has been identified and is available in the genomic
databases [2].

The main point that results from the analysis of the modalities in which DNA
segments can be chained together along a DNA double helix is that a direction
reversal of a DNA segment is always accompanied by a switching of the antiparallel
strands of its double helix. This property is a direct result of the requirement that
all the nucleotides be linked to each other along the DNA strands only in the 5′ to
3′ sense.

Figure 1.33 schematically shows the way in which the positive orientation re-
striction is satisfied when a segment of a DNA double helix is reversed and has si-
multaneously switched its strands. In Figure 1.33a, the chains (A0A1)(A1A2)(A2A3)
and (B0B1)(B1B2)(B2B3) have been marked on the two strands, having the positive
(5′ to 3′) directions as indicated by the arrows. The reversal of the middle segment,
without the corresponding switching of its strands (Figure 1.33b), would generate
the forbidden chains (A0A1)(A2A1)(A2A3) and (B0B1)(B2B1)(B2B3) that violate
the 5′ to 3′ alignment condition. Similarly, the switching of the strands of the
middle segment, without its reversal, would generate the equally forbidden chains
(A0A1)(B2B1)(A2A3) and (B0B1)(A2A1)(B2B3), not shown in Figure 1.33. Finally,
only the conjoint reversal of the middle segment and the switching of its strands
(Figure 1.33c) generate the chains (A0A1)(B1B2)(A2A3) and (B0B1)(A1A2)(B2B3),
which are compatible with the 5′ to 3′ orientation condition.
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Figure 1.33. Schematic representation of a DNA segment direction reversal: (a) the two antiparallel
strands have the segments ordered in the 5′ to 3′ direction indicated by arrows; (b) hypothetic reversal
of the middle segment, without the switching of the strands; (c) direction reversal and strand switching
for the middle segment. The 5′ to 3′ alignment condition is violated in case (b) but reestablished for (c).
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Figure 1.34. Interchange of positive and negative nucleotide-to-nucleotide transitions after segment
reversal and strand switching.

We also mention that, in order to practically perform such a reversal, the
two branches (A1A2) and (B1B2) of the DNA double helix segment should not
be exactly aligned, but slightly shifted with respect to each other and the “free”
nucleotides at the two ends should be complementary, to provide the necessary
“sticky ends” allowing the easy reattachment of the strands. This condition does
not affect the aspects discussed here.

As a consequence of the coupling of the direction reversal with the strand
switching imposed by the condition to maintain the continuity of the positive di-
rections (5′ → 3′) along the two strands of the DNA molecule, there is always a pair
of changes when a DNA segment is inversely inserted. Thus, the sense/antisense
orientation of individual DNA segments affects only the nucleotide frequencies,
but conserves the frequencies of the positive and negative transitions. Figure 1.34
shows how the type of nucleotide-to-nucleotide transitions changes (positive to
negative, and vice versa) for a segment reversal and for a strand switching. The
reversal of an individual DNA segment affects only the first-order statistics of the
nucleotides, while the second-order statistics remains unchanged. Thus, the cu-
mulated phase of a genomic signal, which depends on the frequency of nucleotides
along the corresponding DNA strand, changes significantly for a segment reversal,
while the unwrapped phase, which depends on second-order statistical features,
does not.

This model explains why the unwrapped phase has a regular, almost linear,
variation even for eukaryote chromosomes [23, 24], despite their very high frag-
mentation and quasirandom distribution of direct and inverse DNA segments,
while the cumulated phase has only a slight drift close to zero.

Figure 1.35 shows together the cumulated phase and the unwrapped phase
of the genomic signal for the complete circular chromosome of Escherichia coli
[14] (NC 000913 [2]) comprising 4, 639, 221 bp (also shown in Figures 1.26 and
1.30) and for the 4, 290 concatenated reoriented coding regions, comprising 4, 097,
248 bp. All the coding regions having an inverse reading frame have been inversed
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Figure 1.35. Cumulated and unwrapped phase of the genomic signals for the complete genome
(4, 639, 221 bp) and the 4, 290 concatenated reoriented coding regions (4, 097, 248 bp) of Escherichia
coli (NC 000913 [2, 14]).
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Figure 1.36. Cumulated and unwrapped phase of the genomic signals for the complete genome
(4, 653, 728 bp) and the 4034 concatenated reoriented coding regions (3, 733, 776 bp) of Yersinia
pestis3,17 (accession number NC 003143 [2, 18]).

and complemented (i.e., A and T, on one hand, C and G, on the other, have been
interchanged to account for strand switching). The disappearance of the breaking
points in the cumulated phase under the effect of the reorienting is evident, while
the unwrapped phase changes little.

Similarly, Figure 1.36 shows the cumulated and the unwrapped phase for the
complete circular chromosome of Yersinia pestis strain CO92 (accession number
NC 003143) with a length of 4, 853, 728 bp and for its concatenated reoriented
3, 884 coding regions comprising 3, 733, 776 bp. The slope of the cumulated and
the unwrapped phases are changed not only because the intergene regions have
been eliminated, but also because direct and inverse coding regions are actually
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Figure 1.37. Cumulated and unwrapped phase for the circular chromosome of Salmonella typhi
(AL 5113382, length 4, 809, 037 bp [2]).

distributed in all the four positive and four negative slope segments of the cu-
mulated phase, certainly, with very different frequencies. The orientation of the
coding regions correlates well with the slope of the cumulated phase: most direct
ORF are in the positive slope regions, while most inverse ORF are in the negative
slope regions.

Figure 1.37 presents the cumulated and the unwrapped phase of the complete
circular chromosome Salmonella typhi, the multiple drug resistant strain CT18
(accession AL 513382 [2]). The locations of the breaking points, where the cumu-
lated phase changes the sign of the slope of its variation along the DNA strand,
are given in the figure. Even if locally the cumulated phase and the unwrapped
phase have not a smooth variation, at the scale used in Figure 1.37, the variation is
quite smooth and regular. A pixel in the lines in Figure 1.37 represents 6050 data
points, but the absolute value of the difference between the maximum and min-
imum values of the data in the set of points represented by each pixel is smaller
than the vertical pixel dimension expressed in data units. This means that the local
data variation falls between the limits of the width of the line used for the plot, so
that the graphic representation of data by a line is fully adequate. The conditions
for signals graphical representability as lines will be presented in more detail in the
next section of this chapter. As shown in the previous section for other prokary-
otes, the cumulated phase has an approximately piecewise linear variation over
two almost equal domains, one of positive slope (apparently divided in the in-
tervals 1–1469271 and 3764857–4809037, but actually contiguous on the circular
chromosome) and the second of negative slope (1469272–3764856), while the un-
wrapped phase has an almost linear variation for the entire chromosome, showing
little or no change in the breaking points. The breaking points, like the extremes
of the integrated skew diagrams, have been put in relation with the origins and
termini of chromosome replichors [28, 37, 38]. The slope of the cumulated phase
in each domain is related to the nucleotide frequency in that domain by equation
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Figure 1.38. Cumulated and unwrapped phase of the concatenated 4393 reoriented coding regions
(3, 999, 478 bp) of Salmonella typhi genome (AL 5113382 [2]).

(1.10). In the breaking points, apparently a macroswitching of the strands, accom-
panied by the reversal of one of the domain-large segments, occurs. The two do-
mains comprise a large number of much smaller segments, oriented in the direct
and the inverse sense. At the junctions of these segments, the reversal and switch-
ing of DNA helix segments, as described in the previous section, take place. The
average slope of each large domain is actually determined by the density of direct
and inverse small segments along that domain. Because the intergenic regions, for
which the orientation is not known, have to be left out of the reoriented sequence,
the new sequence is shorter than the one that contains the entire chromosome or
all the available contigs given in the GenBank data base [2].

Figure 1.38 shows the cumulated and unwrapped phase of the genomic sig-
nal obtained by concatenating the 4393 reoriented coding regions of Salmonella
typhi genome (accession AL 5113382 [2]). Each inverse coding region (inverse
ORF) has been reversed and complemented, that is, the nucleotides inside the
same W (adenine-thymine) or S (cytosine-guanine) class have been replaced with
each other, to take into account the switching of the strands that accompanies the
segment reversal. As expected from the model, the breaking points in the cumu-
lated phase disappear and the absolute values of the slopes increase, as there is no
longer interweaving of direct and inverse ORFs. The average slope sc of the cumu-

lated phase of a genomic signal for a domain is linked to the average slope s(0)
c of

the concatenated reoriented coding regions by the relation:

sc =
∑n+

k=1 l
(+)
k −∑n−

k=1 l
(−)
k∑n+

k=1 l
(+)
k +

∑n−
k=1 l

(−)
k

s(0)
c , (1.14)

where
∑n+

k=1 l
(+)
k and

∑n−
k=1 l

(−)
k are the total lengths of the n+ direct and n− inverse

ORFs in the given domain.
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The unwrapped phase, which is linked by equation (1.12) to the nucleotide
positive and negative transition frequencies, shows little or no change when re-
placing the chromosome nucleotide sequence with the concatenated sequence of
reoriented coding regions. As explained, the reorientation of the inverse coding
regions consists in their reversal and switching of their strands. Figure 1.34 shows
the effect of the segment reversal and strand switching transformations on the pos-
itive and negative nucleotide-to-nucleotide transitions for the case of the complex
genomic signal representation given by equation (1.1). After an even number of
segment reversal and/or strand switching transformations of a DNA segment, the
nucleotide transitions do not change their type (positive or negative). As a conse-
quence, the slope of the unwrapped phase does not change.

It is remarkable that the approximately piecewise linear variation of the cumu-
lated phase for the whole chromosome, comprising two complementary regions—
also found by skew diagrams techniques [36, 38]—is replaced with an approxi-
mately linear variation over the whole sequence, when reorienting all coding re-
gions in the same reference direction. This result could suggest the existence of an
ancestral chromosome structure with a single global statistical regularity, which
has evolved into a more complex structure by the reversal of the direction for a
significant part of DNA segments.

Similar results have been found in the phase analysis of many other genomic
signals corresponding to circular and linear chromosomes of various prokaryotes.
A special case is the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix
K, for which the genome comprising 1, 669, 695 base pairs has been completely
sequenced [3]. The unwrapped phase varies almost linearly, in agreement with
the similar results found for all the other investigated prokaryote and eukary-
ote genomes, confirming the rule stated in the previous section. But the cumu-
lated phase decreases irregularly, an untypical behavior for prokaryotes that tend
to have a regular piecewise linear variation of the cumulated phase along their
circular DNA molecules, as shown above. Nevertheless, the cumulated phase of
the 1, 553, 043 base pairs signal corresponding to the sequence obtained by con-
catenating the 1, 839 coding regions, after reorienting them in the same refer-
ence direction, becomes approximately linear, while the unwrapped phase remains
unchanged.

We conjecture that the fine combining of DNA segments with opposite ori-
entation, in order to generate certain well-defined values of the slope of the cu-
mulated phase, that is, certain densities of the repartition of nucleotides, has a
functional role at the level of the chromosomes, most probably in processes like
replication, transcription, or cross over. The particular statistical structure of DNA
molecules that generates this specific shape of the cumulated and unwrapped
phases could play an important role in the mutual recognition and alignment of
interacting regions of chromosomes and the separation of the species. The first-
and second-order statistical regularities, resulting from the specific variation of
the unwrapped and cumulated phases, can be put in correspondence with the
molecule potentials produced by available hydrogen bonds and can be used to
describe the interaction of a given DNA segment with proteins and with other
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DNA segments in processes like replication, transcription, or crossover. An exam-
ple is the movement of DNA polymerase along a DNA strand, operating like a
“Brownian machine that converts random molecular movements into an ordered
gradual advance during replication. The speed of movement can be expressed as
a function of the temperature and the slope of the phase. These hypotheses are
also sustained by the fact that the emergence of an almost linear variation of the
cumulated phase after the reorientation of all coding regions is a property found
in both circular and linear chromosomes of prokaryotes, but not in the plasmids.

1.6. Representability of genomic signals

1.6.1. Well-fitted screens and the data scattering ratio

When operating with large sets of data, especially data describing complex systems
or processes or generated by such systems or processes, with a possibly chaotic or
random dynamics, the problem of adequate representation of data is central. The
final understanding of any set of data or signals lays with human operators for
which the graphical representation, allowing to grasp at once features hidden in
piles of numerical data, is the natural choice, at least as a guide to the precise
values. As shown in the previous sections of this chapters, symbolic nucleotide se-
quences can be converted into digital genomic signals by using the complex (2D)
quadrantal representation derived from the tetrahedral (3D) representation of nu-
cleotides. The study of complex genomic signals, using signal processing methods,
reveals large scale features of chromosomes that would be difficult to grasp by
applying only the statistical or pattern matching methods currently used in the
analysis of symbolic genomic data. In the context of operating with a large volume
of data, at various resolutions, and visualizing the results to make them available
to humans, the problem of data representability becomes critical. In the following,
we present an analysis of data representability based on the concept of the data
scattering ratio of a pixel. Representability diagrams are traced for several typical
cases of standard signals and for some genomic signals. It is shown that the vari-
ation of genomic data along nucleotide sequences, specifically the cumulated and
unwrapped phase, can be visualized adequately as simple graphic lines for low and
large scales, while for medium scales (thousands to tens of thousands of base pairs)
the statistical-like description must be used.

Figure 1.39 shows the plot as a line of the digital signal s[i], i ∈ IS = {1, . . . ,L},
where L is the length of the sequence or subsequence of data to be represented. One
pixel is extracted and magnified to allow comparing the absolute value of the vari-
ation Vy of the signal for the set of samples represented by the pixel with the pixel
height Py measured in signal units. For the case in the figure, which corresponds to
real data giving the unwrapped phase of the complete genome of Bacillus subtilis,
we have Vy < Py , so that the graphical representation of the data by a line with
the width of a pixel is adequate in that point and, actually, for the whole sequence.
The size of the screen in pixels is considered fixed, for example, the usual screen
size Nx = 1024 by Ny = 768 pixels. To optimally use the screen to represent the
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Figure 1.39. Data-fitted screen and a magnified pixel.

data, the available screen space must be fitted to the data: the horizontal screen
size Sx, in number of samples, has to be made equal to the length L of the sequence
(or subsequence) to be represented, while the screen vertical size Sy , in data units,
must be chosen equal to the absolute value of the variation of the data in the rep-
resented sequence:

Sy = max
i∈IS

(
s[i]

)−min
i∈IS

(
s[i]

)
. (1.15)

Correspondingly, the horizontal and vertical pixel sizes are given by

Px = Sx
Nx

, Py =
Sy
Ny

, (1.16)

in number of samples and data units, respectively.
The variation of the data for the set of samples corresponding to a pixel is

Vy(h) = max
i∈IPh

(
s[i]

)−min
i∈IPh

(
s[i]

)
, (1.17)

where IPh = {(h− 1)Px + 1, . . . ,hPx}; h = 1, . . . ,Nx.
As mentioned above, the adequateness of the representation of the set of Px

data samples by just one a pixel can be characterized by the ratio:

Q(h) = Vy(h)

Py
(1.18)

that we will call the data scattering ratio of the pixel h.
If Q ≤ 1, the pixel represents properly all the data samples it represents and

covers. When all the pixels in a line satisfy this condition, the data can be repre-
sented adequately by a line having the width of one pixel. If Q is below two or
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three units for every pixel of the sequence fitted in the screen, the data can also be
represented properly by a line, but the width of the line must correspond to the
maximum value of Q. When Q has larger values, but the data is densely and quite
uniformly distributed, so that Q is approximately the same for all the pixels and
there are no outliers, the data can be represented adequately by a couple of lines
showing the maximum and minimum values of the data for each pixel. Finally, if
the data is scattered and/or there are outliers, this approach is no longer practi-
cal and a statistical-like description of data is needed for their representation. The
pixel can be considered a sliding window of size Px. If the data distribution is close
enough to a normal distribution, the data can be described for each such win-
dow by the mean value and the standard deviation. A line giving the mean value
and two other lines or some error bars for delimiting some confidence interval
expressed in terms of the standard deviation can be used to represent the data.

In the following, we analyze the representability of several types of data and
signals, including genomic signals, in terms of their representability characteristic

Q̃ = Ṽy

Py
= f

(
Px
)
, (1.19)

where Q̃ = Ṽy/Py is the average data scattering ratio for all the pixels in the repre-
sented line, with Ṽy = meanh=1,...,Nx (Vy(h)), while Px is the pixel horizontal size.
When drawing the representability diagram showing the representability charac-
teristic (1.19), logarithmic scales in base 2 will be used for both abscissa and or-

dinate. Correspondingly, the pixel size P(k)
x will be increased in a geometrical scale

with ratio two:

P(1)
x = 1, . . . , P(k)

x = 2k−1, . . . , P(kmax)
x = 2kmax−1, (1.20)

so that the screen horizontal size S(k)
x = NxP

(k)
x , k = 1, . . . , kmax, will also double at

each step for a fixedNx. The number of steps necessary to cover the whole sequence
of length L is kmax = �log2 L/Nx� + 1, where �x� denotes the smaller integer larger
than or equal to x. In this case, the largest screen equals or exceeds the length of
the sequence. The number of screens necessary to represent the whole sequence at
step k is

N (k)
S =

⌊
L

S(k)
x

⌋
=
⌊

L

Nx2k−1

⌋
. (1.21)

If the length L of the sequence is not a power of two, the last screen at each
step k, including the largest screen for the last step, might not be well fitted to the
data and will be excluded from the diagram. When L = 2m and Nx = 2s, all screens

will be horizontally fitted to the data and their number N (k)
S = 2m−s+1−k = 2kmax−k

will form a geometrically decreasing sequence with ratio 1/2, from 2kmax−1 to 1.
Each screen (window) will be vertically fitted to the data, by choosing its vertical
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size equal to the absolute value of the variation of the data in that screen:

S(k)
y ( j) = max

i∈ISj

(
s[i]

)−min
i∈ISj

(
s[i]

)
, j = 1, . . . , j(k)

max, (1.22)

where ISj = {( j − 1)S(k)
x + 1, . . . , jS(k)

x } are the indices of the samples represented in

the screen j and j(k)
max = N (k)

S is the number of screens at step k.
A 3D diagram will be used to show the variation of the average data scattering

ratio for the pixels in each of the screens used to cover all the length of the sequence
L at various pixel sizes.

1.6.2. Representability best case: monotonic signals

In the case of monotonically increasing signals, the relation (1.13) for the vertical
size of screen j becomes

S(k)
y ( j) = s

[
jS(k)

x

]− s
[
( j − 1)S(k)

x + 1
]
, (1.23)

so that the average screen height results:

S̃(k)
y = mean

j=1,...,N (k)
S

(
S(k)
y ( j)

) = 1

N (k)
S

N (k)
S∑

j=1

(
s
[
jS(k)

x

]− s
[
( j − 1)S(k)

x + 1
])
. (1.24)

Using j(k)
maxS

(k)
x = L, this expression can be rewritten as

S̃(k)
y = 2k−1Nx

L

(
s[L]− s[1]−

N (k)
S −1∑
j=1

(
s
[
jS(k)

x + 1
]− s

[
jS(k)

x

]))
, (1.25)

where the sum contains signal variations between samples at distance one, sub-

sampled with the step S(k)
x . A similar expression holds for monotonically decreas-

ing signals, so that the average screen height for monotonic signals results:

S̃(k)
y = 2k−1Nx

L

(
s[L]− s[1]− ( j(k)

max − 1
)

mean
(|d|)↓S(k)

x

)
, (1.26)

where

mean
(|d|)↓S(k)

x
= mean

j=1,..., j(k)
max−1

(∣∣d[ jS(k)
x

]∣∣) = 1

j(k)
max − 1

j(k)
max−1∑
j=1

∣∣d[ jS(k)
x

]∣∣ (1.27)

is the average absolute variation of the signal between samples at distance one,

down-sampled at the step S(k)
x .
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Similarly, from (1.17) results the average variation of the data for sets of sam-
ples corresponding to pixels:

Ṽ (k)
y = 2k−1

L

(
s[L]− s[1]− (h(k)

max − 1
)

mean
(|d|)↓P(k)

x

)
, (1.28)

where

mean
(|d|)↓P(k)

x
= mean

h=1,...,h(k)
max−1

(∣∣d[hP(k)
x ]

∣∣) = 1

h(k)
max − 1

h(k)
max−1∑
h=1

∣∣d[hP(k)
x

]∣∣ (1.29)

is the average absolute variation of the signal between samples at distance one,

down-sampled at the pixel step P(k)
x .

As a consequence, the average data scattering ratio for a monotonic signal is
given by the equation

Q̃(k) = Ṽ (k)
y

P̃(k)
y

= Ny

Nx

s[L]− s[1]− (N (k)
P − 1

)
mean

(|d|)↓P(k)
x

s[L]− s[1]− (N (k)
S − 1

)
mean

(|d|)↓S(k)
x

, (1.30)

where N (k)
P is the total number of pixels to represent the sequence s[i], i = 1, . . . ,L,

for a horizontal pixel size P(k)
x = 2k−1, N (k)

S = N (k)
P /Nx is the total number of

screens necessary to represent the data at resolution k, and mean(|d|↓D) is the
average of the absolute values of the signal variation between successive samples
d[i] = s[i + 1] − s[i], down-sampled at step D. As long as the sampling density is
high enough,

mean
(|d|)↓S(k)

x
≈ mean

(|d|)↓P(k)
x
≈ s[L]− s[1]

L− 1
, (1.31)

so that equation (1.30) becomes

Q̃(k) = Ny

Nx

P(k)
x − 1

P(k)
x − 1/Nx

. (1.32)

From (1.32) it results that all monotonic signals have almost the same repre-
sentability characteristic drawn in Figure 1.40 as a line. The circles correspond to
experimental data for various monotonic signals like linear, parabolic of various
degrees, logarithmic and exponential of various bases, and so forth. Monotonic
signals are the best practical case in what concerns the representability character-
istic. As results from (1.32) and from the data in Figure 1.40, for large values of the
pixel width Px, the representability characteristic tends asymptotically towards the
aspect ratio of the screen:

Q̃(k) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→
2k−1�1

Ny

Nx
. (1.33)
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Figure 1.40. Representability diagram (pixel width Px versus average data scattering ratio on a pixel Q̃)
for monotonic signals. For the illustration, the length of the signal has been chosen 220 = 1048576 bp,
and the screen size 1024× 768 pixels.

1.6.3. Representability practical worst case: uniformly
distributed random signals

The theoretical worst case from the representability point of view is a hypothetical
signal for which the variation between two successive samples is equal to the screen
height. A practical worst case is provided by a random signal uniformly distributed
on the screen height. The representability characteristic can also be found in closed

form for his case. The average variation of the data for the set of P(k)
x samples

corresponding to a pixel, that is, the average of the difference between the largest

and the smallest values of the samples in the set of P(k)
x random variables uniformly

distributed across the screen height expressed in pixels is given by [26]

Q̃(k) = Ṽ (k)
y

P̃(k)
y

= Ny
Pk
x − 1

Pk
x + 1

. (1.34)

The representability characteristic is shown in Figure 1.41. The line has been
computed analytically using the equation (1.25), while the circles represent data
from a Monte Carlo simulation of the uniform distribution of the samples in a
range equal to the screen height in data units. For large values of the pixel width,
the representability characteristic asymptotically approaches Ny—the vertical size
of the screen in pixels:

Q(k) ������������������������������������������������������������������������������������������������������������������������������������������������������→
2k−1�1

Ny. (1.35)

The monotonic signals and the uniformly distributed random signal provide
the practical limiting cases of the framework in which the real-word signal fall.
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Figure 1.41. Representability diagram for a uniformly distributed random signal (length of the signal
222 = 4194304 bp, screen size 1024× 768 pixels).
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Figure 1.42. Representability diagram for sinus signals of various periods (length of signals
1048576 bp, screen size 1024× 768 pixels).

1.6.4. Sine signal representability

To illustrate the behavior of nonmonotonic signals, in Figure 1.42 are given the
representability characteristics of several sine functions with periods form 25 to
217 samples. As expected, the sine signal behaves as a monotonic signal—the best
case—when its period is larger than four times the width of the screen in number
of samples, and as the worst case—when the period is lower than the width of the
pixels. Two aliasing effects occur in the vicinity of the limiting cases, at levels of the
average data scattering ratio equal to twice the best case and half the worst case,
respectively. In-between these two levels, the average data scattering ratio varies
almost linearly with respect to the pixel width.
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Figure 1.43. Representability diagram Q̃ = f (Px) for the cumulated and unwrapped phase of the con-
tig NT 004424 [2] of Homo sapiens chromosome 1 (length 6, 311, 978 bp [2, 3, 4]) and of the circular
chromosome of Yersinia pestis (NC 0003143, length 4, 653, 728 bp [2, 18]).

1.6.5. Phase signals of genomic signals

Figure 1.43 shows the average data scattering ratio for 6, 311, 978 base pairs along
contig of the first chromosome of Homo sapiens (NT 004424 [2]). The results are
typical for many other prokaryote and eukaryote genomic signals. The screen size
has been considered to be 1024 × 768 pixels. For the special case of one pixel per
sample, for which the variation inside a pixel is zero, the scattering ratio cannot
be represented on the logarithmic plot. This case corresponds to an error-free
graphic, disregarding the smoothness of the resulting line. For pixels comprising
two samples and up to about 16 samples, that is, for DNA segments comprising
up to 16384 base pairs, both the cumulated and the unwrapped phase have the
average data scattering ratio in the range 5–8, so that the data should be presented
taking into account their dispersion. In most cases, this can be done by tracing a
couple of lines showing the minimum and maximum values, respectively. When
there are only several points apart from the others, the representation can be made
by a line corresponding to the average value in a sliding window with the width
of a pixel, accompanied by error bars. What is remarkable for the analysis of large
scale DNA features is the fact than the average vertical scattering ratio of the signal
for a pixel Q̃ becomes less than one, that is, the variation of the signal for the set of
samples represented by a pixel becomes less than the pixel height, when the pixel
width is larger than about 1450 samples. Obviously, the scale used to represent
large scale features of genomic signals is much larger, up to hundreds of thousands
of samples per pixel, so that the data can be represented adequately by a single line
having the width of only one pixel.

The cumulated phase displays a relatively small variation and, when repre-
sented independently, remains with a rather significant dispersion of the samples
that requires a presentation similar to the one used for statistical data.
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Figure 1.44. 3D representability diagram for the unwrapped phase of the contig NT 004424 [2] of
Homo sapiens chromosome 1. The average curve in the plane Px − Q is the representability diagram
shown in Figure 1.43.

Figure 1.44 gives a 3D representability diagram of the unwrapped phase of
the Homo sapiens chromosome 1 contig NT 004424 shown in Figure 1.43. Both
the average value of Q—the vertical scattering ratio of the signal on a pixel and the
fluctuations of its value in the various windows decrease with the increase of the
pixel width Px.

1.7. Conclusions

This chapter presents results in the analysis of genomic information at the scale
of whole chromosomes or whole genomes based on the conversion of genomic
sequences into genomic signals, concentrating on the phase analysis.

The most conspicuous result is the linear variation displayed by the un-
wrapped phase almost along all chromosomes. This feature holds for all the in-
vestigated genomes, being shared by both prokaryotes and eukaryotes, while the
magnitude and sign of the unwrapped phase slope are specific for each taxon and
chromosome. Such a behavior proves a rule similar to Chargaff ’s rule, but reveals a
statistical regularity of the succession of the nucleotides—a second-order statistics,
not only of the distribution of nucleotides—a first order statistics.

This property is related to functions at the scale of whole chromosomes, such
as replication, transcription, and crossover. The cumulated phase of the genomic
signal of certain prokaryotes also shows a remarkable specific behavior. The com-
parison between the behavior of the cumulated phase and of the unwrapped phase
across the putative origins and termini of the replichores suggests an interesting
model for the structure of chromosomes.

The highly regular (linear) shape of the cumulated phase of reoriented ORFs
strongly suggests a putative ancestral DNA longitudinal structure from which the
current structures have evolved to satisfy restrictions resulting from various chro-
mosome functions.
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The analysis of data representability shows that the cumulated phase and the
unwrapped phase can be represented adequately as simple graphic lines for very
low and large scales, while for medium scales (thousands to tens of thousands of
base pairs) statistical descriptions have to be used.
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2
Gene feature selection

Ioan Tabus and Jaakko Astola

This chapter presents an overview on the classes of methods available for fea-
ture selection, paying special attention to the problems typical to microarray data
processing, where the number of measured genes (factors) is extremely large, in
the order of thousands, and the number of relevant factors is much smaller. The
main ingredients needed in the selection of an optimal feature set consist in: the
search procedures, the underlying optimality criteria, and the procedures for per-
formance evaluation. We discuss here some of the major classes of procedures
which are apparently very different in nature and goals: a typical Bayesian frame-
work, several deterministic settings, and finally information-theoretic methods.
Due to space constraints, only the major issues are followed, with the intent to
clarify the basic principles and the main options when choosing one of the many
existing feature selection methods.

2.1. Introduction

There are two major distinct goals when performing gene feature selection: the
first is discovering the structure of the genetic network or of the genetic mechanisms
responsible for the onset and progress of a disease; the second is eliminating the
irrelevant genes from a classification (or prediction) model with the final end of
improving the accuracy of classification or prediction. While there are many cases
when both goals are equally relevant, there are others when only one of them is of
primary focus.

This possible distinction of goals is certainly reflected at the methodologi-
cal level, where the feature selection methods are usually split into two groups:
filter methods and wrapper methods [1]. With the filter methods [2, 3], the genes
are ranked according to some general properties (correlation, mutual information,
discriminative power) that are relevant for the prediction or classification problem
at hand (e.g., correlation with a disease type), but without making it explicit at this
stage what is the particular prediction model that is going to be used subsequently.
After ranking of the single genes or of the various groups of genes, a suitable set
of genes is identified and proposed as the feature set to be used for all subsequent
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analysis tasks. This hints that filter methods should have a more general goal than
simply improving a certain type of predictor (e.g., a neural network), but rather
should aim at finding the true structure of the interactions recorded by the ex-
perimental data, and as such, they would provide a useful set of features for very
different classification tools. On the other hand, the wrapper methods [1, 4, 5, 6]
are more straightforward, since they intend to restrain the set of factors so that
the prediction ability of a certain given method is improved. With the wrapper
method, the prediction capability of a particular method is investigated for all
possible groups of genes (or only for a chosen subset of them, if complete search is
computationally too demanding), and the group offering the best performance is
declared an optimal set of feature genes, which certainly maximizes the prediction
abilities of the studied class of models, but may not be relevant for other classes of
models. The same dichotomy between filter and wrapper methods is relevant for
the evaluation stage, where the available set of data may be used in various ways
for assessing the performance of a given feature set. The above distinction, made in
terms of goals and methodology, appears clearly with most of the existing feature
selection techniques.

Although ideally feature selection is a main step in the attempt to discover true
biological relationships, rarely a feature set is claimed to have full biological rele-
vance without further validation. The apparent optimal or quasioptimal behavior
observed over the studied experimental data is only the starting point for more
detailed biological experimentation and validation. In light of this, many times,
the feature selection procedure ends up proposing several likely outstandingly per-
forming feature sets, which can be used later in biological studies [5, 7].

In pattern recognition tasks, the information typically appears as vectors of
a large number of variables. We can view the recognition algorithm as operat-
ing directly on the variables and consider the variables as features, whence feature
selection means selecting a useful subset of variables for further processing. In mi-
croarray data analysis, this is often the case, and feature selection essentially means
gene selection. Sometimes it is better to draw the line between preprocessing and
recognition closer to the end and assume that the actual recognition is done us-
ing perhaps quite complicated functions of the original variables. In this situation,
feature selection means both selection of the relevant variables and the process of
forming suitable informative expressions of groups of variables.

The necessity of feature selection is well documented in the machine learning
literature, with examples, where the performance of classification or prediction
algorithms degrades quickly if irrelevant features are added, and even if relevant
features are added, when they are correlated with the current features. This degra-
dation is even more drastic in the realistic scenarios, where the underlying distri-
bution is not known, and the classification algorithm must estimate the parame-
ters from data; if the number of features is high, the variance of the large number
of corresponding parameters is also high, and it becomes attractive to trade off the
high number of features (which may be required for a low bias) for a smaller num-
ber of parameters, and implicitly a smaller variance (but unfortunately a higher
bias). Since the achievable accuracy depends on the size of the available data sets,
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a somehow surprising situation occurs: the estimated optimal feature set depends
on the size of the training set, being larger when the number of data points is large,
but smaller when the available data sets are small.

We start the discussions giving a working definition of the optimal feature
set, adapted here from [1], by which we attempt to clarify main issues to be tack-
led, rather than trying to give a general definition valid across all approaches. The
dataset D = {(X1(t), . . . ,XN (t),Y(t)) | t = 1, . . . ,n} has n instances of the fea-
tures and their corresponding class labels Y ∈ {1, . . . ,K}. The full set of features
is formed of all N available features, Xi, i = 1, . . . ,N , and is denoted by the vector
X = [X1, . . . ,XN ]T , where T denotes transposition. A subset of selected features
{Xi1 , . . . ,Xik} will be specified in two equivalent ways: either by the set of selecting
indices A = {i1, . . . , ik}, or by a vector γ of length N that has zeros everywhere,
except the positions i1, . . . , ik, that is, γi1 = · · · = γik = 1, and consequently, the
feature set can be denoted as Xγ = [Xi1 , . . . ,Xik ]

T .

Definition. Given a classifier g(x1, . . . , xr ; θ) (able to operate on a variable
number r of inputs, and depending on the tunable parameter vector θ) and a data
set D with features X1, . . . ,XN and target Y , sampled from a (unknown) joint dis-
tribution, the optimal feature set {Xi1 , . . . ,Xik} is a subset of k features that maxi-
mizes the classification accuracy of the classifier g(Xi1 , . . . ,Xik ; θ

∗) having the best
parameter vector θ∗.

The most sensitive issues in the above definition are the specification of the
family of parametric classifiers, the selection of a suitable measure of accuracy, and
the estimating accuracy when the underlying distribution is not known.

The organization of the chapter is as follows. In Section 2.2, we present sev-
eral instances of the feature selection problem under idealistic settings, stressing
on the importance of the proper definition of an optimal feature set, dependent
on the considered types of models and adopted performance measures. The two
important classes of feature selection methods, filter methods and wrapper meth-
ods, are discussed in Sections 2.3 and 2.4, respectively. A distinct group of methods
is treated in Section 2.5, where the simultaneous search for the best feature set and
the best model parameters makes the methods particularly efficient. Finally, in
Section 2.6, we discuss the minimum-description-length- (MDL-) based feature
selection, which is an information-theoretic method grounded in the fundamen-
tal principle of choosing the models according to their description length.

2.2. Feature selection under ideal settings

It will be useful to review various attempts to formally define an optimal feature
set under idealized and restricted scenarios. Incorporating all intuitive require-
ments, which are usually associated to the (common sense) denomination “feature
set,” will show to be difficult even in the simple case of binary classification prob-
lems, indicating that precise qualifications need to be added to make the concept of
optimal feature set well defined.
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2.2.1. Bayes classification

In a typical Bayesian scenario, the set of all features contains N features (real-
valued random variables) {Xi | 1 ≤ i ≤ N}, which are related to the target
value Y (or class label), which is a binary random variable. The full description
of this dependency is provided by the joint distribution, specified by the pair
(µ,η), where µ is a probability measure for X (i.e., for a set B ⊆ RN , we have
µ(B) = P(X ∈ B)) and η(x) = P(Y = 1 | X = x). Using the description (µ,η),
we can compute the probability P((X ,Y) ∈ C), where for convenience, we split
the set C into the union of two subsets corresponding to Y = 0 and Y = 1, as
follows: C = (C0 × {0}) ∪ (C1 × {1}). Then the joint probability can be evalu-
ated as P((X ,Y) ∈ C) = ∫

C0
(1 − η(x))µ(dx) +

∫
C1
η(x)µ(dx), see [8]. In the most

ideal case, the joint distribution is known, for the purpose of evaluating the per-
formance of a given classifier. The goal is to find a binary classifier g(Xi1 , . . . ,Xik ),
which is a function of only k of the N features, such that the probability of error
P{g(Xi1 , . . . ,Xik ) �= Y} is as small as possible. The set of feature genes will be com-
pletely determined by the set of indices Ak = {i1, . . . , ik}. In order not to obscure
the following discussion by the particular form of the function g (which may be,
e.g., a perceptron, a logistic regression, etc.) we consider here the best possible un-
restricted classifier g∗ : Rk → {0, 1}, which achieves the infimum of the Bayes’
classification error [8]

ε
(
Ak
) = inf

g:Rk→{0,1}
P
{
g
(
Xi1 , . . . ,Xik

) �= Y
}
. (2.1)

Thus, we can evaluate the performance of a feature set by its Bayesian error. Ob-
viously, ε(Ak) ≥ ε(Bk+1) whenever Ak ⊂ Bk+1, which expresses the monotonicity
property under nesting, a property which is also found with many other perfor-
mance measures.

In the above setting, the usefulness of a feature set is considered in a plausible
way, but the monotonicity under nesting leads to a counterintuitive solution: the
full X is one of the (many possible) best feature sets, because there is no gain in the
Bayesian error by restricting the feature set. The nonuniqueness of the best feature
set, and the fact that the full feature set X is already an optimal solution, make
the Bayesian error as such a nonattractive measure of optimality. Thus, additional
requirements must be added, for example, we may ask which is the smallest size
k at which the Bayes error is the best possible, that is, ask for the smallest k∗ for
which there is a set A∗k∗ such that

ε
(
A∗k∗

) = ε
(
AN
) = inf

g:RN→{0,1}
P
{
g
(
X1, . . . ,XN

) �= Y
}
. (2.2)

Unfortunately, for a generic joint distribution of (X ,Y), the best set Ak∗ will be
identical to AN , since, generically, each feature will carry some nonzero informa-
tion regarding Y . So, the problem “what is the cardinality of the feature set” will
receive the trivial answer, “N ,” for most distributions.
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For that reason, further restrictions are needed for getting nontrivial answers,
for example, fix the value of k and ask which is the best feature set of cardinality
k. This optimality problem is very difficult from a computational viewpoint, since

one has to test
(
N
k

)
possible subsets of cardinality k, which is a feasible task only for

small values of N and k. Thus, for a practical solution, we should ask if there is a
structural property of the optimal Bayes solution which may help in restricting the
search. An answer in the negative is offered by the following result, due to Cover
[9]: choose an arbitrary ordering of all possible subsets of X , and index them as
B1,B2, . . . ,B2N ; if the consistency constraint i < j for Bi ⊂ Bj is satisfied (therefore
B1 = ∅, B2N = X), then there exists a joint distribution of (X ,Y) such that

ε
(
B1) > ε

(
B2) > · · · > ε

(
B2N ). (2.3)

According to this theorem, every possible subset of X with size k can be an opti-
mal feature set A∗k∗ , and therefore there is no straightforward way to restrict the
search for A∗k∗ . In particular, the following algorithm (dubbed here Best individ-
ual k genes) in general is doomed to fail: evaluate each feature Xi according to its
Bayes error ε({i}) when used as a singleton feature set, and build the candidate
set of k features using the best ranking features, according to ε({i}). Even when
exhaustive search is computationally unfeasible, heuristical solutions are available
and most notably branch-and-bound algorithms based on dynamic programming
exist, which exclude from the search some subsets due to the monotonicity under
nesting property [10].

The difficulties revealed in defining and finding an optimal feature set for
the ideal case of Bayes error using an unrestricted classifier are indicative of the
problems that will be faced with the realistic problem, that of finding the feature
set for a constrained class of classifiers, and under a finite data set.

2.2.2. Learning classifiers under finite data

We briefly review the problems encountered when looking for a proper feature
set by learning under finite data specification, especially under the ideal error-free
scenario. To simplify notations, in this section, the features are discrete valued. We
explore here various definitions of the intuitive notion of feature relevance, and
analyze the relevance of features contained in the optimal feature set (the one that
has the optimum accuracy).

Let Si = {X1, . . . ,Xi−1,Xi+1, . . . ,XN} be the set of all features except Xi. Let S′i
be a subset of Si. Weak relevance [1] of the feature Xi means that there exist some
S′i , xi, yi, and s′i for which P(Xi = xi, S′i = s′i ) > 0 such that

P
(
Y = y | Xi = xi, S′i = s′i

) �= P
(
Y = y | S′i = s′i

)
, (2.4)
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Table 2.1

X1 X2 X3 X4 X5 Y

0 0 0 1 1 0

0 0 1 1 0 0

0 1 0 0 1 1

0 1 1 0 0 1

1 0 0 1 1 1

1 0 1 1 0 1

1 1 0 0 1 0

1 1 1 0 0 0

that is, the probability of a feature given a partial set of features will change if the
information regarding feature Xi is withdrawn. Thus, at least for the class label
y, the weakly relevant gene contains information which no other gene in S′i can
substitute. The strong relevance [1] of a feature means that the feature has weak
relevance and in addition, the set S′i satisfying condition (2.4) is the full feature
set, S′i = Si.

As an example, we consider a space of five binary features, and the case of ob-
serving a (target) random variable for which there is an error-free representation
as Y = X1 ⊕ X2, and error-free measurements are available from all the feature
values, which are connected as follows: X4 = X2 and X5 = X3 [1]. The input space
and the corresponding output value are represented in Table 2.1.

We also suppose that all feature vectors compatible with the constraints (there
are 8 such vectors) are equiprobable. Thus P(Y = 0 | X1 = 0, X2 = 0) = P(Y = 0 |
X1 = 1, X2 = 1) = P(Y = 1 | X1 = 0, X2 = 1) = P(Y = 1 | X1 = 1, X2 = 0) = 1.
Feature X1 is strongly relevant, because P(Y = 0 | X1 = 0, X2 = 0, X3 = 0, X4 =
1, X5 = 1) = 1, while P(Y = 0 | X2 = 0, X3 = 0, X4 = 1, X5 = 1) = 1/2.
Further, X2 is weakly relevant, because P(Y = 0 | X1 = 0, X2 = 0) = 1, while
P(Y = 0 | X2 = 0) = 1/2. Weakly relevant is also X4, but X3 and X5 are irrelevant
(i.e., they are neither strongly relevant nor weakly relevant).

At this point, it can be seen that the dependencies of the features affect their
relevance with respect to the target, and restraining the feature set can lead to
changes of status from weakly relevant to strongly relevant.

An unexpected fact is that the optimal feature set with respect to accuracy
may not contain all relevant features. An example of this behavior is in the fol-
lowing scenario: there are two binary features, and all feature combinations are
equiprobable. The “true” target is again supposed to be a deterministic function
of the features Y = X1⊕X2. Both features are strongly relevant. Suppose now that
we want to find an optimal classifier in the family of threshold functions, for exam-
ple, the classifier needs to be representable as g(X1,X2; θ) = δ(θ1X1 + θ2X2 > θ0)
for some positive numbers θ0, θ1, θ2, where δ(·) is the Kronecker symbol (equal
to 1 if the argument is true, and 0 otherwise). There are two optimal thresh-
old functions: one has θ = [0.5 1 0]T and it is equal to g∗(X1,X2; θ) = X1;
the other has θ = [0.5 0 1]T and it is equal to g∗(X1,X2; θ) = X2, and both
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have accuracy 2/4 (each makes two mistakes), and all other threshold functions
have lower accuracy. It is thus possible that under a restricted class of classifiers
some strongly relevant features are left out of the feature set that has optimal
accuracy. Despite this, in practice, it is necessary to restrict the class of classi-
fiers, but the above phenomenon shows that it is important to do the restric-
tion in a way that does not prevent the useful information entering the classifi-
cation. The reasons why one may wish to restrict the class of allowed classifiers
are at least twofold: with a restricted class, the search space can be considerably
reduced, partly easing the computational burden; or even better, under restricted
classes, closed-form optimal solutions may exist, completely eliminating the need
for search.

2.2.3. Learning classifiers in realistic scenarios

In the really important practical scenario, a finite experimental data set, D =
{(X1(t), . . . ,XN (t),Y(t)) | 1 ≤ t ≤ n}, is given and a restricted family of classifiers
is specified. One is interested in finding the optimal feature set, which minimizes
the estimated accuracy of the classifier over the data set. Since now the underlying
probability distribution of the random variable (X ,Y) is not known, the accuracy
of the classifier has to be estimated from the data themselves, and the estimate of
an optimal feature set will depend on the chosen estimation method. In particular,
the estimated accuracy will be subject to the common variance-bias tradeoff: on
one extreme, the estimate will be variant but unbiased, on the other less variant
but biased. Not only the found optimal feature set for a given classifier is affected
by the estimation procedure, but also the attempt to compare the accuracy reached
by various classifiers becomes difficult. A common recipe for lowering the variance
of the estimate is to use the available data in a circular fashion in turns as training
and test set; however this may lead to another, more subtle form of overfitting,
making the estimated errors overly optimistic.

There is a large body of literature focusing on the application of various clas-
sification methods for the analysis of microarray data, including discussion of the
feature selection step, many of which are briefly reviewed in the next sections. In
general, any classification method can be used, and will present specific issues, in
conjunction with a feature selection method. The support vector machines were
successfully used in [4, 11, 12, 13, 14, 15, 16, 17]. Various tree-classification meth-
ods have been used and compared for microarray data in [2, 18]. The k-nearest-
neighbor classification algorithms have been used in [19, 20], and the Fisher linear
discrimination has been tested in [2, 21]. Many other methods are briefly reviewed
in the rest of the chapter.

2.3. Filter methods

Several intuitive methods are used to assess the dependency between the features
and the targets, such as mutual information, or correlation coefficient. One of the
most often used measures for finding the discriminative power of a gene j is the
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ratio

BSS( j)
WSS( j)

=
∑n

t=1

∑K
k=1 δ

(
Y(t) = k

)(
X

(k)
j − X j

)2∑n
t=1

∑K
k=1 δ

(
Y(t) = k

)(
Xj(t)− X

(k)
j

)2
, (2.5)

where δ(·) is the Kronecker symbol; X = (1/n)
∑

t Xj(t) is the sample mean of fea-

ture j, X
(k)
j = (1/n(k))

∑
t|Y(t)=k Xj(t) is the sample conditional mean of the feature

j given class k, (σ (k)
j )2 = (1/n(k))

∑
t|Y(t)=k(Xj(t) − X

(k)
j )2 is the sample variance

of feature j conditional to class k, and n(k) is the number of data points from the
training set D falling in class k. The criterion (2.5) was used as a filter method
to select the feature space for an experimental comparison of a large number of
different classifiers in microarray gene expression data [2].

Simple manipulations show that

BSS( j)
WSS( j)

=
∑

k nk
(
X

(k)
j − X j

)2∑
k nk

(
σ (k)
j

)2 , (2.6)

which explains the intuition behind the discriminative power of this measure; the
total sum of squares TSS( j) =∑t(Xj(t)−X j)2 can be decomposed into two terms,
TSS( j) = BSS( j) + WSS( j), where the first, BSS( j), shows the spread of the class
averages with respect to the joint average (and ideally, we want this spread to be as
large as possible) while the second, WSS( j), shows the spread of the points inside
each class (and ideally, this should be as low as possible).

For the case of only two classes (K = 2) and equal number of instances in each
class (n(1) = n(2)), the measure (2.5) can be seen to be proportional to the Fisher
discriminant ratio

FDR( j) =
(
X

(1)
j − X

(2)
j

)2(
σ (1)
j

)2
+
(
σ (2)
j

)2 . (2.7)

The main disadvantage of filter methods is that they look at each feature in-
dependently when considering its merit in discriminating the target. If one feature
Xi1 will be deemed to be highly discriminative for the target, so will be another fea-
ture Xj if Xi1 and Xj are highly correlated. Thus, when the feature set is redundant,
a filter method will recommend the inclusion of all features which are individu-
ally highly discriminative, even though the information brought in by a redundant
feature is not improving at all the prediction accuracy of the classifier. Including
redundant features may degrade the accuracy of a predictor, and to avoid that, a
preprocessing stage of clustering for identifying the highly correlated genes may
be needed. Other preprocessing, like principal component analysis (PCA), which
is intensively used in signal processing for tasks as signal compression or signal
analysis, may also reduce, very efficiently, the number of features to be considered,
if the features are highly correlated.
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More elaborated filter techniques were tested in tandem with wrapper meth-
ods on the microarray data, like the Markov-Blanket filter [3].

In a more loose sense, all methods for finding feature sets can be used as filters
for other methods, for example, for restraining the feature sets before resorting to
methods that are more computationally intensive.

2.4. Wrapper methods

If the final goal is to improve the classification accuracy, the method for feature se-
lection should consider the particular method for classification, with its biases and
tradeoffs regarding the evaluation of performance. For this reason, the most nat-
ural procedure is to cascade the feature selection process with the classifier design,
and to iterate both in a loop until the best performance is achieved, the feature
selection process being comparable with a wrapper over the classifier design and
evaluation.

2.4.1. A generic wrapper method

The classifier design enters the wrapper algorithm as a black box, so the wrapper
approach can be applied to a wide family of classification algorithms. The algo-
rithm for a generic wrapper is presented in Figure 2.1, while one of the blocks
from Figure 2.1, namely the block Find best feature set and parameters, is detailed
in Figure 2.2.

As presented, any wrapper method must consist of two nested cross-validation
loops. In the most outer loop, the available data is split into training and test data
(in Figure 2.1, the split is in four equal parts). There are many ways to make the
split, and for each of them, the algorithm in Figure 2.1 is run once, resulting in an
estimate of the performance offered by the block Find best feature set and parame-
ters, with a given classification method. The overall performance will be evaluated
by the average of all errors ε̂ over a large number of different fourfold splits of the
available data.

The blocks Find best feature set and parameters are the inner cross-validation
loops, and one such block is illustrated in Figure 2.2 for a threefold split of the
training data (remark that the available data here is DA, DB, DC , that is, only the
training data from the outer cross-validation loop). The selected feature set and the
classifier parameters should perform well, not only with the data used for design,
they have also to generalize well over unseen data. To achieve this, at the stage
of search of the feature set, trust should be given only to the performance over
a set which was not seen when optimizing the parameters of the classifier. Thus,
the search for a feature set is directed by a cross-validation error, as illustrated in
Figure 2.2 with a threefold error evaluation.

An important overfitting situation was signaled repeatedly from the early at-
tempts of finding feature sets (see the discussions in [1, 4]): the cross-validation
error that was used for guiding the search process for the best feature should not
be used as final performance measure of the chosen feature set for comparisons
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, Y)

}|D
using

g(θ̂|A,B,C)

ε̂D

{
(Xî1
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{î1, . . . , îm∗}|A,B,D
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Figure 2.1. Overall estimation of the classification accuracy within a fourfold cross-validation experi-
ment. The blocks “Find the best feature set and parameters” operate on three of the folds (as depicted
in Figure 2.2) while the classification accuracy is estimated over the fourth fold, to avoid overfitting.

with other methods, since it is overly optimistic, in other words it is not fair to
use the full data set D for selecting the optimal features Xî1

, . . . ,Xîk∗ , and then
use the same data for the computation of the cross-validation error. Thus, the
error ε̂ represented in Figure 2.1 should be used for reporting performance
results.

2.4.2. The search for best feature set

The search process can be performed according to several heuristics, since in gen-
eral exhaustive search is not computationally feasible. The greedy methods are
usually based either on growing the optimal feature set starting from the empty
set (in the forward selection methods), or on iteratively removing features starting
from the full feature set (in the backward methods). The simplest search engine
working in a forward selection mode is the hill climbing, where new candidate sets
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Figure 2.2. The estimation of the classification accuracy of a given feature set Xi1 , . . . ,Xim by a threefold
cross-validation experiment: the training set D = {(X1, . . . ,XN ,Y)} is split into three equally sized
subsets DA, DB , DC . The classifier parameters are fitted to the data provided by two of the subsets of
D , and the accuracy is estimated over the remaining subset, and the process is repeated for all ways of
taking two out of three subsets. The computed average classification error ε̂|{i1,...,im} is used to direct
the search for the most accurate feature set Xi∗1 , . . . ,Xi∗m∗

and its size m∗.

are obtained by combining the current feature set with each of the remaining fea-
tures, and the performance is evaluated for each of the new candidates, the best
performing being selected as new current feature set and the process continues
until none of the candidates has performance better than the current set. A more
laborious forward selection process is the best first search engine, where at each
iteration, all previously tested sets are checked for the best performer which was
not already expanded, the best performer is then combined with the remaining
features, and the process continues as long as needed (a fair stopping criterion is
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to check whether in the last k steps no improvement was obtained). In return for
the increased complexity, the best first search algorithm sometimes reaches better
accuracies than hill climbing, but there are also reports of no improvement situa-
tions. The mentioned forward selection searches have the disadvantage known as
nesting property, namely that a feature, once entered into a feature set, it can not be
excluded later. To eliminate the nesting drawback, in the sequential forward float-
ing selection (SFFS) after each inclusion of a new feature a backtracking process
is started to check for possible improvements by removal of an existing feature,
and when all paying-off removals have been executed, the algorithm resumes to
adding a new feature. With this new search policy, one checks more subsets, but
it takes a longer time to run. It was widely believed that this computational ex-
pense is compensated by better results. However, a recent paper, [6], pointed out
that the comparisons in some publications reporting better results were obtained
using the wrong cross-validation methodology; when performed in the correct
cross-validation framework, the results of the simple forward selection search are
as good or better than SFFS in many cases. The results of [6] are of even more
general interest, they show that selecting the wrong cross-validation evaluation
environment is not benign, it does not lead only to too optimistic reported er-
rors, uniformly for all methods, but it may also lead to (involuntarily) dishonest
inversions of ranking of the tested methods.

2.4.3. Optimization criteria and regularization

The search for the best set of genes {Xi1 , . . . ,Xik} and for the parameter vector θ̂ of

the best classifier g(Xi1 , . . . ,Xik ; θ̂) should be directed by an as relevant criterion as
possible. The sample variance

J(θ, γ) = 1
n

n∑
t=1

(
Y(t)− g

(
Xi1 (t), . . . ,Xik (t); θ

))2
(2.8)

is relevant in itself and has the obvious merit of simplicity and ease of evaluation,
though usually requires additional constraints for making the solution unique.

The particular case of the perceptron, which can be defined as a linear com-
biner followed by a threshold, that is, g(Xi1 , . . . ,Xim ; θ) = T(

∑m
j=1 Xij θj) with

T(x) = 0 for x < 0, and T(x) = 1 for x ≥ 0, was successfully considered in
several gene features methods [5, 7]. In order to obtain a closed form solution of
(2.8), the classifier is further approximated by the simpler linear combiner (or lin-
ear regression) during the optimization stage, as follows: denoting the vector of
observations Xγ(t) = [Xi1 (t), . . . ,Xik (t)]T , the least squares solution minimizing

(2.8) for the linear model g(Xγ(t), θ) = θTXγ(t) is

θ̂ =
( n∑

t=1

Xγ(t)Xγ(t)T
)−1 n∑

t=1

Xγ(t)Y(t) (2.9)
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and it is unique if R̂ = ∑n
t=1 Xγ(t)Xγ(t)T is nonsingular (otherwise, R̂−1 should be

taken as a notation for the pseudoinverse of R̂). Unfortunately, for large values of
k (and in particular for all k > n) which are of interest in gene feature selection
problems, the matrix R̂ is singular, signaling that many optimal vectors θ exist that

reach the lowest possible value of the criterion (2.8), J(θ̂, γ) = 0. Avoiding these
degenerate situations can be achieved by standard methods, known as regulariza-
tion techniques, the most used being ridge regression and cross-validation.

2.4.3.1. Ridge regression

With ridge regression, a penalty term σ2‖θ‖2 is added to J(θ) to prevent solutions
with too large parameters, and σ2 is a weighting on how strong this penalty should
be. The minimum value of the new criterion

J(θ, γ) + σ2‖θ‖2 = 1
n

n∑
t=1

(
Y(t)− θTXγ(t)

)2
+ σ2‖θ‖2 (2.10)

is reached by

θ̂ =
(
nσ2I +

n∑
t=1

Xγ(t)Xγ(t)T
)−1 n∑

t=1

Xγ(t)Y(t), (2.11)

which also reminds us of a well-known regularization method for solving ill-
conditioned system of equations.

The same solution (2.11) is an optimal solution for a very interesting related
problem: consider new featureX ′i , obtained by adding white noise with variance σ2

to each feature, that is, X ′i (t) = Xi(t) + ei(t), where ei(t) is white and independent
of Xj(t) and Y(t), and consider the problem of minimizing the expected value

EJ(θ, γ) = E
n∑
t=1

(
Y(t)− θTX′

γ(t)
)2

, (2.12)

where E denotes the expectation operator. The optimal solution minimizing (2.12)
is long known to be exactly (2.11) (see, e.g., [22, 23]). The attractive interpretation
of the newly generated features X ′i is that of an additional training set (of infinite
size), which transforms the set of points of coordinates Xγ into a set of spheres
centered at Xγ, the common radius of the spheres being controlled by σ2. With
original training sets of small size, too many “perfect” solutions exist, if there is a
perfect solution, then there is an infinity of hyperplanes separating perfectly the
points, and they may be considered artifacts due to the degeneracy of the criterion
at the current sample size. The additional training set helps in removing those
degenerate solutions. This principle is applied and further developed in [7], where
learning of the parameter vector θ of the perceptron classifier is approximated by
learning of the parameter vector θ of the associated linear classifier, in order to
accelerate the training process.
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2.4.3.2. Cross-validation as a regularization technique

Cross-validation is intuitively a proper method for evaluating the performance of a
classifier in more objective way than the sample variance of the classification errors
over the training set [24, 25, 26]. But apart of that, cross-validation is also a tool for
regularizing the solution of the criterion (2.8). In the case of linear regression, the
cross-validation criterion can be computed in a closed form, making it attractive,
for example, for evaluating the performance of the closed-form solutions offered
by the ridge regression methods, for various values of the parameter σ2.

2.4.3.3. Coefficient of determination

The coefficient of determination (COD) is a normalized version of the classifica-
tion error variance, in which the performance of the tested classifier is normalized
with respect to the performance of a classifier that uses no features [27], that is,

COD = σ2
∅ − σ2

γ

(
θγ
)

σ2
∅

, (2.13)

where σ2
∅, in the case of linear classifiers, is the variance of the class label Y (i.e., the

cost of predicting the class by the average over the full dataset). Different types of
COD can be defined for each different type of variance: a true COD corresponds
to true variances, estimated in a Bayesian setting, where the true joint distribution
is known; a resubstitution COD corresponds to the variance of the resubstitution
errors, obtained over the full data set for the best predictor θ∗γ designed over the
full data set; and a cross-validation COD corresponding to the cross-validation
errors. The COD is more advantageous than the variance itself when discussing
the performance of a predictor, since it is normalized to have the maximum value
of 1. This normalization does not affect otherwise the ranking of performance
of two predictors as compared to the ranking performed by the variance itself,
but proves useful in presenting comparatively the results for different data sets
[5, 27, 28].

2.4.3.4. Information-theoretic criteria

Apart from the criteria based on the variance of the errors, many information-
theoretic methods define different criteria for the amount of information about
the target contained in a set of genes. Any of these criteria can be used when per-
forming the search for the best set of genes in the context of Figure 2.1. However,
a true wrapper method will need to use the inner cross-validation loops depicted
in Figure 2.2 for avoiding the overfitting of the model, while the information-
theoretic criteria [29] such as MDL or Akaike information criterion (AIC), or
Bayes information criterion (BIC) are in themselves protected against overfitting,
and therefore it is no need to iterate over the expensive cross-validation loops pre-
sented in Figure 2.2.
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Information-theoretic measures are used in different forms by various pro-
cedures for feature selections and predictor design [30, 31, 32, 33, 34, 35, 36, 37,
38]. In Section 2.6, we review the MDL principle and its use for feature selec-
tion.

2.4.4. Methodology for practical evaluation

The evaluation of feature extraction procedure is often confused with the evalu-
ation of a classification procedure, and for that reason, it is carried on with the
wrong methodology.

In all gene selection experiments, a data set D is available, containing mea-
surements of the N gene expressions {X1(t), . . . ,XN (t) | 1 ≤ t ≤ n} for each of the
n patients and the class labels {Y1(t), . . . ,YN (t) | 1 ≤ t ≤ n} for each patient. Two
important problems can be distinguished.

(1) Predictor evaluation. A set of selected gene features Xγ0
= {Xi1 , . . . ,Xik}

has been specified a priori, through the selection vector γ0, (but it was not inferred
from a gene selection from the data D !) and the goal is to compare different pre-
dictors classes g(Xγ0

, θ), for example, compare perceptrons against multilayer per-
ceptrons. A methodology which avoids overfitting is the one presented in Figure
2.2, and the quantity ε̂|γ0

is a good measure of accuracy achieved by different pre-
dictors classes (the number of folds in cross-validation can certainly be chosen
other than three, but kept the same if several predictors are compared).

(2) Evaluation of a procedure for feature selection. If a certain procedure for
feature selection needs to be compared with another one, the cross-validation sce-
nario should be the one presented in Figure 2.1 (with a number of folds conve-
niently chosen, four was used only for illustration) and the quantity ε̂ is a good
measure of accuracy. With the leave-one-out cross-validation, the data is folded
in n, such that each data point is left out during the training and used as a test
point. If the number of errors in a leave-one-out cross-validation experiment is
zero for all tested feature selection methods, one needs to reduce the number of
folds in order to test the generalization power of different schemes in a more strin-
gent experiment. By reducing the number of folds, the number of possible splits
of the data into training and test also increases, thus a larger number of tests can
be carried on.

2.5. Simultaneously searching the best feature set
and best model parameters

2.5.1. Bayesian approaches

In the Bayesian setting, a model of the conditional probability P(Yt = 1 | θ, γ)
is specified and some prior distributions are suitably chosen, such that the pos-
terior probability P(θ, γ | D) can be either computed by integration, or can be
sampled, and then the optimal feature set is taken to be the maximum a posteriori
estimation γ∗ that reaches the maximum of P(θ, γ |D).
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There are several possible models to be considered for the conditional prob-
ability P(Yt = 1 | θ, γ): logistic regression [39, 40] and probit regression [41, 42,
43, 44].

The probit regression model of the conditional probability is P(Yt = 1 |
θ, γ) = Φ(XT

γ θ), where the so-called probit link function Φ(·) is the normal cu-

mulative distribution Φ(z) = (1/
√

2π)
∫ z
−∞ exp(−x2/2)dx. Due to the computa-

tionally demanding integrations required, the use of this model was quite limited
until the introduction of Gibbs sampling algorithms based on data augmentation
(for a recent account, see [45]). In addition to θ, γ, a set of latent (unobserved)
variables Z(1), . . . ,Z(n) is introduced, with Z(t) ∼ N(XT

γ (t)θ, 1), that is, the link
to the regressors is provided by Z(t) = XT

γ (t)θ + ei, where ei ∼ N(0, 1). Prior
distributions are selected such that they are easily interpretable and the result-
ing Markov chain Monte Carlo (MCMC) simulations have a good computational
speed and reliable model fitting. The unknowns (Z, θ, γ) will be obtained by Gibbs
sampling from the posterior distribution.

A prior distributions γ should reflect the need to select small sets of features,
and a simple way to enforce a small number of units in γ is to take a small value
for P(γi = 1) = πi, and consider that the elements of γ are independent one of

another, so P(γ) =∏N
i=1 π

1−γi
i (1− πi)γi . Given γ, the prior on the regressor vector

is θγ ∼ N(0, c(XT
γ Xγ)−1), where Xγ is the matrix having as column t the vector

Xγ(t) and c is a constant to be chosen by the user.
By applying Bayesian linear model theory, the following conditional distribu-

tions can be computed after evaluating several integrals: P(γ | Z), P(Z | θγ, γ),
and P(θ | Z, γ) [42]. By iteratively drawing γ,Z, and θ from these distributions,
one obtains an MCMC simulation, which will allow to make inference even in this
case, in which there is no explicit expression for the posterior distribution. After
an initial burn-in period, it is assumed that the samples are taken from the pos-
terior distribution, and one can compute the relative number of times each gene
was selected, for making a decision about including it in the feature set [42]. An
extension to the multiclass classification problems can be obtained by generalizing
the probit model to multinomial probit models [44]. After finding the average fre-
quency γi by which each gene was selected during the MCMC simulation, the most
important genes for a (sub-)optimal feature set are chosen, for example, those for
which γi exceeds a certain threshold. With the selected genes, either the probit
model is used to make classifications or other models may be used, if they give
better accuracy [44].

A different optimization approach is the expectation-maximization (EM)
method in which Laplacian priors for γ and θ are chosen to reflect our need of
a sparse solution. The hyperparameters τ, ρ of these distributions, and the la-
tent variables Z(1), . . . ,Z(n) are used in an EM optimization algorithm, where

in the first step (E-step), the expected value Q(θ, γ | θ̂


, γ̂
) of the posterior

logP(θ, γ | D,Z, τ, ρ) is computed conditioned on the current estimates γ̂
 and

θ̂


, and in the second step (M-step), new estimates are obtained by the maximiza-

tion θ̂

+1

, γ̂
+1 = arg maxθ,γ Q(θ, γ | θ̂
 , γ̂
) [41].
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2.5.2. Deterministic criteria allowing one-step solutions

We consider here the binary classification problem and the task is to find a percep-
tron which optimally separates the classes. If the problem has a perfect solution θ∗,
the hyperplane z = θ∗TX+b will be such that the available data points (X(t),Y(t))
satisfyY(t) = sign(z(t)) andY(t)(θ∗TX(t)+b) ≥ 1. To encourage a sparse solution
θ∗, that is, most of the elements of θ∗ to be zero, the following criterion should
be minimized: ‖θ‖0 � ∑

i θ
0
i =

∑
i γi, subject to the constraint that all points are

classified correctly (with the convention 00 = 0).

min
θ,b
‖θ‖0

s.t. Y(t)
(
θTX(t) + b

) ≥ 1, 1 ≤ t ≤ n.
(2.14)

The problem has to be relaxed in several ways, to make it tractable and to account
for more realistic, noisy, situations.

The foremost modification is the substitution of the 
0 norm with the 
1 norm
in the criterion, to transform the problem into a convex optimization problem,
for which efficient numerical solutions exist. As shown in [46], for a large number
of problems, the transformation of an 
0 optimization problem into an 
1 opti-
mization problem leads to a solution for the latter, identical to the solution of the
former, provided that the solution is sufficiently sparse. Even though in our gen-
eral scenario, the sufficient conditions established in [46] may not hold, and so
the solutions of the two problems may be different, the resulting solution of the 
1

problem has a high degree of sparsity. The situation is completely different with
the 
2 norm, where a lot of small (nonzero) values for the θi’s are encouraged by
their downweighting in the criterion through taking the square.

A second major modification accounts for possible classification errors, and in
order to minimize their effect, the nonnegative slack variables ξ(t) are introduced
to relax each constraint,Y(t)(θTX(t)+b) ≥ 1−ξ(t), and the penalty term

∑n
t=1 ξ(t)

is added to the criterion, weighted by a constant C [47]:

min
θ,b
‖θ‖1 + C

n∑
t=1

ξ(t)

s.t. Y(t)
(
θTX(t) + b

) ≥ 1− ξ(t),

ξ(t) ≥ 0, 1 ≤ t ≤ n.

(2.15)

The similarity between (2.10) and (2.15) is obvious when nσ2 = 1/C: one consid-
ers the sum of squared errors regularized by the 
2 norm of the parameter vector,
the other considers the sum of absolute values of the errors regularized by the 
1

norm of the parameter vector.
The differences come from the fact that by directly optimizing (2.10), the so-

lution is in general nonsparse, so one has to optimize for the huge number of
2N combinatorial choices of γ in order to find the best sparse solution, while
solving (2.15) can be realized in a single optimization step, as described next.
To allow both positive and negative elements in θ, the positive variables ui and
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vi are introduced such that θi = ui − vi and |θi| = ui + vi and thus (2.15) is trans-
formed into the new optimization problem [47]

min
u,v,b

N∑
i=1

(
ui + vi

)
+ C

n∑
t=1

ξ(t) s.t. Y(t)
(
(u− v)TX(t) + b

) ≥ 1− ξ(t),

ξ(t) ≥ 0, 1 ≤ t ≤ n,

ui ≥ 0, vi ≥ 0, 1 ≤ i ≤ N ,

(2.16)

which is a standard linear programming (LP) problem with inequality constraints.
Therefore, once the regularization constant C is chosen, solving the optimiza-

tion problem (2.16) for the sparse vector of parameters θ (and hence for the opti-
mum γ, which has the same pattern of zeros as θ) can be done in a very fast way,
using standard numerical optimization tools.

2.5.3. Joint feature clustering and classification

The feature selection problem refers to extracting an informative and nonredun-
dant set from the existing features. The somehow related problem of forming new
features (e.g., by linear combination of some existing genes) is traditionally con-
sidered a distinct problem and it was well studied in the past. However, there are
many methods having as a preliminary stage (before proceeding to classification)
the formation of new features, notable examples being principle component analy-
sis and clustering. The SimClust algorithm described in [32], is one such approach
and is mentioned here because it is well related to the method described in Section
2.6. SimClust solves a combined problem: simultaneously find clusters (groups of
related genes) and classify the samples using as classification features the “average”
genes which are the centers of the obtained clusters. To this goal, an MDL cost is
associated to describing the clusters, and another MDL cost is associated to the re-
gression model for optimal scoring. Relative weights are set such that the two MDL
costs have the same importance when the sample size is increased. We remark that
the method is an involved mixture of techniques, for example, prior to starting the
computational demanding part algorithm, a filter approach is used to restrain the
set of genes to only T genes, those having the largest values of between-to-within-
class sum of squares (2.5).

2.6. Minimum-description-length-based feature selection

MDL was used as a basis for statistical inference in a large number of problems
dealing with finding the structure of models. Its bases were laid down about 25
years ago in [48] inspired by the work on complexity in [49, 50, 51], and further
refined in a number of papers [52, 53, 54]. As a fundamental principle, it states
that given a model class, the best model should be chosen based on its ability to
represent the data in the most compact form, that is, with the MDL. Evaluating
the description code length is closely related to probabilistic modeling, since if one

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


I. Tabus and J. Astola 85

knows the probability P(xn) of a string xn, the optimal description length can be
shown to be − log2 P(xn). For making inference, the value itself of the description
length is sufficient, but it is worth noting that this value can really be achieved in
practice when using arithmetic coding (within a very good precision), so the de-
scription length of sequences or parameters in this section really refers to short
descriptions of the data or parameters, descriptions that can be decoded into the
original sequences. The overall MDL is based on efficient lossless codes, and we
can show at anytime a real message encoding the data with the claimed descrip-
tion length, since MDL takes care of all the costs involved by a real description.
In contrast, many other methods of feature selection based on entropy or mutual
information systematically neglect parts of the costs of encoding the data, that is,
when the empirical entropy of a sequence is used for inference, the cost of encod-
ing the probability model is not included, and thus comparisons across models of
different complexities may be unfair.

2.6.1. MDL using two-part codes

In order to apply MDL to feature selection, first a model class should be chosen
and then the total description length needs to be computed. If a two-part code
is used, as in [48], the total description length can be defined as the sum of the
description of the model parameters and the description of the data given the
model parameters. This instance of MDL was applied to genomic data for the first
time in [33] in the following way. Given a class of predictors, for example, per-
ceptrons, the optimal predictor of the target {Y(t) | 1 ≤ t ≤ n} given the input
data {X(t) | 1 ≤ t ≤ n} is first found and its optimal parameters are denoted θ∗γ .
The prediction errors {ε(t) = Y(t) − T(XT(t)θ∗γ ) | 1 ≤ t ≤ n} obtained with the
optimal predictor θ∗γ are then encoded by a simple code, for example, by encoding
the locations of the nonzero errors, using Lε bits. For encoding the optimum per-
ceptron parameters θ∗γ , the most simple code will be constructed by assuming that
all distinct perceptrons having k =∑i γi inputs (there are nθγ of them) are equally
likely, and it will require Lθγ = log2(nθγ ) bits. The total description length of the
two-part code, Ltot(γ) = Lε + Lθγ , can be used as a criterion for discriminating be-
tween different structures γ. The penalty introduced by encoding the parameters
of the model, Lθγ , is clearly increasing with the perceptron size, k, and therefore,
it constitutes a penalty on the complexity of the model. If the order k of a model
is too large, the optimal predictions obtained with the model will be very good,
thus the cost of encoding the errors, Lε, may be very small or even zero, but such a
model is discouraged by the complexity penalty. On the other hand, a too simple
model will be unable to predict the target well, given the input, so the cost of the
errors will be high, even though the cost of the model (its complexity Lθγ ) will be
small. So the proper balance between modeling power and model complexity is
established by the MDL principle, to guide the selection of the right structure γ.
The nice theoretical properties of MDL for selecting the structure of models have
been established for a wide class of models, and the simplicity of its use makes it
an attractive tool for feature selection.
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2.6.2. MDL using normalized maximum likelihood models

Although the pioneering work on MDL with two-part codes proved to be practical
and well justified theoretically, the later developments in universal data compres-
sion have introduced more efficient codes to be used for the evaluation of descrip-
tion lengths [29, 54]. In the rest of this section, we present the approach introduced
in [34], to which we refer for more details and proofs.

The target, or class label, is a string Yn = Y(1), . . . ,Y(n) of n realizations
of the random variable Y , taking values in the set {0, . . . ,M − 1}. Each Y(t) is
observed together with the k-tuple (a column vector) X(t) = [Xi1 (t) · · ·Xik (t)]T ,
where the features are discrete valued Xi(t) ∈ {0, . . . ,nq−1}, being quantized to nq
levels. The sequence of regressors Xn = X(1), . . . , X(n) contains vectors which may
occur repeatedly, and let K denote the number of distinct vectors, K ≤ n, which
means that the various vectors X(t) belong to a finite set denoted {b1, . . . , bK}. In
the end, we need to collect counts of the symbols conditioned on a specific value
of the regression vector in order to estimate model parameters, so we introduce
the following notations: let I j denote the set of indices at which b j is found in
the sequence X(1), . . . , X(n); that is, I j = {t : X(t) = b j}, which has cardinality

Mj = |I j|. The count m
j
q = |{i : yi = q, i ∈ I j}| is the number of observations

Y(t) = q ∈ {0, . . . ,M − 1} at which the regressor vector was X(t) = b j , and the

counts should obey m
j
0 + · · · + m

j
M−1 =Mj .

The probability distributions P(Yn | Xn;η, ν) of the class labels Yn condi-
tioned on a given value of the regressor Xn are parameterized by the sets of param-
eters η and ν. We call the model a discrete regression model, since y takes values
from a discrete set, and the joint observations X take values also in a discrete set.

The number K of different vectors b1, . . . , bK appearing in the regressor se-
quence X(1), . . . , X(n) can be large, and if it is close to n, it will be difficult to use
at each of the regressors bi a conditional multinomial model with distinct param-
eters, since not enough observations will be available to estimate the probabilities
of the symbols Y(t) conditional on X(t) = bi. Because of this dilution phenome-
non, pooling of the frequencies of occurrence of Y(t) at different context together
will be beneficial, but pooling should be performed after reordering the counts at
a given bi in a decreasing sequence.

The permutations νi(·) ∈ ΥM (where ΥM denotes the set of M! permutations
of the set Y = {0, 1, . . . ,M − 1}) can be used to reorder the class labels j ∈ Y
such that the frequencies of occurrence of the class labels (observed at the time
moments t with X(t) = b) are arranged in decreasing order.

To make clear the reordering, we introduce a new string Zn, obtained from the
class labels Yn by use of the set of permutations ν = (ν1(·), . . . , νK (·)) as follows:

Z(t) = ν−1



(
Y(t)

)
,

Y(t) = ν

(
Z(t)

)
,

(2.17)

where 
 is the index for which X(t) = b
 and ν
(·), ν−1

 (·) are a permutation, and

its inverse, respectively. Since ν
(·) is a permutation of 0, . . . ,M − 1,
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the transformation is reversible, that is, one can recover Y(t) from Z(t). The re-
aligned string {Zn} is further modeled as a multinomial trial process with param-
eters P(Z = 0) = η0, . . . ,P(Z = M − 1) = ηM−1. The symbol i is observed in the
string Zn exactly

∑K

=1 m



ν
(i) times, and thus the probability of the class label string

is given by

P
(
Yn | Xn;η, ν

) = P
(
Zn(ν);η, ν

)
= η

∑K

=1 m



ν
 (0)

0 · · ·η
∑K


=1 m


ν
 (M−1)

M−1 ,
(2.18)

where the sequence of new data Zn is determined by the set of permutations
ν = {νi(·) : i = 1, . . . ,K} as parameters, and the multinomial parameters of the
sequence Zn(ν) are grouped in the vector η = (η0, . . . ,ηM−1).

To make the set of pairs (η, ν) nonredundant, the vector η = (η0, . . . ,ηM−1)
needs to be restricted such that η0 ≥ η1 ≥ · · · ≥ ηM−1 and it can be shown that
with this constraint, there is no reduction in the flexibility of the model. Finally,
based on the above consideration, the model class named here discrete regression is
formalized as

M(η, k, ν) =
{
P
(
Yn | Xn;η, ν

)
: η ∈ [0, 1]M ; η0 ≥ η1 ≥ · · · ≥ ηM−1;

M−1∑
i=0

ηi = 1; ν ∈ (ΥM
)K}

,

(2.19)

where k is the dimensionality of the regression vectors X(t) and K is the number of
distinct vectors in the sequence Xn. The key parameter to be determined during the
feature selection process is the number of features k. In the following, the optimal
codes for the specified class of models will be obtained, and by computing the
optimal description length for various values of k, the MDL principle will be used
to determine the optimal k∗.

The optimal description length for strings yn, using the class M(η, k, ν), can
be computed by constructing first the normalized maximum likelihood (NML)
model q(yn | xn) for the class, and then taking the description length to be L(yn |
xn) = − log2 q(yn | xn). The NML model for a class of probability models can
be obtained by first computing the maximized likelihood P(yn | xn; η̂(yn), ν̂(yn))
using the ML parameters η̂(yn), ν̂(yn), and then normalizing it to a probability
distribution q(yn | xn). The optimality properties of the NML model for universal
data compression have been established in [54].

To compute the ML parameters, the maximization problem is split into two
subproblems, first optimize ν for a given η, then optimize η for the optimum
ν∗(η):

max
η

[
max
ν

P
(
yn | xn;η, ν

)]
. (2.20)
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The first stage

max
ν

P
(
yn | xn;η, ν

) = max
ν1(·)···νK (·)

K∏

=1

η
m


ν
 (0)

0 · · ·ηm


ν
 (M−1)

M−1 (2.21)

can be immediately seen to decouple into K independent subproblems, one for
each permutation ν
(·), and the optimal permutation is the permutation ν̂
(·) for
which m


ν̂
(0) ≥ m

ν̂
(1) ≥ · · ·m


ν̂
(M−1). The permutations ν̂
(·) are the ML set of
permutations ν̂, no matter what the values of η are [34].

By ordering decreasingly the sequence of numbers m
j
0, . . . ,m

j
M−1, a new se-

quence can be defined: n̂
j
0 = m

j
(M−1), . . . , n̂

j
M−1 = m

j
(0), where the standard no-

tation for the order statistics is used. The number of occurrences of the domi-
nant symbol in each of the sets {yi : i ∈ I1}, . . . , {yi : i ∈ IK} is collected and
the final pooled counts are obtained as n∗0 = n̂1

0 + · · · + n̂K0 . Similarly, denote by
n∗j = n̂1

j + · · · + n̂Kj the total number of occurrences of the jth dominant symbol
in each of the sets {yi : i ∈ I1}, . . . , {yi : i ∈ IK}.

By performing the outer maximization in (2.20), the optimal parameters η̂
turn out to be η̂i = n∗i /n, which is consistent with the assumed ranking η0 ≥ η1 ≥
· · ·ηM−1. The counts n∗i (Yn) depend on Yn in a complicated manner through the
order statistics of the counts m


i (Y
n).

Since the ML values of the parameters are now available, the NML model in
the model class M(η, k, ν) can be defined as follows:

q
(
yn | xn

) = P
(
yn | xn; η̂

(
yn
)
, ν̂
(
yn
))

Cn
(
M1, . . . ,MK

) ,

Cn
(
M1, . . . ,MK

) = ∑
wn∈{0,...,M−1}n

P
(
wn | xn; η̂

(
wn
)
, ν̂
(
wn
))

,

=
∑

wn∈{0,...,M−1}n

M−1∏
i=0

(
n∗i
(
wn
)

n

)n∗i (wn)

.

(2.22)

The computation of the normalizing constant directly from (2.22) is almost im-
possible for most gene expression data, since it requires the summation of Mn

terms, but a more practical approach can be found, as described next.
The computations needed in (2.22) can be rearranged as a single sum as fol-

lows:

Cn
(
M1, . . . ,MK

)
=

∑
n∗0 +n∗1 +···+n∗M−1=n

SM1,...,MK

(
n∗0 ,n∗1 , . . . ,n∗M−1

)M−1∏

=0

(
n∗

n

)n∗

,

(2.23)

where SM1,...,MK (n∗0 ,n∗1 , . . . ,n∗M−1) denotes the number of strings wn having the
same n∗0 (wn), . . . ,n∗M(wn). The summation needs to be done over the set of num-
bers obeying n∗0 ≥n∗1 ≥· · ·≥n∗M−1, which can be enforced by defining SM1,...,MK (n∗0 ,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


I. Tabus and J. Astola 89

n∗1 , . . . ,n∗M−1) = 0 for all the strings n∗0 ,n∗1 , . . . ,n∗M−1, which are not decreasing
strings. The numbers SM1,...,MK (n∗0 ,n∗1 , . . . ,n∗M−1) can be computed recursively in
K , according to the recurrence formula

SM1,...,MK

(
n∗0 ,n∗1 , . . . ,n∗M−1

)
=

∑
i0+i1+···+iM−1=MK

SM1,...,MK−1

(
n∗0 − i0,n∗1 − i1, . . . ,n∗M−1 − iM−1

)
h
(
i0, . . . , iM−1

)
,

(2.24)

where h(i0, . . . , iM−1) denotes the number of ways in which a string having n′ =
M1 + · · · + MK−1 letters and K − 1 distinct regressor vectors can be extended to a
string having n =M1 +· · ·+MK letters and K distinct regressor vectors, such that
in the set {yi : i ∈ IK}, the counts of symbols are i0, . . . , iM−1, regardless of order;
it is also required that i0 ≥ i1 ≥ · · · ≥ iM−1. The newly introduced convolving
sequences h() are defined as

h
(
i0, . . . , iM−1

) = (i0 + · · · + iM−1

i0, . . . , iM−1

)(
k0 + · · · + kr−1

k0, . . . , kr−1

)
(2.25)

in the case of a decreasing sequence of arguments i1 ≥ · · · ≥ iM−1, while for all
other arguments (i0, . . . , iM−1 not being decreasing) the sequence is h(i0, . . . , iM−1)
= 0. In (2.25), r is the number of distinct values in the string i0, . . . , iM−1 and
k0, . . . , kr−1 is the number of repetitions of the distinct values in the string i0, . . . ,
iM−1, respectively. For example, with the arguments i0 = 6, i1 = 4, i2 = 4, i3 = 3,
i4 = 3, the values occurring in (2.25) are r = 3, k0 = 2, k1 = 2, k2 = 1.

The computation of L(yn | xn) can be accomplished very fast, the compu-
tation of the normalization constant is most demanding, but its evaluation with
(2.23), by means of the convolution sums (2.24), is very fast, its implementation
in Matlab is run in less than 1 second.

The search for the best feature set, the one that minimizes the description
length L(yn | xn), can be performed in any of the traditional ways for wrapper
methods, as described in Section 2.4.2.

The classification model ŷ = g(xi1 , . . . , xik ), discovered during the feature se-
lection process, can be extended to cases which were absent in the training set, to
obtain a well-defined classifier. For unseen cases, the decision is taken according
to the class labels (votes) of the nearest neighbors at Hamming distance d, where
d is the smallest value at which a class label is a definite winner, see, for example,
[36].

The presented MDL method can be considered to be a wrapper method where
the optimization criterion is not the classification accuracy of a specific classifier,
but the description length achieved when using the information from the feature
set. The selection process is motivated by an information-theoretic principle, and
thus the method can be seen as a powerful tool for discovering informative feature
sets, which are very likely to have biological significance. However, the method can
be used also as a filter stage, after which the best classifier in a certain class can be
easily designed and tested for classification accuracy.
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2.7. Conclusions

Feature selection is an involved process, which needs knowledge of the available
techniques for guiding which tool to be used and for assessing correctly the per-
formance for the application at hand. An impressive number of studies of feature
selection techniques for gene expression data has shown that relevant biological
information can be gathered using various feature selection techniques, at a com-
putational cost which is affordable with the current computer technology. Future
studies will most likely reduce even further the computational cost of the methods,
making it possible to compare larger candidate feature sets. As another challenge
for the future, the biological interpretation of the feature sets needs to be inte-
grated within the feature selection methods themselves, and not used as they are
now, just as a validation stage after the feature selection process was finished.
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3
Classification

Ulisses Braga-Neto and Edward R. Dougherty

3.1. Introduction

Classification plays an important role in genomic signal analysis. For instance,
cDNA microarrays can provide expression measurements for thousands of genes
at once, and a key goal is to perform classification via different expression pat-
terns. This requires designing a classifier (decision function) that takes a vector
of gene expression levels as input, and outputs a class label that predicts the class
containing the input vector. Classification can be between different kinds of can-
cer, different stages of tumor development, or a host of such differences [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12] (see also the bibliography on microarray-based classifi-
cation provided as part of the supplementary information to [13]). Classifiers are
designed from a sample of expression vectors. This involves assessing expression
levels from RNA obtained from the different tissues with microarrays, determin-
ing genes whose expression levels can be used as classifier features (variables), and
then applying some rule to design the classifier from the sample microarray data.
Expression values have randomness arising from both biological and experimen-
tal variability. Design, performance evaluation, and application of features must
take this randomness into account. Three critical issues arise. First, given a set
of variables, how does one design a classifier from the sample data that provides
good classification over the general population? Second, how does one estimate
the error of a designed classifier when data are limited? Third, given a large set of
potential features, such as the large number of expression levels provided by each
microarray, how does one select a set of features as the input to the classifier? Small
samples (relative to the number of features) are ubiquitous in genomic signal pro-
cessing and impact all three issues [14].

3.2. Classifier design

Classification involves a feature vector X = (X1,X2, . . . ,Xd) on d-dimensional
Euclidean space Rd, composed of random variables (features), a binary random
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variable Y , and a classifier ψ : Rd → {0, 1} to serve as a predictor of Y , which
means that Y is to be predicted by ψ(X). The values 0 or 1 of Y are treated as class
labels. We assume there is a joint feature-label distribution F for the pair (X,Y) that
completely characterizes the stochastic classification problem.

The space of all classifiers, which in our case is the space of all binary functions
on Rd, will be denoted by F . The error ε[ψ] of ψ ∈ F is the probability that the
classification is erroneous, namely, ε[ψ] = P(ψ(X) �= Y). It can be written as

ε[ψ] = EF
[∣∣Y − ψ(X)

∣∣], (3.1)

where the expectation is taken relative to the feature-label distribution F (as indi-
cated by the notation EF). In other words, ε[ψ] equals the mean absolute difference
between label and classification. Owing to the binary nature of ψ(X) and Y , ε[ψ]
also equals the mean square error between label and classification.

3.2.1. Bayes classifier

An optimal classifier ψd is one having minimal error εd among all ψ ∈ F , so that
it is the minimal mean-absolute-error predictor of Y . The optimal classifier ψd is
called the Bayes classifier and its error εd is called the Bayes error. The Bayes classi-
fier, and thus the Bayes error, depends on the feature-label distribution of (X,Y)—
how well the labels are distributed among the variables being used to discriminate
them, and how the variables are distributed in Rd.

The posterior distributions for X are defined by η0(x) = fX,Y (x, 0)/ fX(x) and
η1(x) = fX,Y (x, 1)/ fX(x), where fX,Y (x, y) and fX(x) are the densities for (X,Y)
and X, respectively. The posteriors η0(x) and η1(x) give the probability that Y = 0
or Y = 1, respectively, given X = x. Note that η0(x) = 1 − η1(x). Note also that,
as a function of X, η0(X) and η1(X) are random variables. Furthermore, in this
binary-label setting, η1(x) = E[Y |x] is the conditional expectation of Y , given x.
The error of an arbitrary classifier can be expressed as

ε[ψ] =
∫
{x|ψ(x)=0}

η1(x) fX(x)dx +
∫
{x|ψ(x)=1}

η0(x) fX(x)dx. (3.2)

It is easy to verify that the right-hand side of (3.2) is minimized by

ψd(x) =
1 if η1(x) ≥ η0(x),

0 otherwise.
(3.3)

Hence, the Bayes classifier ψd(x) is defined to be 1 or 0 according to whether Y is
more likely to be 1 or 0, given x (ties may be broken arbitrarily). For this reason,
the Bayes classifier is also known as the maximum a posteriori (MAP) classifier.
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It follows from (3.2) and (3.3) that the Bayes error is given by

εd =
∫
{x|η1(x)<η0(x)}

η1(x) fX(x)dx +
∫
{x|η1(x)≥η0(x)}

η0(x) fX(x)dx

= E
[

min
{
η0(X),η1(X)

}]
.

(3.4)

By Jensen’s inequality, it follows from (3.4) that εd ≤ min{E[η0(X)],E[η1(X)]}.
Therefore, if either of the posteriors are uniformly small (e.g., if one of the classes
is much more likely than the other), then the Bayes error is necessarily small.

The problem with the Bayes classifier is that the feature-label distribution is
typically unknown, and thus so are the posteriors. Therefore, we must design a
classifier from sample data. An obvious approach would be to estimate the pos-
terior distributions from data, but often we do not have sufficient data to obtain
good estimates. Moreover, good classifiers can be obtained even when we lack suf-
ficient data for satisfactory density estimation.

3.2.2. Classification rules

Design of a classifierψn from a random sample Sn={(X1,Y1),(X2,Y2), . . . , (Xn,Yn)}
of vector-label pairs drawn from the feature-label distribution requires a classifi-
cation rule that operates on random samples to yield a classifier. A classification
rule is a mapping Ψn : [Rd × {0, 1}]n → F . Given a sample Sn, we obtain a de-
signed classifier ψn = Ψn(Sn) ∈ F , according to the rule Ψn. To be fully formal,
one might write ψn(Sn; X) rather than ψn(X); however, we will use the simpler
notation, keeping in mind that ψn derives from a classification rule applied to a
feature-label sample. Note that what is usually called a classification rule is really
a sequence of classification rules depending on n. Figure 3.1 presents an example
of a linear designed classifier, obtained via the linear-discriminant-analysis (LDA)
classification rule (see Section 3.2.4.9). The sample data in this example consist of
expression values of two top discriminatory genes on a total of 295 microarrays
from a cancer classification study [15] (see Section 3.2.5 for more details about
this data set).

The Bayes error εd is estimated by the expected error of the designed classifier
εn = ε[ψn]. There is a design error

∆n = εn − εd, (3.5)

εn and ∆n being sample-dependent random variables. The expected design error
is E[∆n], the expectation being relative to all possible samples. The expected error
of ψn is decomposed according to

E
[
εn
] = εd + E

[
∆n
]
. (3.6)

The quantity E[εn], or alternatively E[∆n], measures the global properties of clas-
sifications rules, rather than the performance of classifiers designed on individual
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Figure 3.1. Example of a linear designed classifier.

samples (on the other hand, a classification rule for which E[εn] is small will also
tend to produce designed classifiers that display small error).

Asymptotic properties of a classification rule concern large samples (as n →
∞). A rule is said to be consistent for a feature-label distribution of (X,Y) if ∆n → 0
in the mean, meaning E[∆n] → 0 as n→∞. For a consistent rule, the expected de-
sign error can be made arbitrarily small for a sufficiently large amount of data.
Since the feature-label distribution is unknown a priori, rules for which conver-
gence is independent of the distribution are desirable. A classification rule is uni-
versally consistent if ∆n → 0 in the mean for any distribution of (X,Y). Universal
consistency is useful for large samples, but has little consequence for small sam-
ples.

3.2.3. Constrained classifier design

A classification rule can yield a classifier that makes very few, or no, errors on the
sample data on which it is designed, but performs poorly on the distribution as
a whole, and therefore on new data to which it is applied. This situation is ex-
acerbated by complex classifiers and small samples. If the sample size is dictated
by experimental conditions, such as cost or the availability of patient RNA for
expression microarrays, then one only has control over classifier complexity. The
situation with which we are concerned is typically referred to as overfitting. The
basic point is that a classification rule should not cut up the space in a manner
too complex for the amount of sample data available. This might improve the ap-
parent error rate (i.e., the number of errors committed by the classifier using the
training data as testing points), but at the same time it will most likely worsen the
true error of the classifier for independent future data (also called the generaliza-
tion error in this context). The problem is not necessarily mitigated by applying an
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error-estimation rule—perhaps more sophisticated than the apparent error rate—
to the designed classifier to see if it “actually” performs well, since when there is
only a small amount of data available, error-estimation rules are very imprecise
(as we will see in Section 3.4), and the imprecision tends to be worse for com-
plex classification rules. Hence, a low error estimate is not sufficient to overcome
our expectation of a large expected error when using a complex classifier with a
small data set. Depending on the amount of data available, we need to consider
constrained classification rules.

Constraining classifier design means restricting the functions from which a
classifier can be chosen to a class C ⊆ F . This leads to trying to find an optimal
constrained classifier ψC ∈ C having error εC . Constraining the classifier can re-
duce the expected error, but at the cost of increasing the error of the best possible
classifier. Since optimization in C is over a subclass of classifiers, the error εC of ψC

will typically exceed the Bayes error, unless the Bayes classifier happens to be in C.
This cost of constraint (approximation) is

∆C = εC − εd. (3.7)

A classification rule yields a classifier ψn,C ∈ C, with error εn,C , and εn,C ≥ εC ≥ εd.
Design error for constrained classification is

∆n,C = εn,C − εC . (3.8)

For small samples, this can be substantially less than ∆n, depending on C and
the classification rule. The error of the designed constrained classifier is decom-
posed as

εn,C = εd + ∆C + ∆n,C . (3.9)

Therefore, the expected error of the designed classifier from C can be decomposed
as

E
[
εn,C

] = εd + ∆C + E
[
∆n,C

]
. (3.10)

The constraint is beneficial if and only if E[εn,C] < E[εn], that is, if

∆C < E
[
∆n
]− E[∆n,C

]
. (3.11)

If the cost of a constraint is less than the decrease in expected design error, then
the expected error of ψn,C is less than that of ψn. The dilemma is as follows: strong
constraint reduces E[∆n,C] at the cost of increasing εC .

The matter can be graphically illustrated. For two classification rules to be
shortly introduced, the discrete-data plug-in rule and the cubic histogram rule
with fixed cube size, E[∆n] is nonincreasing, meaning that E[∆n+1] ≤ E[∆n]. This
means that the expected design error never increases as sample sizes increase, and
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Figure 3.2. Errors of unconstrained and constrained classifiers.

it holds for any feature-label distribution. Such classification rules are called smart.
They fit our intuition about increasing sample sizes. Now consider a consistent
rule, constraint, and distribution for which E[∆n+1] ≤ E[∆n] and E[∆n+1,C] ≤
E[∆n,C]. Figure 3.2 illustrates the design problem. If n is sufficiently large, then
E[εn] < E[εn,C]; however, if n is sufficiently small, then E[εn] > E[εn,C]. The point
N0 at which the decreasing lines cross is the cutoff: for n > N0, the constraint
is detrimental; for n < N0, it is beneficial. When n < N0, the advantage of the
constraint is the difference between the decreasing solid and dashed curves.

A fundamental theorem provides bounds for E[∆n,C] [16]. The empirical-
error rule chooses the classifier in C that makes the least number of errors on the
sample data. For this (intuitive) rule, E[∆n,C] satisfies the bound

E
[
∆n,C

] ≤ 8

√
VC logn + 4

2n
, (3.12)

where VC is the Vapnik-Chervonenkis (VC) dimension of C. Details of the VC di-
mension are outside the scope of this paper. Nonetheless, it is clear from (3.12)
that n must greatly exceed VC for the bound to be small.

To illustrate the problematic nature of complex (high-VC-dimension) classi-
fiers, we apply the preceding bound to two classifier classes to be introduced in
the next section. The VC dimension of a linear classifier is d + 1, where d is the
number of variables, whereas the VC dimension of a neural network (NNET) with
an even number k of neurons has the lower bound VC ≥ dk [17]. If k is odd, then
VC ≥ d(k − 1). Thus, if one wants to use a large number of neurons to obtain a
classifier that can very finely fit the data, the VC dimension can greatly exceed that
of a linear classifier. To appreciate the implications, suppose d = k = 10. Then
the VC dimension of a NNET is bounded below by 100. Setting VC = 100 and
n = 5000 in (3.12) yields a bound exceeding 1, which says nothing. Not only is the
inequality in (3.12) a bound, it is worst case because there are no distributional
assumptions. The situation may not be nearly so bad. Still, one must proceed with
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care, especially in the absence of distributional knowledge. Increasing complexity
is often counterproductive unless there is a large sample available. Otherwise, one
could easily end up with a very bad classifier whose error estimate is very small!

3.2.4. Specific classification rules

In this section of the chapter, we discuss some commonly employed classification
rules, beginning with a rule that is employed in different manners to produce re-
lated rules.

3.2.4.1. Plug-in rule

Considering the Bayes classifier defined by (3.3), let η1,n(x) be an estimate of η1(x)
based on a sample Sn, and let η0,n(x) = 1− η1,n(x). A reasonable classification rule
is to define ψn(x) according to (3.3) with η0,n(x) and η1,n(x) in place of η0(x) and
η1(x), respectively. For this plug-in rule,

∆n =
∫
{x:ψn(x)�=ψd(x)}

∣∣η1,n(x)− η0,n(x)
∣∣ fX(x)dx. (3.13)

A sufficient condition for the plug-in rule to be consistent is given by [18]:

lim
n→∞

∫
Rd

∣∣η1(x)− η1,n(x)
∣∣1/2

dx = 0. (3.14)

3.2.4.2. Histogram rule

Suppose that Rd is partitioned into cubes of equal side length rn. For each point
x ∈ Rd, the histogram rule defines ψn(x) to be 0 or 1 according to which is the ma-
jority among the labels for points in the cube containing x. If the cubes are defined
so that rn → 0 and nrdn →∞ as n→∞, then the rule is universally consistent [19].

3.2.4.3. Multinomial discrimination

The situation in which only a finite number of observed patterns are possible, say
z1, z2, . . . , zm, is referred to as multinomial discrimination. An important example
is the so-called fundamental rule [18], which assigns at each pattern zi the label
with the maximum relative frequency among all sample points corresponding to
zi. It can be checked easily that this is the plug-in version of (3.3)—for this reason,
the fundamental rule is also called the discrete-data plug-in rule. The fundamental
rule corresponds to a special case of the histogram rule, when the partition used is
such that each cell contains exactly one of the possible patterns. For a zero Bayes
error and equiprobable patterns, we have that E[εn] ≥ (1 − 1/m)n, which shows
clearly the effect of using too small a sample. Indeed, if n ≤ m/2, then the inequal-
ity yields E[εn] ≥ 0.5, which shows that the fundamental rule is useless in this
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case. In the other direction (for large samples), it is shown in [18] that the fun-
damental rule is universally consistent and E[εn] ≤ εd + 1.075

√
m/n. Multinomial

discrimination plays a key role in gene prediction for quantized expression values,
in particular, binarized gene expressions in which a gene is qualitatively labeled as
ON (1) or OFF (0) [20, 21, 22]. In this situation, if there are r binary gene values
used to predict a target gene value, then m = 2r and prediction reduces to multi-
nomial discrimination. Extension to the case of any finite expression quantization
is straightforward. This kind of quantization occurs with discrete gene regulatory
networks, in particular, Boolean networks [23, 24]. In a related vein, it has been
shown that binarized (ON, OFF) expression values can be used to obtain good
classification [25] and clustering [26].

3.2.4.4. k-nearest-neighbor rule

For the basic nearest-neighbor (NN) rule , ψn is defined for each x ∈ Rd by letting
ψn(x) take the label of the sample point closest to x. For the NN rule, no matter the
feature-label distribution of (X,Y), εd ≤ limn→∞ E[εn] ≤ 2εd [27]. It follows that
limn→∞ E[∆n] ≤ εd. Hence, the asymptotic expected design error is small if the
Bayes error is small; however, this result does not give consistency. More generally,
for the k-nearest-neighbor rule (kNN), with k odd, the k points closest to x are
selected and ψn(x) is defined to be 0 or 1 according to which is the majority among
the labels of these points. If k = 1, this gives the NN rule. The limit of E[εn] as
n→∞ can be expressed analytically and various upper bounds exist. In particular,
limn→∞ E[∆n] ≤ (ke)−1/2. This does not give consistency, but it does show that the
design error gets arbitrarily small for sufficiently large k as n → ∞. The kNN rule
is universally consistent if k →∞ and k/n→ 0 as n→∞ [28].

3.2.4.5. Kernel rules

The moving-window rule takes the majority label among all sample points within a
specified distance of x. The rule can be “smoothed” by giving weights to different
sample points: the weights associated with the 0- and 1-labeled sample points are
added up separately, and the output is defined to be the label with the larger sum.
A kernel rule is constructed by defining a weighting kernel based on the distance
of a sample point from x. The Gaussian kernel is defined by Kh(x) = e−‖x/h‖2

,
whereas the Epanechnikov kernel is given by Kh(x) = 1 − ‖x/h‖2 if ‖x‖ ≤ h and
Kh(x) = 0 if ‖x‖ > h. If x is the point at which the classifier is being defined, then
the weight at a sample point xk isKh(x−xk). Since the Gaussian kernel is never 0, all
sample points get some weight. The Epanechnikov kernel is 0 for sample points at
a distance more than h from x, so that, like the moving-window rule, only sample
points within a certain radius contribute to the definition of ψn(x). The moving-
window rule is a special case of a kernel rule with the weights being 1 within a
specified radius. The kernel rules we have given are universally consistent [18].
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3.2.4.6. Linear classifiers

For classification rules determined by parametric representation, the classifier is
postulated to have a functional form ψ(x1, x2, . . . , xd; a0, a1, . . . , ar), where the pa-
rameters a0, a1, . . . , ar are to be determined by some estimation procedure based
on the sample data. For parametric representation, we assume the labels to be −1
and 1. The most basic functional form involves a linear combination of the coordi-
nates of the observations. A binary function is obtained by thresholding. A linear
classifier, or perceptron, has the form

ψ(x) = T

[
a0 +

d∑
i=1

aixi

]
, (3.15)

where x = (x1, x2, . . . , xd) and T thresholds at 0 and yields −1 or 1. A linear clas-
sifier divides the space into two half spaces determined by the hyperplane defined
by the parameters a0, a1, . . . , ad. The hyperplane is determined by the equation
formed from setting the linear combination equal to 0. Using the dot product a·x,
which is equal to the sum in the preceding equation absent the constant term a0,
the hyperplane is defined by a · x = −a0. Numerous design procedures have been
proposed to avoid the computational requirement of full optimization for linear
classifiers. Each finds parameters that hopefully define a linear classifier whose er-
ror is close to optimal. Often, analysis of the design procedure depends on whether
the sample data are linearly separable, meaning there exists a hyperplane such that
points with label −1 lie on one side of the hyperplane and the points with label
1 lie on the other side. There are many design algorithms for linear classification,
each meant to achieve some advantage relative to other methods.

3.2.4.7. Support vector machines

The support vector machine (SVM) provides a method for designing linear clas-
sifiers [29]. Figure 3.3 shows a linearly separable data set and three hyperplanes
(lines). The outer lines pass through points in the sample data, and the third, called
the maximal-margin hyperplane (MMH) is equidistant between the outer lines. It
has the property that the distance from it to the nearest −1-labeled sample point
is equal to the distance from it to the nearest 1-labeled sample point. The sample
points closest to it are called support vectors (the circled sample points in Figure
3.3). The distance from the MMH to any support vector is called the margin. The
matter is formalized by recognizing that differently labeled sets are separable by
the hyperplane u · x = c, where u is a unit vector and c is a constant, if u · xk > c
for yk = 1 and u · xk < c for yk = −1. For any unit vector u, the margin is given by

ρ(u) = 1
2

(
min

{xk :yk=1}
u · xk − max

{xk :yk=−1}
u · xk

)
. (3.16)
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MMH

Margin

Figure 3.3. MMH for linearly separable data. The support vectors are the circled sample points.

The MMH, which is unique, can be found by solving the following quadratic op-
timization problem:

min‖v‖, subject to

v · xk + b ≥ 1 if yk = 1,

v · xk + b ≤ −1 if yk = −1.

(3.17)

If v0 satisfies this optimization problem, then the vector defining the MMH and
the margin are given by u0 = v0/‖v0‖ and ρ(u0) = ‖v0‖−1, respectively.

If the sample is not linearly separable, then one has two choices: find a rea-
sonable linear classifier or find a nonlinear classifier. In the first case, the pre-
ceding method can be modified by making appropriate changes to the optimiza-
tion problem (3.17); in the second case, one can map the sample points into a
higher-dimensional space where they are linearly separable, find a hyperplane in
that space, and then map back into the original space (we refer the reader to [29]
for details).

3.2.4.8. Quadratic discriminant analysis

Let Rk denote the region in Rd, where the Bayes classifier has the value k, for k =
0, 1. According to (3.3), x ∈ Rk if ηk(x) > ηj(x), for j �= k (ties in the posteriors
being broken arbitrarily). Since ηk(x) = fX|Y (x|k) fY (k)/ fX(x), upon taking the
logarithm and discarding the common term fX(x), this is equivalent to x ∈ Rk if
dk(x) > dj(x), where the discriminant dk(x) is defined by

dk(x) = log fX|Y (x|k) + log fY (k). (3.18)

If the conditional densities fX|Y (x|0) and fX|Y (x|1) are normally distributed, then

fX|Y (x|k) = 1√
(2π)n det

[
Kk
] exp

[
− 1

2

(
x− uk

)′
K−1
k

(
x − uk

)]
, (3.19)
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where Kk and uk are the covariance matrix and mean vector for class k, respec-
tively. Dropping the constant terms and multiplying by the factor 2 (which has no
effect on classification), the discriminant becomes

dk(x) = −(x − uk
)′

K−1
k

(
x− uk

)− log
(
det

[
Kk
])

+ 2 log fY (k). (3.20)

Hence, the discriminant is quadratic in x. The first term in (3.20) is known as
the Mahalanobis distance between x and uk. A simple calculation shows that the
optimal decision boundary d1(x)− d0(x) = 0 is given by

x′
(

K−1
0 −K−1

1

)
x − 2

(
u′0K−1

0 − u′1K−1
1

)
x + u′0K−1

0 u0 − u′1K−1
1 u1

+ log

(
det

[
K0
]

det
[

K1
]) + 2 log

(
fY (1)
fY (0)

)
= 0.

(3.21)

This is an equation in the form x′Ax − b′x + c = 0. In 2-dimensional space, such
an equation produces conical-section decision curves, whereas in 3-dimensional
spaces, it produces decision surfaces known as quadrics. Plugging sample-based es-
timates for the covariance matrices, mean vectors, and priors into (3.21), leads to a
classification rule known as quadratic discriminant analysis (QDA). Depending on
the estimated coefficients in (3.21), decision boundaries ranging from paraboloids
to spheres can be produced by QDA.

3.2.4.9. Linear discriminant analysis

If both conditional densities possess the same covariance matrix K, then the qua-
dratic term and the first logarithmic term vanish in (3.21), yielding

(
u1 − u0

)′
K−1x − 1

2

(
u′1K−1u1 − u′0K−1u0

)
+ log

(
fY (1)
fY (0)

)
= 0. (3.22)

This is an equation in the form ax′ +m = 0. Such equations produce decision sur-
faces that are hyperplanes in d-dimensional space. Plugging into (3.22) sample-
based estimates for the covariance matrix, mean vectors, and priors leads to a clas-
sification rule known as linear discriminant analysis (LDA). In practice, the usual
maximum-likelihood estimates are employed for the mean vectors, whereas the
estimate of the covariance matrix is often given by the pooled covariance matrix:

K̂ = 1
2

(
K̂0 + K̂1

)
, (3.23)

where K̂k is the usual maximum-likelihood estimate of the covariance matrix of
class k (note that, in general, K̂0 �= K̂1). In addition, especially in the case of small
sample sizes, it is a common practice to assume equally likely classes, so that the
term log( fY (1)/ fY (0)) is zero. This avoids the use of unreliable estimates of the
priors derived from limited data.
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3.2.4.10. Nearest-mean classifier

If, besides a common covariance matrix and equally likely classes one assumes un-
correlated conditional distributions, with covariance matrix K = σ2I, then (3.22)
reduces to

(
u1 − u0

)′
x − 1

2

(∥∥u1
∥∥2 − ∥∥u0

∥∥2
)
= 0. (3.24)

The optimal hyperplane in this case is perpendicular to the line joining the means
and passes through the midpoint of that line. Therefore, a sample point is assigned
to class k if its distance to the mean vector uk is minimal. This also follows from
the fact that the discriminant function in (3.20) can be written in this case simply
as dk(x) = −‖x − uk‖. Substituting sample-based mean estimates for the mean
vectors in (3.24) leads to the nearest-mean classifier (NMC). This classification rule
has the advantage of avoiding the estimation (and inversion) of the covariance
matrices, so it can be effective in extreme small-sample scenarios.

Equations (3.21), (3.22), and (3.24), for the QDA, LDA, and NMC rules, re-
spectively, were derived under the Gaussian assumption, but in practice can per-
form well so long as the underlying class-conditional densities are approximately
Gaussian—and one can obtain good estimates of the relevant covariance matrices.
Owing to the greater number of parameters to be estimated for QDA as opposed
to LDA and NMC, one can proceed with smaller samples for LDA than with QDA,
and in extreme small-sample cases, NMC may be the most effective choice, due to
its avoiding the estimation of the covariance matrices. Of course, if the assumption
of equal and/or uncorrelated covariance matrices does not hold, then the LDA and
NMC rules will have asymptotic expected error biased away from the Bayes error.
Therefore, in large-sample scenarios, QDA is preferable. However, LDA has been
reported to be more robust relative to the underlying Gaussian assumption than
QDA [30]. In our experience, LDA has proved to be a very robust classification
rule (see Section 3.2.5), which is effective for a wide range of sample sizes.

3.2.4.11. Neural networks

A (feed-forward) two-layer neural network has the form

ψ(x) = T

[
c0 +

k∑
i=1

ciσ
[
ψi(x)

]]
, (3.25)

where T thresholds at 0, σ is a sigmoid function (i.e., a nondecreasing function with
limits −1 and +1 at −∞ and∞, resp.), and

ψi(x) = ai0 +
d∑
j=1

ai jx j . (3.26)
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Each operator in the sum of (3.25) is called a neuron. These form the hidden layer.
We consider NNETs with the threshold sigmoid: σ(x) = −1 if x ≤ 0 and σ(x) = 1
if x > 0. If k → ∞ such that (k logn)/n → 0 as n → ∞, then, as a class, NNETs
are universally consistent [31], but one should beware of the increasing number of
neurons required.

A key point here is that any function whose absolute value possesses finite
integral can be approximated arbitrarily closely by a sufficiently complex NNET.
While this is theoretically important, there are limitations to its practical useful-
ness. Not only does one not know the function, in this case the Bayes classifier,
whose approximation is desired, but even were we to know the function and how
to find the necessary coefficients, a close approximation can require an extremely
large number of model parameters. Given the NNET structure, the task is to esti-
mate the optimal weights. As the number of model parameters grows, the use of
the model for classifier design becomes increasingly intractable owing to the in-
creasing amount of data required for estimation of the model parameters. Since
the number of hidden units must be kept relatively small, thereby requiring sig-
nificant constraint, when data are limited, there is no assurance that the optimal
NNET of the prescribed form closely approximates the Bayes classifier. Model es-
timation is typically done by some iterative procedure, with advantages and disad-
vantages being associated with different methods [32].

3.2.4.12. Classification trees

The histogram rule partitions the space without reference to the actual data. One
can instead partition the space based on the data, either with or without reference
to the labels. Tree classifiers are a common way of performing data-dependent
partitioning. Since any tree can be transformed into a binary tree, we only need
to consider binary classification trees. A tree is constructed recursively based on
some criteria. If S represents the set of all data, then it is partitioned according to
some rule into S = S1 ∪ S2. There are four possibilities: (i) S1 is partitioned into
S1 = S11 ∪ S12 and S2 is partitioned into S2 = S21 ∪ S22; (ii) S1 is partitioned
into S1 = S11 ∪ S12 and partitioning of S2 is terminated; (iii) S2 is partitioned into
S2 = S21∪S22 and partitioning of S1 is terminated; and (iv) partitioning of both S1

and S2 is terminated. In the last case, the partition is complete; in any of the others,
it proceeds recursively until all branches end in termination, at which point the
leaves on the tree represent the partition of the space. On each cell (subset) in the
final partition, the designed classifier is defined to be 0 or 1, according to which is
the majority among the labels of the points in the cell.

A wide variety of classification trees, whose leaves are rectangles in Rd, can be
obtained by perpendicular splits. At each stage of growing the tree, a decision to

split a rectangle R is made according to a coordinate decision of the form x
j
i ≤ α,

where x j = (x
j
1, x

j
2, . . . , x

j
d) is a sample point in Rd. Also at each stage, there are

two collections of rectangles, R0 and R1, determined by majority vote of the la-
bels, so that R ∈ R1 if and only if the majority of labels for points in R have value
1. The 0 and 1 decision regions are determined by the unions of rectangles in
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R0 and R1, respectively. A final classification tree, and therefore the designed clas-
sifier, depends on the splitting criterion, choice of α, and a stopping criterion. Two
desirable attributes of a stopping criterion are that the leaf nodes (final rectangles)
be small in number so that the complexity of the classifier be not too great for the
amount of data (thus avoiding overfitting), and that the labels in each final rec-
tangle be not evenly split, thereby increasing the likelihood that the majority label
accurately reflects the distribution in the rectangle. A rectangle is said to be pure
relative to a particular sample if all labels corresponding to points in the rectangle
possess the same label.

One popular method of splitting, which goes under the name classification
and regression trees (CART), is based on the notion of an impurity function. For
any rectangle R, let N0(R) and N1(R) be the numbers of 0-labeled and 1-labeled
points, respectively, in R, and let N(R) = N0(R) + N1(R) be the total number of
points in R. The impurity of R is defined by

κ(R) = ξ
(
pR, 1− pR

)
, (3.27)

where pR = N0(R)/N(R) is the proportion of 0 labels in R, and where ξ(p, 1 − p)
is a nonnegative function satisfying the following conditions: (1) ξ(0.5, 0.5) ≥
ξ(p, 1 − p) for any p ∈ [0, 1]; (2) ξ(0, 1) = ξ(1, 0) = 0; and (3) as a function
of p, ξ(p, 1 − p) increases for p ∈ [0, 0.5] and decreases for p ∈ [0.5, 1]. Sev-
eral observations follow from the definition of ξ: (1) κ(R) is maximum when the
proportions of 0-labeled and 1-labeled points in R are equal (corresponding to
maximum impurity); (2) κ(R) = 0 if R is pure; and (3) κ(R) increases for greater
impurity.

We mention three possible choices for ξ:

(1) ξe(p, 1− p) = −p log p − (1− p) log(1− p) (entropy impurity);
(2) ξg(p, 1− p) = p(1− p) (Gini impurity);
(3) ξm(p, 1− p) = min(p, 1− p) (misclassification impurity).

The origins of these three impurities lie in the definition of κ(R): ξe(p, 1− p) pro-
vides an entropy estimate; ξg(p, 1− p) provides a variance estimate for a binomial
distribution; and ξm(p, 1− p) provides an error-rate estimate.

A splitting regimen is determined by the manner in which a split will cause an
overall decrease in impurity. Let i be a coordinate, α be a real number, R be a rec-
tangle to be split along the ith coordinate, Riα,− be the subrectangle resulting from
the ith coordinate being less than or equal to α, and Riα,+ be the subrectangle re-
sulting from the ith coordinate being greater than α. Define the impurity decrement
by

∆i(R,α) = κ(R)− N
(
Riα,−

)
N(R)

κ
(
Riα,−

)− N
(
Riα,+

)
N(R)

κ
(
Riα,+

)
. (3.28)

A good split will result in impurity reductions in the subrectangles. In computing
∆i(R,α), the new impurities are weighted by the proportions of points going into
the subrectangles. CART proceeds iteratively by splitting a rectangle at α̂ on the
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ith coordinate if ∆i(R,α) is maximized for α = α̂. There are two possible splitting
strategies: (i) the coordinate i is given and ∆i(R,α) is maximized over all α and R;
(ii) the coordinate is not given and ∆i(R,α) is maximized over all i, α, and R. Var-
ious stopping strategies are possible—for instance, stopping when maximization
of ∆i(R,α) yields a value below a preset threshold, or when there are fewer than a
specified number of sample points assigned to the node. One may also continue
to grow the tree until all leaves are pure and then prune.

3.2.5. Classification performance

In this section, we present classification results obtained with real patient data.
Our purpose is to compare the performance of several of the classification rules
described in the previous sections, in terms of the expected classification error, for
different sample sizes and number of variables (dimensionality).

The data used in the experiments come from a microarray-based classification
study [15] that analyzed a large number of microarrays, prepared with RNA from
breast tumor samples from each of 295 patients (see Figure 3.1 for a plot of the ex-
pression values of two genes in these data). Using a previously established 70-gene
prognosis profile [33], a prognosis signature based on gene expression was pro-
posed in [15], which correlated well with patient survival data and other existing
clinical measures. Of the N = 295 microarrays, N0 = 115 belong to the “good-
prognosis” class, whereas the remaining N1 = 180 belong to the “poor-prognosis”
class.

Our experiments were set up in the following way. We used log-ratio gene
expression values associated with the top genes found in [33]. We consider four
basic cases, corresponding to d = 2, 3, 4, 5 genes. In each case, we searched the best
combination, in terms of estimated Bayes error, of d genes among the top 10 genes,
with the purpose of not considering situations where there is too much confusion
between the classes, which makes the expected errors excessively large. The Bayes
error was computed by using (3.4) in conjunction with a Gaussian-kernel density
estimation method, for which the kernel variance is automatically selected by a
pseudolikelihood-based technique [34].

In each case, 1000 observations Sn of size ranging from n = 20 to n = 120, in
steps of 5, were drawn independently from the pool of 295 microarrays. Sampling
was stratified in the sense that the proportion of each class in the random sam-
ple was fixed to N0/N for the first class and N1/N for the second class. A classifier
was designed for each sample Sn, using one of the classification rules described
previously, and its classification error was approximated by means of a holdout es-
timator (see Section 3.4.1), whereby the 295−n sample points not drawn are used
as an independent test set (this is a good approximation to the true error, given
the large test sample). The errors for the 1000 independent sample sets were aver-
aged to provide a Monte Carlo estimate of the expected error for the classification
rule.

Figure 3.4 displays four plots, one for each dimensionality considered. We
have considered seven classification rules: LDA, QDA, NMC, 1-nearest neighbor
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Figure 3.4. Expected error versus sample size for several classification rules and number of genes: (a) 2
genes, (b) 3 genes, (c) 4 genes, and (d) 5 genes.

(1NN), 3-nearest neighbor (3NN), CART with a stopping rule that ends splitting
when there are six or fewer sample points in a node, and an NNET with 4 nodes
in the hidden layer.

Confirming observations we have made previously, we can see that LDA per-
forms quite well, and so does 3NN. We see that QDA does a very good job for
larger sample sizes, but its performance degrades quickly for smaller sample sizes.
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NMC does a very credible job, given its simplicity, and it can actually do quite
well for very small sample sizes, as compared to the other classification rules. The
NNET performed well for 2 variables, but its performance quickly degrades as the
number of genes increases, which can be explained by the high complexity of this
classification rule, which leads to overfitting. CART and 1NN do not perform well
with this data set, due to severe overfitting (even with the regularizing stopping
criterion used for CART).

3.3. Regularization

Thus far we have taken the perspective that a collection of features is given, sample
data are obtained, and a classifier based on the features is designed from the data
via a classification rule. The feature set and sample data are taken as given, and
the designer selects a classification rule. In this section, we consider alterations to
this paradigm in order to deal with the small-sample problem, more specifically,
a sample that is small relative to the number of features and classifier complexity.
These methods fall under the general category of regularization.

3.3.1. Regularized discriminant analysis

The small-sample problem for QDA can be appreciated by considering the spectral
decompositions of the covariance matrices,

Kk =
d∑
j=1

λk jvk jv′k j , (3.29)

where λk1, λk2, . . . , λkd are the eigenvalues of Kk in decreasing order and vk j is the
eigenvector corresponding to λk j . Then it can be shown that the quadratic dis-
criminant of (3.20) takes the form

dk
(

x
) = − d∑

j=1

[
vk j
(

x − uk
)]2

λk j
−

d∑
j=1

log λk j + 2 log fY (k). (3.30)

The discriminant is strongly influenced by the smallest eigenvalues. This creates a
difficulty because the large eigenvalues of the sample covariance matrix are high-
biased and the small eigenvalues are low-biased—and this phenomenon is accen-
tuated for small samples.

Relative to QDA, a simple method of regularization is to apply LDA, even
though the covariance matrices are not equal. This means estimating a single
covariance matrix by pooling the data. This reduces the number of parameters
to be estimated and increases the sample size relative to the smaller set of param-
eters. Generally, regularization reduces variance at the cost of bias, and the goal is
substantial variance reduction with negligible bias.
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A softer approach than strictly going from QDA to LDA is to shrink the in-
dividual covariance estimates in the direction of the pooled estimate. This can be
accomplished by introducing a parameter α between 0 and 1 and using the esti-
mates

K̂k(α) = nk(1− α)K̂k + nαK̂
nk
(
1− α) + nα

, (3.31)

where nk is the number of points corresponding to Y = k, K̂k is the sample co-
variance matrix for class k, and K̂ is the pooled estimate of the covariance matrix.
QDA results from α = 0 and LDA from α = 1, with different amounts of shrink-
age occurring for 0 < α < 1 [35]. While reducing variance, one must be prudent
in choosing α, especially when the covariance matrices are very different.

To get more regularization while not overly increasing bias, one can shrink
the regularized sample covariance matrix K̂k(α) towards the identity multiplied by
the average eigenvalue of K̂k(α). This has the effect of decreasing large eigenvalues
and increasing small eigenvalues, thereby offsetting the biasing effect seen in (3.30)
[36]. Thus, we consider the estimate

K̂k(α,β) = (1− β)K̂k(α) +
β

n
tr
[

K̂k(α)
]

I, (3.32)

where tr[K̂k(α)] is the trace of K̂k(α), I is the identity, and 0 ≤ β ≤ 1. To apply this
regularized discriminant analysis using K̂k(α,β) requires selecting two model pa-
rameters. Model selection is critical to advantageous regularization, and typically
is problematic; nevertheless, simulation results for Gaussian conditional distribu-
tions indicate significant benefit of regularization for various covariance models,
and very little increase in error, even in models where it does not appear to help.

3.3.2. Noise injection

Rather than regularizing the estimated covariance matrix, one can regularize the
data itself by noise injection. This can be done by “spreading” the sample data,
by means of synthetic data generated about each sample point, thereby creating a
large synthetic sample from which to design the classifier while at the same time
making the designed classifier less dependent on the specific points in the small
data set. For instance, one may place a circular Gaussian distribution at each sam-
ple point, randomly generate points from each distribution, and then apply a clas-
sification rule. Such a Monte Carlo approach has been examined relative to LDA
[37]. A spherical distribution need not be employed. Indeed, it has been demon-
strated that it can be advantageous to base noise injection at a sample point based
on the NNs of the point [37]. This kind of noise injection is not limited to any
particular classification rule; however, it can be posed analytically in terms of ma-
trix operations for linear classification, and this is critical to situations in which
a large number of feature sets must be examined, in particular, microarray-based
classification, where a vast number of potential feature sets are involved [9].
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Noise injection can take a different form in which the sample data points
themselves are perturbed by additive noise instead of new synthetic points being
generated. This approach has been used in designing NNETs (of which linear clas-
sifiers are a special case), in particular, where owing to a small sample, the same
data points are used repeatedly [38].

3.3.3. Error regularization

Rather than considering a single class from which to choose a classifier, one can
consider a sequence of classes C1, C2, . . . , find the best classifier in each class ac-
cording to the data, and then choose among these according to which class is of ap-
propriate complexity for the sample size. For instance, one might assume a nested
sequence C1 ⊂ C2 ⊂ · · · . The idea is to define a new measurement that takes into
account both the error estimate of a designed classifier and the complexity of the
class from which it has been chosen—the more complex the class, the larger the
penalty. In this vein, we define a new penalized error that is a sum of the estimated
error and a complexity penalty ρ(n),

ε̃n[ψ] = ε̂n[ψ] + ρ(n). (3.33)

Relative to the constraint sequence {Cj}, structural risk minimization proceeds by
selecting the classifier in each class that minimizes the empirical error over the
sample, and then choosing among these the one possessing minimal penalized
error, where in each case the penalty is relative to the class containing the classifier
[39, 40].

Minimum-description-length (MDL) complexity regularization replaces error
minimization by minimization of a sum of entropies, one relative to encoding
the error and the other relative to encoding the classifier description, in an effort
to balance increased error and increased model complexity [41, 42]. The MDL
approach has been employed for microarray-based prediction [22, 43].

3.3.4. Feature selection

The feature-selection problem is to select a subset of k features from a set of n fea-
tures that provides an optimal classifier with minimum error among all optimal
classifiers for subsets of a given size. For instance, for the large number of expres-
sion measurements on a cDNA microarray, it is necessary to find a small subset
with which to classify. The inherent combinatorial nature of the problem is readily
seen from the fact that all k-element subsets must be checked to assure selection
of the optimal k-element feature set [44].

An issue concerning error estimation is monotonicity of the error measure.
The Bayes error is monotone: if A and B are feature sets for which A ⊂ B, then
εB ≤ εA, where εA and εB are the Bayes errors corresponding to A and B, re-
spectively. However, if εA,n and εB,n are the corresponding errors resulting from

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


112 Classification

E
rr

or

Number of variables d

εd

E[εd,n]

Figure 3.5. Bayes error and expected error versus number of features.

designed classifiers on a sample of size n, then it cannot be asserted that E[εB,n]
does not exceed E[εA,n]. Indeed, it is typical to observe a “peaking phenomenon”
for fixed sample size, whereby the expected error decreases at first and then in-
creases, for increasingly large feature sets. Thus, monotonicity does not apply for
the expected error. This is illustrated in Figure 3.5, where the Bayes error εd and
the expected error E[εd,n] of the designed filter are plotted against the number of
variables d. We can see that εd decreases, whereas E[εd,n] decreases and then in-
creases. We remark that the peaking phenomenon is referred to by some authors
as the Hughes phenomenon [45, 46]. Note that, were E[εd,n] known, then we could
conclude that εd is no worse than E[εd,n]; however, we have only estimates of the
error εd,n, which for small samples can be above or below εd.

A full exhaustive search can be mitigated by using a branch and bound feature-
selection algorithm that takes advantage of the monotonicity property of the Bayes
error [47]. If A ⊂ B and C is a feature set for which εC ≥ εA, then εC ≥ εB. In prin-
ciple, this approach yields an optimal solution; however, it suffers from two prob-
lems. First, worst-case performance can be exponentially complex, thereby making
its use less attractive for very large feature sets; and second, estimation of the Bayes
error must be used and therefore monotonicity is lost, a problem that is exacer-
bated by small samples. As is generally true with feature-selection methods, other
criteria besides the Bayes error can be used to select features, monotonic criteria
being necessary for strict application of the branch and bound algorithm. Even
with the loss of monotonicity, the branch-and-bound approach may still provide
good results [48].

When considering a large collection of features, the branch-and-bound tech-
nique is not sufficiently computationally efficient and suboptimal approaches need
to be considered. The most obvious approach is to consider each feature by it-
self and choose the k features that perform individually the best. While easy, this
method is subject to choosing a feature set with a large number of redundant fea-
tures, thereby obtaining a feature set that is much worse than the optimal. More-
over, features that perform poorly individually may do well in combination with
other features [9].
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Perhaps the most common approach to suboptimal feature selection is se-
quential selection, either forward or backward, and their variants. Forward selec-
tion begins with a small set of features, perhaps one, and iteratively builds the fea-
ture set. Backward selection starts with a large set and iteratively reduces it. Owing
to simpler calculations, forward selection is generally faster, and we will restrict
our attention to it, noting that analogous comments apply to backwards selection.
Here again, monotonicity issues and the “peaking” phenomenon arise: adjoining
variables stepwise to the feature vector decreases the Bayes error but can increase
errors of the designed filters.

Being more precise relative to forward selection, if A is the feature set at a
particular stage of the algorithm and Q is the full set of potential features, then
all sets of the form A∪ {X} are considered, with X ∈ Q − A, and the feature X is
adjoined to A if it is the one for which the error ε[A∪{X}] is minimal. An obvious
problem is that once a feature is in the growing feature set, it cannot be removed.
This problem can be handled by adjoining two or more features by considering
sets of the form A∪B, where B is a subset of Q−A possessing b features, and then
deleting features by considering sets of the form A ∪ B0 − C, where B0 has been
chosen on the adjoining part of the iteration and C is a subset of A∪B0 possessing
c < b features. At each stage of the iteration, the feature set is grown by b − c
features. While growing by adjoin-delete iterations is superior to just adjoining,
there is still inflexibility owing to the a priori choices of b and c. Flexibility can be
added to sequential forward selection by considering sequential forward floating
selection (SFFS), where the number of features to be adjoined and deleted is not
fixed, but is allowed to “float” [49].

When there is a large number of potential random variables for classifica-
tion, feature selection is problematic and the best method to use depends on the
circumstances. Evaluation of methods is generally comparative and based on sim-
ulations [50].

3.3.5. Feature extraction

Rather than reducing dimensionality by selecting from the original features, one
might take the approach of feature extraction, where a transform is applied to the
original features to map them into a lower dimensional space. Since the new fea-
tures involve a transform of the original features, the original features remain (al-
though some may be eliminated by compression) and are still part of the classifi-
cation process. A disadvantage of feature extraction is that the new features lack
the physical meaning of the original features—for instance, gene expression lev-
els. A potential advantage of feature extraction is that, given the same number of
reduced features, the transform features may provide better classification than se-
lected individual features. Perhaps the most common form of feature extraction is
principal component analysis (PCA).

Consider the (random) observation vector X = (X1,X2, . . . ,Xn), where the
observations have been normalized to have zero means. Since the covariance ma-
trix K is symmetric, if λ1 and λ2 are distinct eigenvalues, then their respective
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eigenvectors will be orthogonal and the desired orthonormal eigenvectors can be
found by dividing each by its own magnitude. On the other hand, if an eigen-
value has repeated eigenvectors, then these will be linearly independent and an
algebraically equivalent set can be found by the Gram-Schmidt orthogonalization
procedure.

According to the Karhunen-Loeve theorem, if the vectors u1, u2, . . . , un are the
orthonormalized eigenvectors of K corresponding to the eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn, then

X =
n∑
i=1

Ziui, (3.34)

where Z1,Z2, . . . ,Zn are uncorrelated and given by Zi = X · ūi. The values
Z1,Z2, . . . ,Zn are called the principal components for X. For m < n, data com-
pression is achieved by approximating X by

Xm =
m∑
i=1

Ziui. (3.35)

The mean-square error between X and Xm is given by

E
[

X, Xm
] = n∑

k=1

E
[∣∣Xk − Xm,k

∣∣2
]

, (3.36)

where the components of Xm are Xm,1,Xm,2, . . . ,Xm,n. It can be shown that

E
[

X, Xm
] = n∑

k=m+1

λk. (3.37)

Since the eigenvalues are decreasing with increasing k, the error is minimized by
keeping the first m terms. To apply PCA for the purposes of feature extraction,
Z1,Z2, . . . ,Zm are employed.

3.4. Error estimation

Error estimation is a key aspect of classification, as it impacts both classifier design
and variable selection. Recall that the performance measure of a designed classifier
is the “true” error εn, whereas the performance measure of a classification rule (for
fixed sample size n) is the expected error E[εn]. However, both these quantities
can only be computed exactly if one knows the feature-label distribution for the
classification problem. Since in practice such knowledge is rarely, if ever, at hand,
one needs to estimate the true error from the available sample data.

An error estimator ε̂n may be a deterministic function of the sample data Sn, in
which case it is a nonrandomized error estimator. Such an error estimator is random
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only through the random sample. Among popular nonrandomized error estima-
tors, we have resubstitution, leave-one-out (LOO), and fixed-fold cross-validation.
By contrast, randomized error estimators have “internal” random factors that affect
their outcome. Popular randomized error estimators include random-fold cross-
validation and all bootstrap error estimators (all aforementioned error estimators
will be discussed in detail below).

A key feature that often dictates the performance of an error estimator is its
variance, especially in small-sample settings. The internal variance of an error es-
timator is the variance due only to its internal random factors, Vint = Var(ε̂n|Sn).
This variance is zero for nonrandomized error estimators. The full variance Var(ε̂n)
of the error estimator is the one we are really concerned about, since it takes into
account the uncertainty introduced by the random sample data. Using the well-
known conditional-variance formula, Var(X) = E[Var(X|Y)]+Var(E[X|Y]) [51],
one can break down Var(ε̂n) as

Var
(
ε̂n
) = E

[
Vint

]
+ Var

(
E
[
ε̂n|Sn

])
. (3.38)

The second term on the right-hand side is the one that includes the variability
due to the random sample. Note that, for nonrandomized ε̂n, we have Vint = 0
and E[ε̂n|Sn] = ε̂n. For randomized error estimators, the first term on the right-
hand side has to be made small through intensive computation, in order to achieve
small overall estimator variance. This is one of the reasons why randomized error
estimators are typically very inefficient computationally, as we will see below.

3.4.1. Holdout estimation

We now proceed to discuss specific error-estimation techniques. If there is an
abundance of sample data, then they can be split into training data and test data.
A classifier is designed on the training data, and its estimated error is the propor-
tion of errors it makes on the test data. We denote this test-data error estimate by
ε̂n,m, where m is the number of sample pairs in the test data. Since the test data are
random and independent from the training data, this is a randomized error esti-
mator. It is unbiased in the sense that, given the training data Sn, E[ε̂n,m|Sn] = εn,
and thus E[ε̂n,m] = E[εn]. The internal variance of this estimator can be bounded
as follows [18]:

Vint = E
[(
ε̂n,m − εn

)2∣∣Sn] ≤ 1
4m

(3.39)

which tends to zero as m → ∞. Moreover, by using (3.38), we get that the full
variance of the holdout estimator is simply

Var
(
ε̂n,m

) = E
[
Vint

]
+ Var

[
εn
]
. (3.40)

Thus, provided thatm is large, so that Vint is small (this is guaranteed by (3.39) for
large enough m), the variance of the holdout estimator is approximately equal to

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


116 Classification

the variance of the true error itself, which is typically small, provided n is not too
small.

The problem with using both training and test data is that, in practice, one
often does not usually have available a large enough data set to be able to make
both n and m large enough. For example, in order to get the standard-deviation
bound in (3.39) down to an acceptable level, say 0.05, it would be necessary to use
100 test samples. On the other hand, data sets that contain fewer than 100 over-
all samples are quite common. Therefore, for a large class of practical problems,
where samples are at a premium, holdout error estimation is effectively ruled out.
In such cases, one must use the same data for training and testing.

3.4.2. Resubstitution

One approach is to use all sample data to design a classifier ψn, and estimate εn
by applying ψn to the same data. The resubstitution estimate ε̂Rn is the fraction of
errors made by ψn on the training data:

ε̂Rn =
1
n

n∑
i=1

∣∣Yi − ψn(Xi
)∣∣. (3.41)

This is none other than the apparent error rate mentioned in Section 3.2.3. Re-
substitution is usually low-biased, meaning E[ε̂Rn ] ≤ E[εn]—but not always. For
fixed-partition histogram rules, meaning those that are independent of the sample
size and the data, the resubstitution error estimate is low-biased and its variance is
bounded in terms of the sample size by Var[ε̂Rn ] ≤ 1/n. For small samples, the bias
can be severe. It typically improves for large samples. Indeed, for fixed-partition
histogram rules, E[ε̂Rn] is monotonically increasing. The mean-square error for re-
substitution error estimation for a fixed-partition histogram rule having at most q
cells possesses the bound [18]

E
[∣∣ε̂Rn − εn∣∣2

]
≤ 6q

n
. (3.42)

3.4.3. Cross-validation

With cross-validation, classifiers are designed from parts of the sample, each is
tested on the remaining data, and εn is estimated by averaging the errors. In k-
fold cross-validation, Sn is partitioned into k folds S(i), for i = 1, 2, . . . , k, where for
simplicity, we assume that k divides n. Each fold is left out of the design process and
used as a test set, and the estimate is the overall proportion of errors committed
on all folds:

ε̂CVn,k =
1
n

k∑
i=1

n/k∑
j=1

∣∣Y (i)
j − ψn,i

(
X(i)
j

)∣∣, (3.43)
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where ψn,i is designed on Sn − S(i) and (X(i)
j ,Y (i)

j ) is a sample point in S(i). Pick-
ing the folds randomly leads to random-fold cross-validation. On the other hand,
preselecting which parts of the sample to go into each fold leads to fixed-fold cross-
validation, a nonrandomized error estimator. The process may be repeated, where
several cross-validated estimates are computed, using different partitions of the
data into folds, and the results are averaged. In stratified cross-validation, the classes
are represented in each fold in the same proportion as in the original data. A k-
fold cross-validation estimator is unbiased as an estimator of E[εn−n/k], that is,
E[ε̂CVn,k ] = E[εn−n/k].

A leave-one-out estimator is an n-fold cross-validated estimator. A single ob-
servation is left out, n classifiers are designed from sample subsets formed by leav-
ing out one sample pair, each is applied to the left-out pair, and the estimator ε̂CVn
is 1/n times the number of errors made by the n classifiers (where for notational
ease, we write ε̂CVn instead of ε̂CVn,n ). Note that both fixed-n-fold and random-n-fold
cross-validated estimators coincide with the same nonrandomized LOO estimator.
The estimator ε̂CVn is unbiased as an estimator of E[εn−1], that is, E[ε̂CVn ] = E[εn−1].
A key concern is the variance of the estimator for small n [13]. Performance de-
pends on the classification rule. The mean-square error for LOO error estimation
for a fixed-partition histogram rule possesses the bound [18]

E
[∣∣ε̂CVn − εn

∣∣2
]
≤ 1 + 6e−1

n
+

6√
π(n− 1)

. (3.44)

Comparing (3.42) and (3.44), we can see that
√
n− 1 for LOO estimation as op-

posed to n in the denominator for resubstitution shows greater variance for LOO,
for fixed-partition histogram rules.

To appreciate the difficulties inherent in the LOO bounds, we will simplify
them in a way that makes them more favorable to precise estimation. The per-
formance of ε̂CVn , guaranteed by (3.44), becomes better if we lower the bound. A
lower bound than the one in (3.44) is 1.8/

√
n− 1. Even for this better standard-

deviation bound, the numbers one gets for n = 50 and 100 still exceed 0.5 and
0.435, respectively. So the bound is essentially useless for small samples.

3.4.4. Bootstrap

The bootstrap methodology is a general resampling strategy that can be applied
to error estimation [52]. It is based on the notion of an empirical distribution F∗,
which serves as a replacement to the original unknown feature-label distribution
F. The empirical distribution is discrete, putting mass 1/n on each of the n avail-
able data points. A bootstrap sample S∗n from F∗ consists of n equally likely draws
with replacement from the original sample Sn. Hence, some points may appear
multiple times, whereas others may not appear at all. The probability that a given
point will not appear in S∗n is (1 − 1/n)n ≈ e−1. Therefore, a bootstrap sample of
size n contains on average (1 − e−1)n ≈ (0.632)n of the original points. The basic
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bootstrap error estimator is the bootstrap zero estimator [53], which is defined by

ε̂BZn = EF∗
[∣∣Y − ψ∗n (X

)∣∣ :
(

X,Y
) ∈ Sn − S∗n

]
, (3.45)

where Sn is fixed. The classifier ψ∗n is designed on the bootstrap sample and tested
on the points that are left out. In practice, the expectation is approximated by a
sample mean based on B independent replicates S∗n,b, b = 1, 2, . . . ,B:

ε̂BZn =
∑B

b=1

∑n
i=1

∣∣Yi − ψ∗n,b

(
Xi
)∣∣I(Xi,Yi)∈Sn−S∗n,b∑B

b=1

∑n
i=1 I(Xi,Yi)∈Sn−S∗n,b

. (3.46)

The bootstrap zero estimator is clearly a randomized error estimator. In or-
der to keep the internal variance low, and thus achieve a small overall variance, a
large enough number B of bootstrap samples must be employed. In the literature,
B between 25 and 200 has been recommended. In addition, a variance-reducing
technique is often employed, called balanced bootstrap resampling [54], according
to which each sample point is made to appear exactly B times in the computation.

The bootstrap zero estimator tends to be a high-biased estimator of E[εn],
since the number of points available for design is on average only 0.632n. The
0.632 bootstrap estimator tries to correct this bias by doing a weighted average of
the zero and resubstitution estimators [53]:

ε̂B632
n = (1− 0.632)ε̂Rn + 0.632ε̂BZn . (3.47)

On the other hand, the bias-corrected bootstrap estimator tries to correct for
resubstitution bias. It is defined by

ε̂BBCn = ε̂Rn +
1
B

B∑
b=1

n∑
i=1

(
1
n
− P∗i,b

)∣∣Yi − ψ∗n,b

(
Xi
)∣∣, (3.48)

where P∗i,b is the proportion of times that (Xi,Yi) appears in the bootstrap sample
S∗n,b. This estimator adds to the resubstitution estimator the bootstrap estimate of
its bias.

3.4.5. Bolstering

A quick calculation reveals that the resubstitution estimator is given by

ε̂Rn = EF∗
[∣∣Y − ψn(X

)∣∣], (3.49)

where F∗ is the empirical feature-label distribution. Relative to F∗, no distinction
is made between points near or far from the decision boundary. If one spreads the
probability mass at each point of the empirical distribution, then variation is re-
duced because points near the decision boundary will have more mass on the other

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


U. Braga-Neto and E. R. Dougherty 119

side than will points far from the decision boundary. Hence, more confidence is
attributed to points far from the decision boundary than to points near it.

To take advantage of this observation, consider a probability density function
f �i , for i = 1, 2, . . . ,n, called a bolstering kernel, and define the bolstered empirical
distribution F�, with probability density function given by

f �(x) = 1
n

n∑
i=1

f �i
(

x − xi
)
. (3.50)

The bolstered resubstitution estimator [55] is obtained by replacing F∗ by F� in
(3.49):

ε̂�Rn = EF�
[∣∣Y − ψn(X

)∣∣]. (3.51)

Bolstering may actually be applied to any error-counting estimation proce-
dure; for example, one can define a bolstered leave-one-out (BLOO) estimator [55].
However, in what follows, we focus, for the most part, on the bolstered resubstitu-
tion case.

The following is a computational expression, equivalent to (3.51), for the bol-
stered resubstitution estimator:

ε̂�Rn = 1
n

n∑
i=1

(
Iyi=0

∫
A1

f �i
(
x − xi

)
dx + Iyi=1

∫
A0

f �i
(
x − xi

)
dx

)
. (3.52)

The integrals are the error contributions made by the data points, according to
whether yi = 0 or yi = 1. The bolstered resubstitution estimate is equal to the
sum of all error contributions divided by the number of points. If the classifier is
linear, then the decision boundary is a hyperplane and it is usually possible to find
analytical expressions for the integrals, for instance, for Gaussian bolstering; oth-
erwise, Monte Carlo integration can be employed, and experience shows that very
few Monte Carlo samples are necessary. See Figure 3.6 for an illustration, where
the classifier is linear and the bolstering kernels are uniform circular distributions
(note that the bolstering kernels need not have the same variance). The samples in
this example correspond to a subset of the cancer data used in Section 3.2.5 (the
linear classifier in Figure 3.6 was obtained via LDA).

A key issue is choosing the amount of bolstering, that is, the kernel variances.
Since the purpose of bolstering is to improve error estimation in the small-sample
setting, we do not want to use bolstering kernels that require complicated infer-
ences. Hence, we consider zero-mean, spherical bolstering kernels with covari-
ance matrices of the form σiI. The choice of the parameters σ1, σ2, . . . , σn deter-
mines the variance and bias properties of the corresponding bolstered estimator.
If σ1 = σ2 = · · · = σn = 0, then there is no bolstering and the bolstered estimator
reduces to the original estimator. As a general rule, larger σi lead to lower-variance
estimators, but after a certain point, this advantage is offset by increasing bias.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


120 Classification

+ +

+ +

+

++

+

+
+

Figure 3.6. Bolstered resubstitution for linear classification, assuming uniform circular bolstering ker-
nels. The bolstered resubstitution error is the sum of all contributions (shaded areas) divided by the
number of points.

We wish to select σ1, σ2, . . . , σn to make the bolstered resubstitution estimator
nearly unbiased. One can think of (X,Y) in (3.1) as a random test point. Given
Y = k, this test point is at a “mean distance” δk from the data points belonging to
class k, for k = 1, 2. Resubstitution tends to be optimistically biased because the
test points in (3.41) are all at distance zero from the training data. Since bolstered
resubstitution spreads the test points, the task is to find the amount of spreading
that makes the test points to be as close as possible to the true mean distance to
the training data points.

The mean distance δk can be approximated by the sample-based estimate

δ̂k =
∑n

i=1 min j�=i
{∥∥xi − x j

∥∥}Iyi=k∑n
i=1 Iyi=k

. (3.53)

This estimate is the mean minimum distance between points belonging to class
Y = k.

Rather than estimating a separate bolstering kernel standard deviation for
each sample point, we propose to compute two distinct standard deviations τ1

and τ2, one for each class, based on the mean-distance estimates δ1 and δ2 (this
limits the complexity of the estimation problem, which is advantageous in small-
sample settings). Thus, we let σi = τk, for yi = k. To arrive at estimates for τ1 and
τ2, let D be the random variable giving the distance to the origin of a randomly
selected point from a unit-variance bolstering kernel, and let FD be the probability
distribution function forD. In the case of a bolstering kernel of standard deviation
τk, all distances get multiplied by τk, so if D′ is the distance random variable for
this more general case, then FD′(x) = FD(x/τk). For the class Y = k, the value of
τk is to be chosen so that the median distance of a random test point to the origin

of the bolstering kernel of standard deviation τk is equal to the mean-distance δ̂k,

the result being that half of the test points will be farther from the origin than δ̂k,
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and the other half will be closer. A little reflection shows that τk is the solution
of the equation F−1

D′ (0.5) = τkF
−1
D (0.5) = δ̂k, so that the final estimated standard

deviations for the bolstering kernels are given by

σi = δ̂k
F−1
D (0.5)

for yi = k. (3.54)

Note that, as the number of samples in the sample increases, δ̂k decreases, and
therefore so does σi. This is the expected behavior in this case, since plain resub-
stitution tends to be less biased as the number of samples increases. Note also that
the denominator F−1

D (0.5) may be viewed as a constant dimensionality correction
factor (being a function of the number of dimensions through D), which can be
precomputed and stored offline.

We mention that, when resubstitution is heavily low-biased, it may not be a
good idea to spread incorrectly classified data points, as that increases optimism
of the error estimator (low bias). Bias is reduced by letting σi = 0 (no bolstering)
for incorrectly classified points. The resulting estimator is called the semi-bolstered
resubstitution estimator [55].

3.4.6. Error-estimation performance

We now illustrate the small-sample performance of several of the error estimators
discussed in the previous subsections by means of simulation experiments based
on synthetic data (see also [13, 55]). We consider resubstitution (resub), leave-
one-out (LOO), stratified 10-fold cross-validation with 10 repetitions (CV10r),
the balanced 0.632 bootstrap (b632), Gaussian bolstered resubstitution (bresub),
Gaussian semibolstered resubstitution (sresub) and Gaussian BLOO. The number
of bootstrap samples is B = 100, which makes the number of designed classifiers be
the same as for CV10r. We employ three classification rules; in order of complex-
ity, LDA, 3NN, and CART. For LDA, the bolstered estimators are computed using
analytical formulas developed in [55]; for 3NN and CART, Monte Carlo sampling
is used—we have found that only M = 10 Monte Carlo samples per bolstering
kernel are adequate, and increasing M to a larger value reduces the variance of the
estimators only slightly.

The experiments assess the empirical distribution of εn− ε̂n for each error esti-
mator ε̂n. This distribution measures the difference between the true error and the
estimated error of the designed classifier. Deviation distributions are from 1000
independent data sets drawn from several models. The synthetic model for LDA
consists of spherical Gaussian class-conditional densities with means located at
(δ, δ, . . . , δ) and (−δ,−δ, . . . ,−δ), where δ > 0 is a separation parameter that
controls the Bayes error. The synthetic model for 3NN and CART corresponds to
class-conditional densities given by a mixture of spherical Gaussians, with means
at opposing vertices of a hypercube centered at the origin and side 2δ. For in-
stance, for d = 5, the class-conditional density for class 0 has means at (δ, δ, δ, δ, δ)
and (−δ,−δ,−δ, δ,−δ), and the class-conditional density for class 1 has means at
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Table 3.1. Twelve experiments used in the simulation study.

Experiment Rule d δ σ1 σ2 Bayes error

1 LDA 2 0.59 1.00 1.00 0.202

2 LDA 2 0.59 1.00 4.00 0.103

3 LDA 5 0.37 1.00 1.00 0.204

4 LDA 5 0.37 1.00 2.16 0.103

5 3NN 2 1.20 1.00 1.00 0.204

6 3NN 2 1.20 1.00 5.20 0.103

7 3NN 5 0.77 1.00 1.00 0.204

8 3NN 5 0.77 1.00 2.35 0.105

9 CART 2 1.20 1.00 1.00 0.204

10 CART 2 1.20 1.00 5.20 0.103

11 CART 5 0.77 1.00 1.00 0.204

12 CART 5 0.77 1.00 2.35 0.105

(δ,−δ, δ,−δ, δ) and (−δ, δ,−δ, δ,−δ). In all cases, there are equal a priori class
probabilities.

Table 3.1 lists the parameters for the twelve experiments considered in this
study, corresponding to choices among the three classification rules, for various
separations δ between the class means, low or moderate dimensionality d, and
equal or distinct standard deviations σ1 and σ2 for the class-conditional densities.
The parameters were chosen so as to give Bayes error of about 0.1 in half of the
cases and about 0.2 in the other half. These are difficult models, with considerable
overlapping between the classes (even in the cases where the Bayes error is 0.1)
owing to large discrepancy in variance between the classes, not to actual separation
between the means.

Plots of beta-density fits of the empirical deviation distribution for sample size
n = 20 are displayed in Figures 3.7, 3.8, and 3.9 (see [55] and its companion web-
site for the complete results of this simulation study). Note that the narrower and
taller the distribution, the smaller the variance of the deviation, whereas the closer
its mean is to the vertical axis, the more unbiased the error estimator is. We can
see that resubstitution, LOO, and even 10-fold cross-validation are generally out-
performed by the bootstrap and bolstered estimators. Bolstered resubstitution is
very competitive with the bootstrap, in some cases outperforming it. For LDA, the
best estimator overall is bolstered resubstitution. For 3NN and CART, which are
classifiers known to overfit in small-sample settings, the situation is not so clear.
For 3NN, we can see that bolstered resubstitution fails in correcting the bias of
resubstitution for d = 5, despite having small variance (note that it is still the best
overall estimator for 3NN in Experiment 5). For CART, the bootstrap estimator
is affected by the extreme low-biasedness of resubstitution. In this case, bolstered
resubstitution performs much better than in the 3NN case, but the best overall
estimator is the semibolstered resubstitution. The BLOO is generally much more
variable than the bolstered resubstitution estimators, but it displays much less bias.
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Figure 3.7. Beta fits to empirical deviation distribution for LDA and n = 20. (a) Experiment 1, (b) ex-
periment 2, (c) experiment 3, and (d) experiment 4.

Computation time can be critical. We have found that resubstitution is by far
the fastest estimator, with its bolstered versions coming just behind. LOO and its
bolstered version are fast for a small number of samples, but performance quickly
degrades with an increasing number of samples. The 10-fold cross-validation and
the bootstrap estimator are the slowest estimators. Bolstered resubstitution can
be hundreds of times faster than the bootstrap estimator (see [55] for a listing of
timings).
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Figure 3.8. Beta fits to empirical deviation distribution for 3NN and n = 20. (a) Experiment 5, (b) ex-
periment 8, (c) experiment 7, and (d) experiment 9.

We close this subsection with some comments on error estimation and the
measurement of feature-set performance. Given a large number of potential fea-
ture sets, one may wish to rank them according to the performances of their op-
timal classifiers, which in practice means the performances of their designed clas-
sifiers. A recent study has addressed the impact of error estimation on feature se-
lection [56]. The experiments indicate that the considered feature-selection algo-
rithms can perform close to optimal (full search with true error) when the true
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Figure 3.9. Beta fits to empirical deviation distribution for CART and n = 20. (a) Experiment 9, (b) ex-
periment 10, (c) experiment 11, and (d) experiment 12.

error is employed in feature selection. With large samples, many error-estimation
procedures work quite well so that one has good estimates of the true error; how-
ever, this is not the case with small samples. The study uses two performance
measures for feature selection: comparison of the true error of the optimal fea-
ture set with the true error of the feature set found by a feature-selection algo-
rithm, and the number of features among the truly optimal feature set that appear
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in the feature set found by the algorithm. The study considers seven error esti-
mators applied to three standard suboptimal feature-selection algorithms and ex-
haustive search, and it considers three different feature-label model distributions.
It draws two conclusions for the cases considered: (1) depending on the sample
size and the classification rule, feature-selection algorithms can produce feature
sets whose corresponding classifiers possess errors far in excess of the classifier
corresponding to the optimal feature set; and (2) for small samples, differences
in performances among the feature-selection algorithms appear to be less signifi-
cant than performance differences among the error estimators used to implement
the algorithms. Moreover, keeping in mind that results depend on the particular
classifier-distribution pair, for the error estimators used in the study, bootstrap
and bolstered resubstitution usually outperform cross-validation, and bolstered
resubstitution usually performs as well as or better than bootstrap.
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4
Clustering: revealing intrinsic
dependencies in microarray data

Marcel Brun, Charles D. Johnson, and Kenneth S. Ramos

4.1. Introduction

Informal definitions for clustering can be found in the literature: the process of
“unsupervised classification of patterns into groups” [1], the act of “partitioning
of data into meaningful subgroups” [2], or the process of “organizing objects into
groups whose members are similar in some way” [3]. In the context of pattern
recognition theory, the objects are represented by vectors of features (the mea-
surements that represent the data), called patterns. With these concepts in mind,
clustering can be defined as the process of partitioning the vectors into subgroups
whose members are similar relative to some distance measure. Therefore, two key
questions that must be addressed prior to cluster implementation are about the
distance to be used to measure the similarity of the objects and how to form the
partitions that best group together these objects.

The answer to the first question depends on each particular problem where
clustering is applied. The distance between patterns should reflect the relation that
is considered significant for the analysis. The rationale for each distance measure
will be addressed in this chapter. The second question relates to computational
efficiency considerations and criteria to evaluate the quality of clustering. This too
is dependent on the question being proposed.

The chapter is divided into four sections with several examples at the end. The
section on Clustering Microarray Data introduces the application of clustering to
microarray data, illustrating the practical aspects of these techniques. Measures of
Similarity develops the topic of distance measures. The next section, Clustering
Algorithms, presents the implementation of popular algorithms and their appli-
cability to microarray data analysis. Lastly, the final section, Interpretation and
Validation, discusses the available procedures to measure the validity of the result-
ing partitions, showing several examples of clustering applied to microarray data
to solve specific biological questions.

4.2. Clustering microarray data

Data clustering has been used for decades in image processing and pattern recog-
nition [4], and in the last several years it has become a popular data-analysis
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technique in genomic studies using gene-expression microarrays [5, 6, 7, 8]. Each
microarray provides expression measurements for thousands of genes, and cluster-
ing is a useful exploratory technique to analyze gene-expression data as it groups
similar genes together and allows biologists to identify potentially meaningful re-
lationships between them and to reduce the amount of information that must be
analyzed. The function of genes could be inferred through “guilt by association”
or appearance in the same cluster. Genes clustered together could have related
functions or be coregulated (as demonstrated by other evidence such as common
promoter regulatory sequences and experimental verification). Often, there is the
additional goal of identifying a small subset of genes that are most diagnostic of
sample differences. Time-series clustering groups together genes whose expression
levels exhibit similar behavior through time, with similarity considered suggestive
of possible coregulation. Another common use of cluster analysis is the grouping
of samples (arrays) by relatedness in expression patterns. The expression pattern
is effectively a complex phenotype and cluster analysis is used to identify samples
with similar and different phenotypes. In medical research, this approach allows
the discrimination between pathologies based on differential patterns of gene-
expression, rather than relying on traditional histological methods. For instance,
Eisen et al. [5] used cluster analysis to identify genes that show similar expression
patterns over a wide range of experimental conditions in yeast, and Alizadeh et al.
[9] used cluster analysis to identify subsets of genes that show different expression
patterns between different types of cancers.

The main assumption underlying unsupervised cluster analysis for gene-
expression data is that genes that belong to the same biological process, and genes
in the same pathway, would have similar expression over a set of arrays (be it time
series or condition dependent). A large number of papers have been published de-
scribing algorithms for microarray data clustering [5, 10, 11, 12], but a few analyze
the relationship between the algorithms and the information that is supposed to
be derived from the analysis [13]. To better understand this problem, we can sep-
arate the use of clustering algorithms in microarray data analysis into two areas:
visualization and class discovery.

4.2.1. Notation

The microarray data for a set of m experiments S1, . . . , Sm and n genes g1, . . . , gn is
usually represented by a two-dimensional matrix M, where the value M(i, j) rep-
resents the expression level of gene gi for the sample Sj . Each gene gi corresponds
to a row on the matrix M, and for simplicity of notation it can be represented by a
vector xi = (xi1, . . . , xim), where each value xi j , j = 1, . . . ,m, represents the expres-
sion of the gene gi for the sample Sj . A sample Sj corresponds to a column within
the matrix M, and may be represented by vectors X j = (X1 j , . . . ,Xnj), where each
value Xij , i = 1, . . . ,n, represents the expression of the gene gi for the sample Sj .

The expression of the gene gi in the sample Sj may be represented alternatively
by M(i, j), xi j , or Xij . When the context is clear, the notation can be loosened,
and genes and samples can be represented by vectors x = (x1, . . . , xm) and X =
(X1, . . . , Xn), respectively.
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A sample may represent different subjects. In some cases, the values X j asso-
ciated to the sample Sj may represent the intensity of one of the two fluorophores
in cDNA array, or the intensity of only the single channel for an Affymetrix-type
array. It may also represent the ratio of the intensities for two fluorophores on one
array, or the ratio of the intensities of two single channel arrays. In some cases,
a logarithmic transformation is applied, and X j represents the logarithm of the
values.

A cluster is sets of objects, which may be genes, C = {gi1, . . . , gik}, or samples,
C = {Sj1, . . . , Sjk}, depending on the type of analysis. A clustering of the data is a
partition C = {C1, . . . ,CK} of the objects into K clusters. Each object belongs to
one and only one set Ch with h = 1, . . . ,K . In an abuse of notation, sometimes a
gene gi will be denoted by its expression vector xi, and a sample Sj will be denoted
by its expression vector X j . In that way, the expression “xi ∈ C” means really “gi ∈
C.” When the partition is of physical origin, thus representing the true clustering
of the data, the sets are referred to as classes instead of clusters. For example, genes
may be originally classified, thus partitioned, based on their role in the cell, as
defined in the Gene Ontology Consortium [14].

4.2.2. Visualization

DNA microarrays are used to produce large sets of expression measurements and
require efficient algorithms for visualization. Heat maps are used to represent
thousands of values in a combined fashion. Most microarray experiments are used
to study the relationship between biological samples, looking for genes that are
differentially expressed. If Xi and Yi represent the expression of the gene gi in two
different samples SX and SY , then the ratio Ti = Xi/Yi between the two values
gives the measure of difference between the two samples for gene gi. For example,
Ti = 2 indicates that gene gi is expressed twice as high in sample SX than in sample
SY . A problem that arises with the use of ratios is that their interpretation is not
symmetrical, that is, if gene gi is twice as high in SY than in SX , then Ti = 0.5. This
limitation is commonly solved by applying a base 2 logarithm transformation to
the ratio, so that equivalent fold changes in either direction have the same absolute
value. In the previous example, log2(2) = 1 and log2(0.5) = −1, and the values are
directly comparable. In addition, logarithmic transformation yields a near normal
distribution of values which aids in subsequent statistical analyses [15].

The first efficient way to visualize microarray data [5] uses a 2-color represen-
tation, red for up-regulated genes, where the log of the ratio is positive, and green
for down-regulated genes, where the log of the ratio is negative. The visualization
consists of a matrix of colored cells, where each column represents a sample and
each row represents a gene, and the brightness of the cell is proportional to the log
of the ratio (Figure 4.1a). This visualization is usually accompanied by the name
of the genes and the name of the samples, and it helps to visually identify different
expression patterns.

A great improvement of the resulting image involves the ordering of the genes,
so that ones with similar profile (i.e., the same expression pattern across the
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(a) (b)

Figure 4.1. Visualization of gene-expression: (a) unordered, (b) ordering by hierarchical clustering.

samples) are placed together. This is clearly a task for clustering algorithms, and
the hierarchical algorithm, to be defined in the next section, is usually selected
because it creates a natural ordering of the genes based on a measure of similar-
ity. Figure 4.1b shows how three common patterns are immediately revealed once
the genes are sorted by proximity using hierarchical clustering based on Euclidean
distance between the profiles. Clustering can also be applied to the samples to vi-
sualize common patterns of gene signatures (the expression pattern for a sample
across the genes). Finally, the genes and the samples can be sorted in a combined
fashion, by simultaneous clustering of both genes and conditions. This approach
allows a clear visualization of similarity in gene-expression based on a sub-subset
of attributes or samples. Another way to visually display the data based on clus-
tering analysis was presented by Rougemont and Hingamp [16], where network
analysis techniques are combined with correlation-based clustering to study DNA
microarray data.

4.2.3. Class discovery

Gene-expression profiles refer to the expression values for a particular gene across
various experimental conditions (or many genes under a single experimental con-
dition). It is a key step in the analysis to reveal the responsiveness of genes (profil-
ing), and discovering new classes of genes for classification (taxonomy).

These approaches are limited by the large number of variables (or genes), lim-
ited sample sizes, limited knowledge of the complete function of many genes, and
the lack of knowledge of the underlying classes or subclasses.

In this process, clustering techniques may be used to identify unrecognized tu-
mor subtypes, clustering algorithms are applied to the data to group the samples,
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based on similarity of gene-expression. If an initial partition agrees with prior bio-
logical understanding, further refining (subpartitions) may reveal unknown sub-
classes, for example, in cancer [9, 17, 18, 19, 20]. The discovery of new classes can
then be used as input for the supervised training of a classifier, after biological
analysis of the validity of the new classes.

4.3. Clustering algorithms

4.3.1. Measures of similarity

A key concept in all clustering algorithms is the similarity between the objects to be
grouped. Once the objects (genes or samples) are represented as vectors in a high-
dimensional space (vectors x or X, resp.), the concept of similarity is naturally
based on distances between the vectors. If two objects are similar, it is expected
that their vector representations are also similar, so the distance between them
should be small. The distance between two vectors x and y is usually denoted by
d(x, y). A brief list of distance measures include the Euclidean distance, defined by

d(x, y) =
√√√√ m∑

i=1

(
xi − yi

)2
, (4.1)

where x and y are the vectors of length m, representing two objects. The Euclidean
distance is a particular form of the more general distance measures and can be
represented in the form

d(x, y) =
( m∑

i=1

(
xi − yi

)p)1/p

, (4.2)

for p = 2. The case when p = 1 gives the city-block metric

d(x, y) =
m∑
i=1

∣∣xi − yi
∣∣. (4.3)

Distance measures can be replaced by similarity functions. Some of the usual
functions are the Pearson’s correlation

ρ(x, y) =
∑m

i=1

(
xi − x

)(
yi − y

)
√∑m

i=1

(
xi − x

)2∑m
i=1

(
yi − y

)2
, (4.4)

where x and y are the average values of the vectors x and y, respectively, and the
noncentered Pearson’s correlation

ρ′(x, y) =
∑m

i=1

(
xi
)(
yi
)

√∑m
i=1 x

2
i

∑m
i=1 y

2
i

(4.5)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


134 Clustering: revealing intrinsic dependencies in microarray data

that represents the cosine of the angle between the two vectors [21]. Some algo-
rithms can use both distance measures and similarity functions.

When the algorithm does not allows the use of similarity functions, they can
be converted to dissimilarity functions (that may be nonmetric) via simple trans-
formation. For example, the Pearson’s correlation is constrained always in the
range [−1, 1], allowing it to be transformed in a dissimilarity function via two
transforms d1(x, y) = 1− ρ(x, y) and d2(x, y) = 1− |ρ(x, y)|. In the first case, the
distances are in the range [0, 2], and vectors whose values are directly or inversely
related have a large distance. In the second case, the range is [0, 1], and vectors
whose values are inversely related have a small distance. Other measures of simi-
larity can be used; depending on the underlying assumption of what the meaning
of similarity is.

The selection of a measure of similarity should be based on two considera-
tions: the clustering algorithm and the biological meaning of the word “close.” As
an example, correlation-based distance may bring together genes whose expression
is different, but have a similar behavior, and which would be considered “different”
by Euclidean distance. Some algorithms, like hierarchical, allow one to use any dis-
tance measure, but others are strongly related to a specific distance. The k-means
algorithm, for example, minimizes the Euclidean distance between the vectors and
the centroids of the clusters.

4.3.2. Preprocessing

Preprocessing of the data is an important step prior to clustering. The large num-
ber of genes present in a microarray experiment may be excessive for application
of some algorithms with limited resources. As many of the algorithms are based on
Euclidean distance between samples, the first step should consist of normalization
to avoid samples with the larger dynamic range to take over the process. A good
review of normalization of microarray data can be found in [22]. A second step is
the removal of all genes that show low variation across samples, which may affect
negatively the clustering process.

Researchers may be tempted to apply principal component analysis (PCA) to
reduce the dimensionality of the data prior to clustering, but it is not proved to
improve the results. It has been suggested that (a) the quality of the clusters is not
necessarily higher with PCA than with the whole dataset and (b) in most cases the
first principal components does not yield the best clusters [23].

4.3.3. Clustering

A way to classify the clustering algorithms is based on how the algorithm forms
the groups: hierarchical algorithms work on successive splitting (divisive clustering)
or merging (agglomerative clustering) of the groups, depending on a measure of
distance or similarity between objects, to form a hierarchy of clusters, while parti-
tioning algorithms search for a partition of the data that optimizes a global measure
of quality for the groups, usually based on distance between objects. Hierarchical
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Figure 4.2. A basic taxonomy of clustering algorithms.
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Figure 4.3. Hierarchical tree resulting from clustering.

algorithms are also classified by the way the distances or similarities are updated
(linkage) after splitting or merging of the groups, which has a great influence on
the resulting clustering. Hierarchical algorithms can generate partitions of the data
as well, and are extensively used for this purpose, because each level of the hierar-
chy is a partition of the data.

Another way to classify the algorithms is based on their output: in hard clus-
tering the output is a partition of the data, while in soft (i.e., fuzzy) clustering the
output is a membership function, so each pattern can belong to more than one
group, with some degree of membership. A fuzzy cluster defines naturally a parti-
tion of the data, defined by the maximum membership of each object. The quality
of a clustering algorithm is often based on its ability to form meaningful partitions,
Figure 4.2 shows a simple taxonomy of clustering algorithms.

The selection of a particular algorithm should be strongly related to the prob-
lem at hand. Each algorithm has its own strengths and weaknesses, and is better
adapted to a particular task. For example, hierarchical clustering algorithms are
extremely powerful for exploratory data analysis because it does not need prior
specification of the number of clusters, and their outputs can be visualized as a
tree structure, called a dendrogram (Figure 4.3). On the other hand, when using
partitioning techniques, the groups are usually defined by a representative vector,
simplifying the description of the resulting clusters (Figure 4.4).
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Figure 4.4. Centers of the clusters for a partitioning clustering (k-means).

Most of the partitioning algorithms are based on the minimization of an
objective function that computes the quality of the clusters. The most common
objective function is the squared error to the centers of the clusters. Let C =
{C1, . . . ,CK} be a clustering of the data, and let µk be a vector representing the
center of the cluster Ck, for k = 1, . . . ,K . The objective function J is defined by

J =
K∑
k=1

∑
x∈Ck

∥∥x − µk
∥∥2
. (4.6)

The objective function J is the average square distance between each point
and the center of the cluster where the point belongs. It can be interpreted also as
a measure of how good the centers µk are as representatives of the clusters. One
limitation of this objective function is the need of a cluster center to represent the
points. Usually for this objective function, the centers are defined as the average of
all points in the group

µk = 1
nk

∑
x∈Ck

x, (4.7)

where nk is the number of points in cluster Ck. The objective function can be
simplified, and made explicitly dependent only on the points and not the centers,
by

J = 1
2n2

K∑
k=1

nk
∑

x,x′∈Ck

‖x− x′‖2. (4.8)

In the last equation, the objective function J depends only on the square dis-
tance between the points in the clusters, and there is no need to compute their
centers. The second sum can be considered as a measure of tightness of the clus-
ters, and can be replaced by measures better suited for a particular problem [21].
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Partitioning algorithms, based on the minimization of an objective, suffer two
major drawbacks. The first is that they work well with similar size compact clus-
ters, but often fail when the shape of the cluster is more complex, or when there is
a large difference in the number of points between clusters. The second drawback
is that the objective function decreases as a function of the number of clusters in a
nested sequence of partitions (a new partition is obtained by splitting in two one
cluster from the previous partition). Given this property, the best partitioning of
the data would be when K = n clusters and each point is a cluster by itself. To
address this problem, either the number of classes must be known beforehand, or
some additional criteria must be used that penalizes partitions with large numbers
of clusters.

The objective function is only a measure of the quality of a partition of the
data. The naive way to find the best partition is to compute the objective function
for all possible partitions, and select the one that has a minimum value of objective
function. The number of possible partitions grows exponentially with n, the size of
the set, so it is unfeasible except for very small problems. The most often used ap-
proach is iterative approximation, starting with an initial partition and modifying
it iteratively while reducing the objective function.

4.3.4. k-means

One of the most common iterative algorithms is the k-mean algorithm, broadly
used because of its simplicity of implementation, its convergence speed, and the
usually good quality of the clusters (for a limited family of problems).

The algorithm is presented with a set of n vectors x1, . . . , xn and a number K
of clusters, and computes the centroids µ1,µ2,µ3, . . . ,µk, that minimizes the ob-
jective function J. One of the most used implementations of the algorithm, called
Forgy’s cluster algorithm, starts with a random election for the centroids, and then
repeatedly assigns each vector to the nearest centroid and updates the centroids po-
sitions, until convergence is reached, when the update process does not change the
position of the centroids. The procedure can be done in batch or iteratively. In the
first case all the vectors are assigned to a centroid before the update is completed.
In the second part, the centroids are updated after each assignment is made. Some
variations of the algorithms have been described by Duda et al. [21], Gose et al.
[24], and Theodoridis and Koutroumbas [25].

k-means is one of the simplest algorithms known to perform well with many
datasets, but its good performance is limited mainly to compact groups. When
the points are drawn from a mixture of Gaussians, the k-means algorithm is in-
deed a gradient descent algorithm that minimizes the quantization error [26]. As
with many gradient descent algorithms, one drawback of the k-means algorithm
is that it can reach a local minimum of the objective function, instead of the de-
sired global minimum, meaning that convergence is reached but the solution is
not optimal. As an example, there may be cases where the clusters are compact
and well separated, but the algorithm is not able to separate them, usually because
the starting points were inconveniently placed. Figure 4.5 shows an example where
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Figure 4.5. Example of k-means for two variables: x1 and x2. (a) When there is some dispersion in the
groups; the centers of the cluster are able to skip to the right groups. (b) Tighter clusters impede the
algorithm to work well, stopping at a local minimum of the objective function.

k-means performs better on disperse sets than in large ones. In Figure 4.5a the fi-
nal position of the centroids is placed. An analysis of this problem is presented
in [27]. One way to overcome this problem is by running the algorithm multiple
times, with different random seeds, and then selecting the partition that appears
with most frequency.

4.3.5. Fuzzy c-means

In the k-means algorithm, each vector is classified as belonging to a unique clus-
ter (hard cluster), and the centroids are updated based on the classified samples.
In a variation of this approach, known as fuzzy c-means, all vectors have a degree
of membership (or a probability) of belonging to each cluster, and the respective
centroids are calculated based on these probabilities. Let P(ωk|xi) be the probabil-
ity of the ith vector belonging to the kth cluster, it can be estimated from the data,
based on the distances dik = d(xi,µk) and a constant parameter b that controls the
“fuzziness” of the process (Duda et al. [21]):

P
(
ωk|xi

) =
(
1/dik

)1/(b−1)

∑K
r=1

(
1/dir

)1/(b−1) . (4.9)

Unlike the k-mean algorithm, where the center for each cluster is computed
as the average of the vectors in that cluster, in fuzzy c-means the center µk of the
kth cluster is calculated as a weighted average, using the probabilities as weights,

µk =
∑n

i=1

[
P
(
ωk|xi

)]b
xi∑n

i=1

[
P
(
ωk|xi

)]b . (4.10)
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As with k-means clustering, the process of assigning vectors to centroids and
updating the centroids is repeated until convergence is reached.

4.3.6. Hierarchical clustering

Hierarchical clustering creates a hierarchical tree of similarities between the vec-
tors, called a dendrogram. The most common implementation of this strategy is
agglomerative hierarchical clustering, which starts with a family of clusters with
one vector each, and merges the clusters iteratively based on some distance mea-
sure until there is only one cluster left, containing all the vectors. For a problem
with n objects to be clustered, the algorithm starts with n clusters containing only
one vector each, Ci = {xi}, i = 1, 2, . . . ,n. The initial distance between each pair of
clusters is defined by the distance between their elements d(Ci,Cj) = d(xi, x j). The
algorithm repeatedly merges the two nearest clusters, and updates all the distances
relative to the newly formed cluster, until there is only one cluster left, containing
all the vectors.

Figure 4.6 shows an example of the complete process applied to 5 genes and
3 experiments (5 vectors of length 3). Initially there are 5 clusters, C1, . . . ,C5, each
one containing one gene (Figure 4.6a). In the first step, as each cluster contains
only one element, the distance between the clusters is defined as the Euclidean
distances between the vectors that belong to them. The closest vectors are genes 1
and 4, so they are merged into a new cluster C14, (Figure 4.6b). To continue the
process, the distances between the unchanged clusters and the new cluster C14 are
computed as function of their distance to C1 and C4. There is a need to compute
the distances d(C2,C14), d(C3,C14), and d(C5,C14). Distances between nonchang-
ing clusters (in this instance, genes 2, 3, and 5) do not need to be updated. Based
on the new distances, a new pair of nearest clusters is selected. In this case clusters
C3 and C5 are merged into a new cluster C35 (Figure 4.6c), and the new distances
are computed for this new cluster relative to the unchanged clusters C14 and C2. In
the new set of distances, the nearest clusters are C2 and C14, so they are merged into
a new cluster C124 (Figure 4.6d). Finally, the two remaining clusters, C35 and C124,
are merged into a final cluster, C12345, that includes all five genes (Figure 4.6e).
The dendrogram tree (Figure 4.6f) resumes the whole process. The length of the
horizontal lines indicates the distance between the clusters.

The process does not define a partition of the system, but a sequence of nested
partitions C1 = {C1,C2,C3,C4,C5}, C2 = {C14,C2,C3,C5}, C3 = {C14,C2,C35},
C4 = {C124,C35}, and C5 = {C12435}, each partition containing one cluster less
than the previous partition. To obtain a partition with K clusters, the process must
be stopped K steps before the end. For example, stopping the process before the
last merging (K = 2) will result in two clusters, C124 and C35 (Figure 4.6f). In the
previous example, the distance between an existing cluster and a newly formed
cluster was computed as the average distance between the vectors of both clusters.
This is one way to update the distances, and a key point in the implementation
because different updates lead to different results. Three common ways to update
the distances are called single, complete, and average linkages.
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Figure 4.6. Example of agglomerative clustering using complete linkage.

(i) In single linkage, when two clusters are joined into a new cluster Ci, the
distance between Ci and an existing cluster Cj is the minimum distance between
the elements of Ci and Cj ,

d
(
Ci,Cj

) = min
x∈Ci, y∈Cj

(
d(x, y)

)
. (4.11)
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(ii) In complete linkage, when two clusters are joined into a new cluster Ci, the
distance between Ci and an existing cluster Cj is the maximum distance between
the elements of Ci and Cj ,

d
(
Ci,Cj

) = max
x∈Ci, y∈Cj

(
d(x, y)

)
. (4.12)

(iii) In average linkage, when two clusters are joined into a new group Ci, the
distance between Ci and an existing cluster Cj is the average distance between the
elements of Ci and Cj ,

d
(
Ci,Cj

) = 1
ninj

∑
x∈Ci, y∈Cj

d(x, y), (4.13)

where ni and nj are the number of elements of clusters Ci and Cj , respectively.
Different linkages lead to different partitions, so that the selection of the link-

age must be determined by the type of data to be clustered. For instance, complete
and average linkages tend to build compact clusters, while single linkage is capable
to build clusters with more complex shapes, but is more likely to be affected by
spurious data.

Figure 4.7 shows an example of the differences obtained with different link-
ages. Figures 4.7a and 4.7b show the result of partitioning a set of points set in
three subsets using Euclidean-distance-based hierarchical clustering for complete
and single linkages, respectively. Clearly, the single linkage was not able to properly
separate the groups, leaving one cluster with only one point (upper left corner).
On the other hand, Figures 4.7c and 4.7d show the results of the same two al-
gorithms over a different dataset with two visible classes. In this case, given the
nonround shape of one of the groups, complete linkage fails to properly identify
the classes (Figure 4.7c), while single linkage performs the task properly (Figure
4.7d).

4.3.7. MCLUST

MCLUST [2, 11, 28] is a clustering algorithm that assumes that the data is a mix-
ture of multivariate normal distributions, one for each cluster k = 1, . . . ,K , with
mean values µk and covariance matrices Σk. The covariance matrices can be de-
composed in terms of their eigenvalue decomposition

Σk = λkDkAkD
t
k. (4.14)

The CLUST algorithm estimates the parameters using the expectation maxi-
mization (EM) algorithm. The estimation is done in a two-step process similar to
k-means clustering. In the first step the probabilities are estimated conditioned to
the actual parameters, assigning each vector to one cluster (model), while in the
second step the parameters of the models are estimated within the new clusters.
The process is iterated until there is no more significant change in the parameters.
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Figure 4.7. (a) and (c) Complete linkage. (b) and (d) Single linkage.

The result is an estimated set of K multivariate distributions, each one defining a
cluster, and each vector assigned to the cluster with maximum conditional prob-
ability. Different assumptions on the model result in different constraints on the
covariance matrices.

(i) Equal volume spherical: Σk = λId (where Id is the identity matrix). The
covariance matrices are all identical, diagonal, with the same value in the diagonal.
The Gaussians are spherical.

(ii) Unequal volume spherical: Σk = λkId. The covariance matrices are all
diagonal with the same value in the diagonal, but they can be different. The Gaus-
sians are spherical, but they may have different volumes.

(iii) Elliptical: Σk = λDADt. Each Gaussian is elliptical, but all have the same
volume, shape, and orientation.

(iv) Unconstrained: there is no constraint for Σk. The Gaussians may have
elliptical shape and different volumes.

Less constraints in the covariance matrices allow more flexibility to the model,
but at the cost of more parameters to be estimated, which can increase the number
of samples needed for a good estimation.

4.3.8. Graph-based algorithms

Another approach to clustering is based on graph theory. In this context, a cluster-
ing C = {C1, . . . ,CK} is represented by a weighted graph (V ,ω), where the vertices
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in V are the elements to be clustered and the weights ω(x, y) indicate the similarity
between the elements x and y. The clustering problem consists in the specification
of a graph (V ,E), where the edges are based on ω, and such that highly similar
elements belong to the same subgraph and dissimilar elements belong to different
subgraphs [29].

Hartuv and Shamir [30] present a graph algorithm called highly connected
subgraphs (HCS). The algorithm starts with the full graph G = (V ,E), where the
edges are defined by the pairs (x, y) such thatω(x, y) is greater than some threshold
t, and identify HCS using minimum cuts recursively. The process can be resumed
in the following steps:

(i) if G is highly connected,
(a) return G as a cluster

(ii) if G is not highly connected,
(a) find minimum cut for G and split it in subgraphs H1, H2,
(b) process H1,
(c) process H2,

where a graph is considered highly connected if the edge connectivity (minimum
number of edges that need to be removed to disconnect the graph) is greater than
half the number of vertices of the graph. A graph with only one element is consid-
ered highly connected. This algorithm returns clusters by recursively partitioning
the graph, until highly connected graphs are reached. Because one-element graphs
are considered highly connected, the algorithm will always stop.

In the extreme case, all the cluster will consist of a single element (if the algo-
rithm cannot find highly connected graphs of size bigger than one), or all the set
of vertices V will belong to the same cluster (if the original graph is highly con-
nected). These extreme cases depend strongly on the election of the parameter t: a
low value of t will generate a high amount of edges, so it is highly probable that the
initial graph is highly connected, and a high value of t will generate a low amount
of edges, so it is difficult to find highly connected subgraphs.

This technique is related to hierarchical clustering in the fact that it is a par-
titioning algorithm, differing only on the linkage process: a minimum cut is used
for splitting, not based on a similarity distance between the clusters, and the pro-
cess is stopped when high connectivity is reached, so it may not always provide a
complete hierarchical tree.

Other algorithm presented by Sharan and Shamir [31], called cluster identi-
fication via connectivity kernels (CLICK), is directly derived from the HCS algo-
rithm.

4.3.9. CAST

Cluster Affinity Search Clustering (CAST) is another graph-theory-based algorithm
[6], where a kernel is initially defined and the clusters are grown based on average
similarity between unassigned nodes and the existing clusters.
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The algorithm CAST builds a graph based on a similarity measure S(x, y) be-
tween the elements and a threshold t that determines which values of the similarity
are significant. The average affinity of an element x relative to a cluster C is given
by

a(x) = 1
|C|

∑
y∈C

S(x, y). (4.15)

The process can be resumed in the following steps.

(i) Start with an empty collection of clusters C = ∅, and a list U = {x1, . . . ,
xn} of unused elements.
(a) Initiate a cluster C0 with one of the unused elements in U .

(1) Add to C0 the element of U with highest average affinity to
C0, if its affinity is greater than t. Upgrade the affinity values.

(2) Remove from C0 the elements with lowest average affinity to
C0, if it is smaller than t. Upgrade the affinity values.

(3) Repeat until not changes are made.
(b) Add the cluster C0 to the clustering C.
(c) Repeat until there are not any unused elements.

The CAST algorithm returns a clustering C where the clusters contain ele-
ments with high affinity, and it is inspired on a probabilistic model on graphs. The
results are strongly dependent on the parameter t: CAST returns clusters where
the affinity between any elements and its cluster is not smaller than t, but does not
guarantee that each element is assigned to the cluster to which it has the largest
affinity. Finally, unlike the other previously defined algorithms, the number of
clusters cannot be defined beforehand.

4.3.10. Other algorithms

The previous reference list is not exhaustive. Other algorithms used for clustering
of gene-expression data include the following.

(i) SOM, a clustering technique based on self organizing maps [10, 32], where
the clusters are defined by the points of a grid that is adjusted to the data. Usually,
the algorithm uses a two-dimensional grid in the higher-dimensional space.

(ii) Simulated annealing iteratively minimizes the Euclidean distance between
elements in the same cluster, using a simulated annealing algorithm, and guaran-
tees to eventually find the local minimum of the objective function [33].

Many good references can be found regarding clustering algorithms, involving
mathematical and algorithmical aspects of the problem [4, 21, 34].

Each algorithm is proposed as a solution to some limitations of other al-
gorithms, but except for the mixture models, which have a strong mathemati-
cal foundation including the estimation of the optimal number of clusters, they
are usually heuristic techniques, and the results may be interesting and consis-
tent. In the discussion between hierarchical clustering and partitioning algorithms,
the former are well suited for analyses of hierarchies in the data, but are usually less
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robust than partitioning algorithms. The MCLUST algorithm has the nice prop-
erty of being based on statistical parameter estimation, but the quality of the re-
sults depends on the validity of the Gaussian assumptions. As with many model-
based approaches, the result may only be as good as the model is for the data. If
the data does not satisfy a Gaussian mixture model, some transformations may be
applied to standardize it [11].

4.4. Interpretation and validation

Bring out the biologist! Once a clustering algorithm has grouped similar objects
(genes and samples) together, the biologist is then faced with the task of inter-
preting these groupings (or clusters). For example, if a gene of unknown func-
tion is clustered together with many genes of similar, known function, one might
hypothesize that the unknown gene has a related function. Alternatively, if bio-
logical sample “x” is grouped with other samples that have similar states or di-
agnoses, one might infer the state or diagnosis of sample “x.” However, before
subsequent work is completed to confirm or reject a hypothesis or, more impor-
tantly, to make a diagnosis based on the results of cluster analysis, several critical
questions need to be asked. The first is how reproducible are the clustering results
with respect to remeasurement of the data. Also, what is the likelihood that the
grouping of the unknown samples or genes of interest with other known samples
or genes is false (due to noise in the data, inherent limitations of the data, or lim-
itations in the algorithm)? From a biological standpoint, clustering can work well
when there is already a wealth of knowledge about the pathway in question, but it
works less efficiently when this knowledge is sparse. The real question is whether
the clusters make any biological sense. Only the biologist can answer this ques-
tion.

4.4.1. Types of validation

Clustering is usually defined as a process that aims to group similar objects or as un-
supervised learning. An open problem with clustering algorithms is the validation
of results. As a data mining tool, a clustering algorithm is good if it generates new
testable hypotheses, but as an analysis tool, it should be able to generate mean-
ingful results that can be related to properties of the objects under study. There
are two basic ways to compute the quality of a clustering algorithm. The first one
is based on calculating properties of the resulting clusters, such as compactness,
separation, and roundness. This is described as internal validation because it does
not require additional information about the data. The second is based on com-
parisons of the partitions, and can be applied to two different situations. When
the partitions are generated by the same algorithm with different parameters, it
is called relative validation, and it does not include additional information. If the
partitions to be compared are the ones generated by the clustering algorithm and
the true partition of the data (or a subset of the data), then it is called external vali-
dation. External and relative validations are mainly based on comparison between
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Figure 4.8. A simplified classification of validation techniques.

different partitions of the data. Figure 4.8 shows a hierarchy of validation tech-
niques.

4.4.2. Internal validation

For internal validation, the evaluation of the resulting clusters is based on the
clusters themselves, without additional information or repeats of the clustering
process. This family of techniques is based on the assumption that the algorithms
should search for clusters whose members are close to each other and far from
members of other clusters.

The Dunn’s validation index [35, 36] is defined as the ratio between the min-
imum distance between two clusters and the size of the larger cluster. Let C =
{C1, . . . ,CK} a partition of the samples into K clusters:

V(C) = minh,k=1,...,K , h�=k d
(
Ck,Ch

)
maxk=1,...,K ∆

(
Ck
) , (4.16)

where d(Ck,Ch) is the distance between the two clusters and ∆(Ck) is the size of
the cluster Ck. The value of V(C) depends on the selection of the distance measure
between clusters and the measure used for cluster size. Some basic examples of
distance measures are the minimum, maximum, and average distances, as defined
by equations (4.11), (4.12), and (4.13), respectively. There are many selections for
the measure of the cluster size, some of them are as follows:

(i) maximum distance between two points:

∆(C) = max
x,y∈C

d(x, y), (4.17)
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(ii) twice average distance to the centroid:

∆(C) = 2
|C|

∑
x∈C

d

(
x,

1
|C|

∑
x∈C

x

)
. (4.18)

More options for these measures can be found in [35, 36]. Each combination of
distance measure and cluster size measure defines a different Dunn’s index. In or-
der to obtain meaningful results, it is important to select the measures that are
more closely related to the problem. For example, twice average distance to the
centroid penalizes clusters that are not round. This measure may assign lower
scores to clusters obtained by single linkage hierarchical clustering than the ones
obtained by average linkage hierarchical clustering, regardless of the ability of the
clusters to explain the underlying biological process.

Other indices that can be computed are the Davies-Bouldin and Silhouette
[35, 36, 37], root mean square standard deviation, and R-squared [38]. In [39],
the dendrogram information is used to compute the cophenetic correlation coeffi-
cient (CPCC), which measures the proximity level for pairs of points based on the
hierarchy tree. This index is applicable when using hierarchical clustering.

Another approach to internal validation is comparing the clusters with the
distance between the points. This comparison is similar to the use of Hubert’s sta-
tistics in external validation (below), but replacing the true partition matrix by the
proximity matrix d(i, j) = d(xi, x j) between points [39]. Finally, other indices are
compactness and isolation of the clusters [40], and separation and homogeneity
[31].

4.4.3. Measures of similarity between partitions

Assume that there exists two partitions of the same set of n objects into K groups:
CA = {CA

1 , . . . ,CA
K} and CB = {CB

1 , . . . ,CB
K}. Each element CA

k and CB
k of CA and

CB is called a cluster and is identified by its index k. Let k = IA(x) be the index
of the cluster to which a vector x belongs for the partition CA (e.g., if IA(x) = 3,
then the vector x belongs to the cluster CA

3 ). The natural measure of disagreement
(or error) between the two partitions is the error measure ε(CA, CB) defined as the
proportion of objects that belongs to different clusters,

ε
(
CA, CB

) =
∣∣{x : IA(x) �= IB(x)

}∣∣
n

, (4.19)

where |S| indicates the number of elements of the set S.
The first observation that can be derived is that if the partitions are the same,

but the order of the indices is changed in one of them (e.g., if CB
1 = CA

2 , CB
2 = CA

1 ,
CB

3 = CA
3 , . . . , CB

K = CA
K ), then, for any vector x in CA

1 , IA(x) = 1 �= 2 = IB(x),
and the error ε(CA, CB) is greater than zero. It is clear that the disagreement be-
tween two partitions should not depend on the indices used to label their clusters.
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Figure 4.9. Schematic computation of misclassification for two-sets partitions.

A corrected measure, called misclassification rate, is defined by

ε∗
(
CA, CB

) = min
π

ε
(
CA,π

(
CB
))

(4.20)

over all of the possible permutations π of the K sets in CB. A nice property of
this measure is that if the data is modeled as a random labeled point process, CB

is the true partition of a set generated by the process and CB is the result of a
clustering algorithm, then this error measure is an estimator of the true error of
the algorithm [41]. The application of this measure is limited by the fact that the
number of permutations π forK clusters is equal to the factorial ofK . For example,
for 10 clusters there are 3628800 permutations to be analyzed. Therefore, except
for a small number of clusters, direct computation of this measure using (4.20) is
usually impractical. In such cases, suboptimal techniques may be used to find a-
near-to-optimal permutation [27]. Figure 4.9 shows a schematic example on how
to compute the misclassification rate, when there are 8 objects and two clusters,
and the partition is represented by a vector of size 8, indicating the cluster label
IA(x) for each object. In this example, K = 2 and there are only two permutations
of the partition.

Another way to compare two partitions CA and CB, without labeling the clus-
ters (and therefore avoiding the permutation problem) is based on a pairwise com-
parison between the vectors. For each pair of vectors x, y (x �= y), there are four
possible situations:

(a) x and y fall in the same cluster in both CA and CB,
(b) x and y fall in the same cluster in CA but in different clusters in CB,
(c) x and y fall in different clusters in CA but in the same cluster in CB,
(d) x and y fall in different clusters in both CA and CB.

The measure of disagreement between CA and CB is quantified by the number of
pairs of vectors that fall in situations (b) and (c). Let a, b, c and d be the number of
pair of different vectors that belong to situation (a), (b), (c), and (d), respectively,
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and let M = n(n − 1)/2 be the number of pair of different vectors. The following
indices measure the agreement between the two partitions [39]:

(i) Rand statistic,

R = a + d

M
, (4.21)

(ii) Jaccard coefficient,

J = a

a + b + c
, (4.22)

(iii) Folkes and Mallow (FM) index,

FM =
√

a

a + b

a

a + c
. (4.23)

The differences between the indices are subtle. The Rand statistic measures the
proportion of pairs of vectors that agree by belonging either to the same cluster (a)
or to different clusters (d) in both partitions. The Jaccard coefficient measures the
proportion of pairs that belong to the same cluster (a) in both partitions, relative to
all pairs that belong to the same cluster in at least one of the two partitions (a+b+
c). In both cases, the measure is a proportion of agreement between the partitions,
but in contrast with the Rand statistic, the Jaccard coefficient does not consider
the pairs that are separated (belong to different clusters) in both partitions (d).
The FM index measures the geometric mean of the proportion of pairs that belong
to the same cluster in both partitions (a), relative to the pairs that belong to the
same cluster for each partition (a+ b for CA and a+ c for CB). As with the Jaccard
coefficient, the FM index does not consider the pairs that are assigned to different
clusters by the two partitions. The three measures share the property that they are
zero if there is no agreement between the partitions (a = d = 0), and they are one
if the agreement is complete (b = c = 0), and intermediate values are used as a
quantitative measure of agreement between partitions.

The previous indices are based on the counting of the number of pairs of
vectors, that are placed on the same or different clusters, for each partition. For
each partition C the relationship between two vectors, whether they belong to the
same cluster or not, can be represented by a similarity matrix d(i, j) defined by
d(i, j) = 1 if xi and x j belong to the same cluster, and d(i, j) = 0 if they belong to
different clusters. The advantage of using this matrix instead of the four numbers
a, b, c, and d is that it allows additional comparisons: let dA and dB be the sim-
ilarity matrices induced by two partitions CA and CB, two similarity indices are
computed as function of the correlation and the covariance of these matrices,

(i) Hubert Γ statistic:

Γ = 1
M

n−1∑
i=1

n∑
j=i+1

dA(i, j)dB(i, j), (4.24)
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(ii) normalized Γ statistic:

Γ = 1
MσAσB

n−1∑
i=1

n∑
j=i+1

(
dA(i, j)− µA

)(
dB(i, j)− µB

)
, (4.25)

where µA, µB, σA, and σB are the respective sample mean and standard deviation
of the values in the matrices dA and dB. The Hubert statistic is based on the fact
that the more similar the partitions, the more similar the matrices would be, and
this similarity can be measured by their correlation.

In this context, with the similarity matrices dA and dB representing the par-
titions CA and CB, with their values being only 1 and 0, and by the fact that the
matrices are symmetric, the previously defined Rand statistic can be rewritten as

R = a + d

M
= M − b − c

M
= 1− b + c

M

= 1− 1
M

∑
i=1

n− 1
∑
j=i+1

nI[dA(i, j)�=dB(i, j)]

= 1− 1
M

∑
i=1

n− 1
∑
j=i+1

n
∣∣dA(i, j) �= dB(i, j)

∣∣

= 1− 1
M

∑
i=1

n− 1
∑
j=i+1

n
(

dA(i, j) �= dB(i, j)
)2

= 1− 1
2M

∑
i=1

n
∑
j=1

n
(

dA(i, j) �= dB(i, j)
)2

,

(4.26)

where | • | represents absolute value. Equation (4.26) shows that the Rand index is
inversely proportional to the square of the Euclidean distance between the matrices
dA and dB. In a similar way, the Jaccard coefficient and the two ratios in the FM
index are all proportional to the Euclidean distance restricted to specific sections
of the matrices (resp., where both matrices are different from zero, where the first
matrix is one, and where the second matrix is one).

As an example, assume that there are n = 5 points, labeled x1, . . . , x5, and
the partitions are defined by CA = {{1, 2, 3}, {4, 5}} and CB = {{1, 3}, {2, 4, 5}}.
Figures 4.10a and 4.10b show the similarity matrices dA and dB, with the shaded
region representing the region of interest (the matrix is symmetrical and the diag-
onal is always 1).

In the example, the numbers in bold indicate that there are differences be-
tween the two matrices. There are M = 10 pairs of different points (shaded region)
and the values for a, b, c, and d are 2, 2, 2, and 4, respectively. The indices com-
puted over this example are R = 0.6, J = 0.33, FM = 0.5, Γ = 0.2, and Γ∗ = 0.15.

Additional measures of similarity between partitions are presented in [39],
including Davies-Bouldin index, root mean square standard deviation (RMSSTD),
R-squared, and distance between two clusters.
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Figure 4.10. (a) Similarity matrix for dA. (b) Similarity matrix for dB .
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Figure 4.11. Indices and misclassification as function of the variance.

Once a similarity measure between partitions is defined, they can be used to
measure the ability of a clustering algorithm to group the data in two ways: using
the knowledge of the true partition (external validation), or comparing several
results of the same algorithm (relative validation).

4.4.4. External validation

In external validation, the quality of the algorithm is evaluated by comparing the
resulting clusters with prespecified information. In this case, CA may be the result
of the clustering algorithm and CB may be the true partition of the data, if known,
and the similarity between the partitions may be measured by the indices described
previously [6, 27, 31, 38, 39, 42, 43].

Figure 4.11 shows an example of the indices as function of the variance in sim-
ulated data. The data was generated randomly using a mixture of three Gaussians
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Figure 4.12. Clustering applied to a subset of the data.

with 10 points for each Gaussian, and variance varying from 1 to 20. The algo-
rithm used is fuzzy c-means with K = 3, the true number of clusters. The indices
were computed over the partition generated by the algorithm and the true parti-
tion of the data. The larger the variance, the greater the overlap between classes,
and the more difficult it is for the algorithm to recognize them. In all cases, the
indices decrease as the overlap of the clusters increases. Figure 4.11 also shows the
misclassification rate for comparison with the indices. For very small variance, all
the results of the clustering algorithm are perfect, the misclassification is zero, and
all the indices are one, except Hubert’s statistic.

The main drawback of this validation approach is that the classes must be
known beforehand, so it seems counterintuitive to apply clustering when the re-
sult is already known. This limitation can be overcome in certain cases. In [40], the
method is used with incomplete data, computing Hubert’s statistics over the adja-
cency matrices to compare the true cluster (from annotation of functionality) with
the results obtained from the algorithm. In [27], the quality of the algorithm was
quantified using external validation on synthetic data generated from the clusters,
based on the premise that the algorithm with better performance on the simulated
data could be the best to be applied to the original data.

4.4.5. Relative validation

Usually, clustering algorithms are applied in cases where there is limited knowl-
edge of the true classes in the data, and external validation is no longer a valid
option. One way to overcome this problem is by measuring the consistency of the
algorithms instead of the agreement with the true partitions. Relative validation
consists of comparisons of the clusters obtained by the same algorithm, but under
different conditions. There are mainly two ways to generate different conditions:
using subsets of the data [43, 44] or changing the parameters of the algorithm [39].

In the first case, if there are m samples, the algorithm is run m times on the
subsets obtained by removing one sample at a time. This approach is referred to
as leave-one-out validation. Figure 4.12 shows an example with 5 objects (n = 5)
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Figure 4.13. Example of computation of xkj .

and 6 samples (m = 6), where the clustering algorithm is applied to two subsets
of the data, removing the first and second columns, obtaining two partitions C1

and C2, respectively. The process can be repeated for the six columns, obtaining
six partitions of the data.

The result of this process is a family of partitions C1, . . . , CP , each one com-
puted over a slightly different dataset. The agreement between all these partitions
gives a measure of the consistency of the algorithm and their predictive power
(over the removed column) gives a measure of the ability of the algorithm to gen-
erate meaningful partitions.

Yeung’s figure of merit (FOM) [43] is based on the assumption that the clus-
ters represent different biological groups, and therefore, genes in the same cluster
have similar expression profiles in additional samples. This assumption leads to a
definition of the quality of a clustering algorithm as the spread of the expression
values inside the clusters, measured on the sample that was not used for clustering.
Let m be the number of samples, n the number of objects, and K the number of

clusters. Let C j = {Cj
1, . . . ,C

j
K} be the partition obtained by the algorithm when

removing the sample Sj . The FOM for sample Sj is computed as

FOM(K , j) =
√√√√√ 1
n

K∑
k=1

∑
i∈Cj

k

(
xi j − xk

j

)2
, (4.27)

where xk
j is the jth element of the average of the vectors in C

j
k (see Figure 4.13).

The FOM (for the algorithm) is computed as the sum over the samples:

FOM(K) =
m∑
j=1

FOM(K , j). (4.28)

If the clusters for a partition define compact sets of values in the removed
sample, then their average distances to their centroids should be small. Yeung’s
FOM is the average measure of the compactness of these sets. The lower the FOM,
the better the clusters are to predict the removed data and therefore, the more
consistent the result of the clustering algorithm.

One of the drawbacks of this measure is that the decrease of the FOM as
a function of the number of clusters may be mainly artificial, due to the fact
that more clusters mean smaller average size for the clusters. In some situations,
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the more clusters are present, the smaller the sets are. Sets with a smaller number
of points are more likely to be compact. A solution to this problem is to adjust
the values using a model-based correction factor

√
(n− K)/n. The result is called

adjusted FOM. In practice, when n is large and K is small, as in clustering of mi-
croarray data, the correction factor is close to one and does not greatly affect the
results.

Other ways to compare the resulting partitions have been described by Datta
and Datta [44]. The approaches are based on the idea that the algorithms should
be rewarded for consistency. As with the FOM measure, the algorithm is repeatedly
applied to subsets of the data, where a different sample Sj is deleted for each subset,

forming partitions C j = {Cj
1, . . . ,C

j
K}. Additionally, the algorithm is also applied

to the whole set of samples, forming the partition C0 = {C0
1, . . . ,C0

K}. Let Cj(i) be
the cluster containing the vector xi for the partition C j . Let xC

j
i

be the average of

the vectors in the cluster containing the vector xi for the partition C j . The three
measures of quality are defined as follows:

(i) average proportion of non-overlap:

V1(K) = 1
nm

n∑
i=1

m∑
j=1

(
1−

∣∣Cj(i)∩ C0(i)
∣∣∣∣C0(i)

∣∣
)

, (4.29)

(ii) average distance between means:

V2(K) = 1
nm

n∑
i=1

m∑
j=1

d
(

xC
j
i
, xC0

i

)
, (4.30)

(iii) average distance:

V3(K) = 1
nm

n∑
i=1

m∑
j=1

1∣∣Cj(i)
∣∣∣∣C0(i)

∣∣
∑

x∈Cj (i), y∈C0(i)

d(x, y). (4.31)

Figure 4.14 shows a comparison of three clustering algorithms applied to a
mixture of three Gaussians with 10 points for each Gaussian, all displaying indices
and the true misclassification rate, averaged over 20 repetitions. The algorithms
compared are hierarchical clustering (complete linkage, Euclidean distance), k-
means, and fuzzy c-means, and the number of clusters varies from 2 to 7, and is
shown in Figures 4.14a, 4.14b, and 4.14c, respectively. Almost all the indices show
a change in slope (some show a local minimum) for K = 3, that is the correct
number of classes in the data.

This is an example where without information about the real classes it is still
possible to guess the correct number of clusters. This approach is not always valid,
and depends strongly on the structure of the data and the existence, or not, of true
classes within it. The graphs also show the relative agreement between misclassi-
fication rate (external measure) and the four indices, in particular for the average
distance between means V2(K). The other indices do not increase for more than
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Figure 4.14. Indices for 3 different clustering algorithms: (a) hierarchical clustering, (b) k-means clus-
tering, (c) fuzzy c-means clustering.

three clusters as they should. This may be explained by the fact that they are af-
fected by the number of clusters independently of the real number of classes (in
the extreme case with K = n all indices are zero).

Relative validation techniques are a valid approach to compare clustering al-
gorithms, guess the best number of clusters, and measure the quality of a single
clustering algorithm. These measures do not indicate an agreement between the
clusters and true classes in the data, but the ability of the algorithm to behave con-
sistently over the data and their interpretation is related to the assumptions made
in their definitions. For example, the FOM assumes a strong inter-dependence be-
tween samples, which is usually true in microarray data, but may be not true in
processed data, like when PCA is used.
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4.4.6. Statistical inference

Some studies analyze the validation of the clustering algorithms as a statistical in-
ference process. Halkidi et al. [39] uses Monte Carlo techniques to test the null
hypothesis of the random structure of the data. Given a set of points obtained
from a mixture of known Gaussians, these investigators apply a clustering algo-
rithm and the values of some external indices (like Hubert’s and Rand). From the
same model, using Monte Carlo techniques, the distribution of these indices un-
der the null hypothesis is estimated and the null hypothesis is rejected (the clusters
are better than random) if the index is above the 95% threshold. With this tech-
nique, the cluster structure obtained can be validated from the clustering algo-
rithm. Also, Hubert’s statistics can be used to compare the similarity matrix with a
matrix containing cluster-based similarity between points, to validate hierarchical
similarity-based algorithms. Dougherty et al. [27] present a model-based algo-
rithm to find the best algorithm for a given problem. The method is based in the
assumption that all genes with the same functionality have similar expression pat-
tern, and this expression is modeled as a Gaussian distribution. Given the model,
the algorithms can be compared based on their efficiency over simulation-based
data using the model estimated from the original data. The algorithm with the
lowest average error is assumed to be the best algorithm for the model. Different
models may lead to different selection of the best algorithm. Kerr and Churchill
[45] present a bootstrapping technique to validate clustering results. They create
a number of simulated datasets based on the statistical model (estimated from the
original data). “The match of a gene to a profile is declared 95% stable if it occurs
in the analysis of the actual data and in at least 95% of the bootstrap clustering.”

4.4.7. Other approaches

There are several techniques that cannot be classified in these three classes (ex-
ternal, internal, and relative). For example, the quality of the algorithms can be
determined by their intrinsic properties as defined by criteria, such as admission
decision rules, that are based on the shape and properties of the clusters they define
[3, 46, 47]. Instead of looking at how well the algorithm performs on a particular
dataset, this validation technique evaluates the algorithm in its capacity to solve a
specific type of problems.

Attempts have been made to evaluate the validation measures as indicators of
the quality of the clusters. Yeung et al. [43], for instance, used an external criterion
to evaluate the validation measure by comparing the FOM (a relative criterion) to
the adjusted rand index, computed between the clusters obtained by the algorithm
and the real clusters.

A different perspective is used in the model-based algorithms, like in [43, 48,
49]. In these cases, there is an assumption of an underlying model, but this model
is not used to find the best algorithm over a family of different techniques. Given
the model, an algorithm is used to find its parameters: number, position, and shape
of the clusters. Fraley and Raftery [28, 48] and Yeung et al. [43] use model-based
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clustering to determine the structure of clustered data without using prior knowl-
edge (except the fact that the model is a mixture of Gaussians), and present an al-
ternative technique to compute the number of clusters. In this case, given a model
of Gaussian mixtures for the data, explicit solution of the clustering problem can
be obtained via EM algorithms. This is a clear example of how the best algorithm
can be derived from a prior assumption in the model. The performance of the
algorithms was also evaluated using synthetic datasets, showing that for model-
based clustering the common agglomerative techniques have results similar to hi-
erarchical techniques. As a drawback of the technique, the authors give examples
where the assumption of Gaussian mixture models fails if the points are sampled
from other distributions [49].

4.4.8. Discussion

There are excellent complete reviews of algorithms and validation measures [3,
39]. External criteria are useful if there exists previous knowledge about the struc-
ture of the data, as the real partitioning or an underlying distribution for some
points. Internal and relative criteria are based on assumptions of the shape of the
clusters or the consistency of the algorithms, and are not based on the underlying
distribution of the data. Clearly, there is no universal validation technique, as there
is no universal clustering algorithm.

4.5. Examples of clustering-based analysis of microarray data

4.5.1. Genomic profiling

Johnson et al. [50] used a combination of statistical and clustering methodologies
to define genomic profiles and predictive networks of biological activity during
the early stages of the atherogenic response to benzo(a)pyrene (BaP), an environ-
mental hydrocarbon that initiates oxidative stress in vascular smooth muscle cells.
k-means, fuzzy c-means, and hierarchical clustering were applied to genes found
to be statistically significant via ANOVA to identify genes modulated by athero-
genic insult in a redox-sensitive manner. Of interest was the finding that many of
the genes identified as redox-regulated targets via ANOVA test, clustered together
using clustering methodologies. The three nonsupervised methods resolved simi-
lar groups of genes and identified clones that were highly up-regulated by prooxi-
dant alone, unaffected by antioxidant pretreatment, and neutralized by combined
chemical treatments.

Hierarchical clustering was chosen to further resolve clusters of redox-
regulated genes because the other methods forced clusters of similar size regard-
less of biological outcome, and antioxidant modification of gene-expression across
treatments. This analysis readily identified genes that were modified by BaP in the
absence of antioxidant and neutralized in the presence of antioxidant. Cluster-
ing analysis was employed in this study because there were underlying patterns
of gene-expression which were not readily discernable using classical statistical
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methodologies. Clustering was found to perform well in segregating genes that
were altered by redox status and finely separate different behavior within this class.

4.5.2. Subclassification of diffuse large B cell lymphoma

In another example, Alizadeh et al. [9] presented a study of classification of human
cancers for three adult cancer types: diffuse large B-cell lymphoma (DLBCL), fol-
licular lymphoma (FL), and lymphocyte leukemia (CLL). The goal of the study was
to determine whether gene-expression profiling could subdivide cancer types into
molecularly distinct diseases with more homogeneous clinical behaviors. Instead
of limiting the analysis to these types, additional samples were obtained from nor-
mal lymphocyte subpopulations under varying activation conditions, and some
lymphoma and leukemia cell lines. Expression ratios were used against a common
reference for a total of 96 samples.

The first step was the creation of a hypothesis using hierarchical clustering
and other techniques. For this, these investigators localized genes that differenti-
ate lymphocytes (gene-expression signature) and then clustered by the algorithm
(similar expression profiles). This process allowed the researchers to select groups
of genes with similar expression up-regulated in specific tissues, and to generate
hypothesis about the data, by visually observing the patterns of gene activity in
each group.

It was hypothesized that there could be two subclasses of DLBCL cancer types
that could be derived from distinct stages of normal B-cell differentiation, and
could be detected by genes characteristics of germinal centre B cells. To investigate
this hypothesis, hierarchical clustering was employed for the genes characteristics
of germinal centre B cells, and splitting the data in two classes, calling them GC
and activated, respectively. Based on this analysis, it was concluded that a distinct
class of DLBCLs was derived from the germinal centre B cell and retained gene-
expression programs, and presumably many of the phenotypic characteristics, of
this stage of B-cell differentiation.

In conclusion, hierarchical clustering and gene profiling allowed subclassifi-
cation of large B-cell lymphoma (DLBLC) into two groups, derived from differ-
ent stages of B-cell differentiation and activation. Eventually, this kind of anal-
ysis could be carried out using supervised analysis, since the classes are known,
and the gene-expression signatures could be defined without clustering. Thus, the
clustering process and visualization helped to create relevant hypotheses directly
verifiable by ocular inspection of the graphical images.

4.5.3. External validation of microarray analysis

Duan and Zhang [51] presented an example of external validation for clustering
algorithms applied to microarray data. The goal of the study was to present an
application of k-means with weights at a variable level to compensate for loss of
cell cycle synchrony in time-series experiments. In cell-cycle experiments, samples
of mRNA are extracted at specific time intervals. The mRNA samples are derived
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from a pool of cells that is initially synchronized, but that loses synchronization
over time. Loss of synchronization means that different cells in the pool may be at
different stages of the cell cycle, and therefore expressing differently. The difference
among cells within the same sample is quantified by the variance in measurements.
Samples closest to the start of the experiment are given a higher weight than sam-
ples in later stages of the experiment. The weights are computed as a function of
the time between the start of the experiment and the extraction time.

The algorithm selected, a weighted version of k-means, is expected to perform
better than standard k-means. The authors compared the algorithms using an ad-
justed Rand index between the result of the clustering algorithm and the true par-
tition for selected genes. As a test of the validity of the approach, the algorithms are
applied to artificial data, where the true partitions are known, and the Rand index
is computed for all genes. Subsequently, biological information is used to evaluate
the algorithms applied to microarray data based on a listing of protein complexes
that was retrieved from an existing database. The “true” partition of the genes is
defined by sets containing genes whose products belong to the same complex. In
both cases, the weighted k-means algorithm performed better than the standard
k-means algorithm, but the real contribution of the approach was the specification
of viable additional information for external validation in microarray analysis.

A critical consideration for this approach is that some assumptions must be
made at the moment of selecting a “true” partition to validate the data. In this
study, the assumption used was that subunits in a protein complex present a high
level of coregulation that is partially observable in terms of mRNA expression [52].
The degree to which this assumption is true indicates the success of the technique
when applied to “real data.”

4.5.4. Discussion

The aforementioned clustering applications areas are representative of gene pro-
filing, subclass discovery, and external validation. The most frequently used algo-
rithm for practical applications is the hierarchical algorithm, with both Euclidean
and correlation distances. The preference for this algorithm is likely based on its
ability to show a hierarchy of groups, to be applied without knowledge of the num-
ber of clusters, and to sort the data based on similarities. The k-means clustering
method is less frequently used in practical applications because its simplicity of
use is overcome by its low performance in biological systems compared to other
algorithms. Most surprising, however, is that model-based algorithms are seldom
used, in spite of the fact that they have more statistical support than other algo-
rithms.
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5
From biochips to laboratory-on-a-chip
system

Lei Wang, Hongying Yin, and Jing Cheng

Biochip-based systems have enjoyed impressive advancement in the past decade. A
variety of fabrication processes have been developed to accommodate the compli-
cated requirements and materials for making such a device. Traditional microfab-
rication processes and other newly developed techniques such as plastic molding
and microarraying are being explored for fabricating silicon, glass, or plastic chips
with diverse analytical functions for use in basic research and clinical diagnostics.
These chips have been utilized to facilitate the total integration of three classic
steps involved in all biological analyses, that is, sample preparation, biochemical
reaction, and result detection and analysis, and finally construct fully integrated
smaller, more efficient bench-top or even handheld analyzers—laboratory-on-a-
chip system. Meanwhile, biochip-based analytical systems have demonstrated di-
versified use such as the analyses of small chemical compounds, nucleic acids,
amino acids, proteins, cells, and tissues. In this chapter, aspects related to biochips
with different functionality and chip-based integrated systems will be reviewed.

5.1. Technologies for fabricating biochips

Depending on the materials used, micromachining technologies employed for fab-
ricating the biochips can be very different. Photolithographic processing tech-
niques are by far the most commonly used methods for producing microchannels
in the surface of a planar silicon or glass substrate. One advantage of using these
materials is that their electrophoretic and chromatographic properties and surface
derivatization chemistries are extensively studied in many cases. Another advan-
tage is that many established microfabrication processes could be easily modified
and applied. Injection-molding, casting, imprinting, laser ablation, and stamping
processes represent another category of fabrication methods for machining plastic
substrate. The advantage for using plastic as substrate is twofold. One is that plas-
tic is less expensive and easier to manipulate than glass or silicon-based substrates.
Another advantage is the easiness in disposing it after use. The third category of
methods for fabricating one type of the most widely used biochips, that is, mi-
croarrays, is robotic station-based microdispensing methods.
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5.1.1. Photolithographic fabrication of silicon and glass

In the process of fabricating a glass-based microfluidic chip, a protective etch mask
of high quality, the appropriate glass type, and the composition of etchant are
equally important. Wet etching is the most widely used method for fabricating
microfluidic channels and reservoirs in glass, silica, or silicon substrates. Among
glass substrates, the soda lime microscope slide (catalog no. 12-550C, Fisher Sci-
entific) was the one that has been used from time to time in the past due mainly
to its high etch rates [1]. With that merit less aggressive etchants can be used along
with the use of hard-baked photoresist to obtain the required shallow etches [2].
However, for deep etching of microchannels, a more resistant sacrificial etch mask
has to be used. Typical examples include the use of Cr/Au and amorphous silicon
as sacrificial etch masks. Among these etch masks, photoresist/Au/Cr etch mask
can be etched in various types of HF-based etchants especially when HF/HNO3 is
employed as etchants simply because HF/HNO3 attack other masks such as amor-
phous silicon. When Borofloat glass is used with the photoresist/Au/Cr etch mask,
channels with 35 µm etch depth could be obtained in approximately 5 minutes in
49% HF. Another type of etch mask, amorphous silicon, can be deposited on the
substrates through plasma-enhanced chemical vapor deposition [3]. Used as an
etch mask, amorphous silicon proved itself possessing the best resistance to HF
etching as well as the fewest defects. Channels with smooth sidewalls and with
depth of 70 µm were achieved when amorphous silicon was utilized as the etch
mask. Generally speaking, high-quality amorphous silicon can withstand twice
as long as Cr/Au when used as etch masks, making it possible to etch twice as
deep. Among all sorts of glass substrates investigated, Schott Borofloat glass was
found to have the best etching quality and simplest processing [3]. Borofloat is
a borosilicate glass produced using the float process. This type of glass is uni-
form in thickness and composition and has a smooth and flat surface requiring
no mechanical polishing (Figure 5.1). Another advantage of this material is that
its background fluorescence is several times lower than that of microscope slide,
making it the ideal candidate for high-sensitivity experiments. To make a complete
piece of microfluidic device such as chip-based capillary electrophoresis, a planar
cover glass with holes connected to the lower electrophoresis channels has to be
used to seal the channels. To drill the holes on the cover glass, a diamond-tipped
drill bit is ideal for rapid drilling of individual holes (approximately 15 seconds
for each hole), whereas a multitipped ultrasonic drill bit is suitable for the pro-
duction of many chips with consistent hole patterns (approximately 15 minutes
for each chip). Bonding of the etched and drilled glass of the same size and type
can be done with three approaches. One is to sandwich the glass substrates with
two polished graphite blocks and then place them in an evacuated furnace with
a stainless steel weight on top [3]. Another method is to have a thin layer of sil-
icon dioxide deposited on one side of the cover glass and then allow the top and
bottom glass substrates to be anodically bonded. The yield of chips made this way
can be much higher than that of the thermal fusing method. The third approach is
to bond the quartz glass substrates with hydrofluoric acid. The advantages of this
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Figure 5.1. Scanning electron micrograph of the intersection of two 25 µm deep channels etched in
Borofloat using a 1700 Å thick amorphous silicon etch mask. Striations on the side walls of the capillary
are evident near the intersection. From [3], with permission.

method include low thermal damage, low residual stress (bonding at room tem-
perature), and simplicity in operation [4]. Plasma etching of silicon master for hot
embossing [5] and deep reactive ion etching of Pyrex using SF6 plasma were re-
ported for fabricating microfluidic devices [6]. Microstereolithography, a method
based on polymerization of photosensitive polymers by a focused UV beam, was
used for the fabrication of 3D structures [7] and encapsulating material in mi-
crofluidic structures [8]. In a recent report, 3D microstructures were fabricated
in a single exposure by a reduction photolithography using arrays of microlenses
and gray scale masks [9]. Gray scale masks were also implemented in an excimer
laser micromachining system to produce 3D structures with a continuous profile
[10]. 3D-aligned microstructures have been fabricated by Tien et al., by pressing
a multilevel Poly(dimethylsiloxane) (PDMS) stamp on a substrate and applying a
soft lithographic technique every time a new level of the stamp came into contact
with the substrate surface, to produce complex patterns of aligned microstructures
[11].

5.1.2. Plastic microfabrication

The methods developed for fabricating microchannels and reservoirs in polymeric
substrates include laser abalation, injection-molding, compression molding, cast-
ing, and X-ray lithography. Injection-molding and casting methods are in general
called replication methods. Unlike laser etching method, the replication methods
can generate capillary or reservoir with smooth surfaces, which are highly de-
manded by performing capillary electrophoresis.

Injection-molding of a capillary electrophoresis chip usually involves a multi-
step fabrication process. First, to obtain a “negative” image of the capillary chan-
nels, a silicon master has to be wet-etched through the standard photolithographic
process. The fabricated silicon master has protruded features formed; the height
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and width of these features corresponding to the specified dimensions of the cap-
illary separation channel. Second, a “positive” metal mold is formed through elec-
troplating against the silicon master. From this metal mother, daughters with the
features same as that of the silicon master can be made, and these daughter metal
molds may then be mounted on a mold insert. The insert can be used through
the injection-molding or compression molding processes to produce hundreds
of thousands of molded plastic chips using polymeric materials such as acrylic
coploymer resin. The preparation of a sealed capillary electrophoresis chip was
done by first drilling a few millimeters diameter through holes on the molded piece
followed by thermal lamination of a thick sheet of Mylar coated with a thermally
activated adhesive at raised temperature [12]. A microfluidic device with inte-
grated spectrophotometric elements was injection-molded in poly(methyl metha-
crylate) (PMMA) recently, with the strategy combining the direct photopattern-
ing, replica molding techniques, and a rapid cooled release mechanism in con-
junction with material-material transfer [13].

Using casting process to fabricate polymeric chip is similar to the injection-
molding process. The materials used including PDMS and PMMA [14, 15]. The
polymer chip was cast against the wet-etched silicon master. Once formed, the
PDMS replica can be peeled off easily. After punching the buffer reservoirs
through, the cast chip can be placed on a slab of PDMS to form a sealed capil-
lary electrophoresis device. In a report from Lee et al., microfluidic structures were
transferred from quartz master templates to PMMA plates by using hot emboss-
ing methods. The relative standard deviation of the channel profile on the plastic
chips was proved to be less than 1% [16]. Hot embossing was also used to fabricate
microchannels on polycarbonate and Zoenor 1020 by other researchers [17, 18].

Apart from replication method, photoablation can also be used to machine
plastic chips [19]. During the machining process, the laser pulses in the UV region
can be transmitted through a mask to hit the selected areas on the plastic substrate.
When the illuminated areas absorb the laser energy, the chemical bond within
the long-chain polymer molecules are broken, and the photoablation generated
debris such as gas, polymer molecules, and small particulate matter are ejected,
leaving the desired channels and reservoir in the plastic chip. There is a variety of
polymer materials that can be photoablated including polycarbonate [17], PMMA
[16, 20], polystyrene, nitrocellulose, polyethylene terephthalate, and Teflon [21].
PMMA capillary electrophoresis chip has also been fabricated using soft X-ray
lithography and a transfer or Kapton mask [22]. The main advantage of machining
PMMA in soft X-rays is that narrow and deep channels (i.e., high aspect ratio)
can be fabricated in the substrate. Several components were machined in PMMA
including the injector, separation channel, and integrated fiber optic fluorescence
detector [20].

5.1.3. Microarraying methods

The microarraying methods were developed for fabricating microarrays of genes,
proteins, and other substances. These printing methods could be divided into
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two types, that is, contact and noncontact printing methods. The contact print-
ing method allows the microarray substrate to be physically contacted by the liq-
uid dispensing mechanism. The arrayer uses metal pins of micron size or capil-
lary tubing to deliver sample solution of nano- or even picoliters. The noncontact
printing method allows the liquid dispensing mechanism to shoot the sample so-
lution of nano- or even picoliters directly to the microarray substrate which is
especially suitable for fabricating the protein or antibody microarrays where the
maintenance of the protein structures is essential. The two most widely adopted
dispensing approaches are piezoelectric-actuated glass capillary tips and solenoid
valves [23]. Some representative developments in microarray technologies include
BeadArray by Illumina, micromirror technology by NimbleGen, and thermal ink-
jet technology by Agilent. These methods are capable of producing readings far
beyond the typical 40 000 spots per assay range, as well as typical application of
gene expression profiling.

The BeadArray technology was first reported by David Walt and colleagues at
Tufts University [24] and developed at Illumina as a platform for single nucleotide
polymorphism (SNP) genotyping and other high-throughput assays. Each array is
assembled on an optical imaging fiber bundle consisting of about 50 000 individ-
ual fibers fused together into a hexagonally packed matrix. The ends of the bundle
are polished, and one end is etched to produce a well in each fiber. This process
takes advantage of the intrinsic structure of the optical fibers in the bundle. After
polishing and etching, a fiber bundle can hold up to 50 000 beads, each approxi-
mately 3 µm in diameter and spaced approximately 5 µm apart. This highly minia-
turized array is about 1.4 mm across and has a packing density of 40 000 array
elements per square millimeter—approximately 400 times the information den-
sity of a typical spotted microarray with 100 µm spacing. Each derivatized bead
has several hundred thousand copies of a particular oligonucleotide covalently at-
tached. Bead libraries are prepared by automated conjugation of oligonucleotides
to silica beads, followed by quantitative pooling together of the individual bead
types. The beads are stably associated with the wells under standard hybridization
conditions. Basing on the BeadArray technology, the system, as implemented in a
high-throughput genotyping service facility at Illumina, has a current capacity of
one million SNP assays per day and is easily expandable [25].

Different from Illumina’s BeadArray technology, NimbleGen builds its arrays
using photo deposition chemistry with its proprietary maskless array synthesizer
(MAS) system [26]. At the heart of the system is a digital micromirror device
(DMD), similar to Texas Instruments’ digital light processor (DLP), employing
a solid-state array of miniature aluminum mirrors to pattern up to 786 000 in-
dividual pixels of light. The DMD creates virtual masks that replace the physical
chromium masks used in traditional arrays. These virtual masks reflect the desired
pattern of UV light with individually addressable aluminum mirrors controlled by
the computer. The DMD controls the pattern of UV light on the microscope slide
in the reaction chamber, which is coupled to the DNA synthesizer. The UV light
deprotects the oligo strand, allowing the synthesis of the appropriate DNA mole-
cule [27].
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To fabricate high-density arrays, physical delivery techniques such as inkjet
[28] or microjet deposition technology are used, too. Agilent’s noncontact in situ
synthesis process is an example known for its excellence. All the 60-mer length
oligonucleotide probes, base-by-base, are printed from digital sequence files and
the standard phosphoramidite chemistry used in the reactions allows for high cou-
pling efficiencies to be maintained at each step in the synthesis of the full-length
oligonucleotide. With Agilent’s SurePrint technology, high-quality, consistent mi-
croarrays could be delivered to conduct in-depth gene expression studies [29]. The
high level of multiplexing and modular, scalable automation of the above tech-
nologies shed a light on meeting the requirements for cost-effective, genome-wide
linkage disequilibrium studies, which will open the door to personalized medicine.

5.2. Microfluidic control units

Microfluidic control is a critical to a lab-on-a-chip system. Fluid control tasks in-
clude acquisition and metering of both sample and reagents by the microchip from
a specimen container or reservoir, speed and direction control for transporting
sample and regents to different regions of the microchip for processing, and so
forth. A range of micropumps and valves has been machined using microfabri-
cation and microelectro mechanical system (MEMS) technology. Once integrated
with other microchip-based devices these units may provide efficient fluidic con-
trol for the lab-on-a-chip systems.

5.2.1. Microvalves

Microvalve is an essential component for a lab-on-a-chip system. Appropriate uti-
lization of microvalves will facilitate the storage of reagents, the priming of chan-
nels, the switching of liquid flow streams, and the isolation of specific areas of
the chip during sensitive steps in the chemical processing to prevent leakage and
pressure fluctuations.

Freeze-thaw valve. The freeze-thaw valve does not require any moving parts in the
capillary channel and has no dead volume [30]. A small section of fluid inside the
microchannel on a chip is made to act as its own shut-off valve upon freezing. The
freezing process could be realized by using a fine jet of a mixture of liquid and
gaseous carbon dioxide at approximately −65◦C delivered from a cylinder of the
compressed liquid. It has been demonstrated that localized freezing can stop the
flow of fluid driven by the electroosmotic pumping. To make the cooling system
compatible with the planar microstructures, a chip-based electrothermal cooling
device such as a Peltier device may be applied.

Magnetic valve. Löchel et al. utilized a thin square-shaped membrane structure
(2 × 2 mm) of electroplated NiFe alloy as the flow-controlling element for their
magnetic valving system [31]. The magnitisable membrane structure was driven
by the presence or absence of a magnet applied externally to the chip device. In the
middle of the membrane, an integrated bar of the same ferromagnetic material
amplifies the force for moving the membrane. The four edges of the membrane
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were sealed against the silicon substrate. The magnetic valve is normally open and
flow occurs if a high pressure is applied from the upper side of the valve. The appli-
cation of a magnetic field drives the ferromagnetic membrane toward the valve seat
and closes the valve. In another report, a more practical magnetic pump with sim-
ilar principal has been made using both bulk micromachining and wafer bonding
techniques [32]. This valve by default is normally closed when there is no exci-
tation, which enhances safety if a valve failure occurs. When the required voltage
is applied to the inductor mounted on a glass wafer, the magnetic fluxes will be
generated and the permalloy/magnetic membrane will be become attracted to the
upper electromagnet, and thus leave the valve open to allow the fluid flow through
the valve seat. For the current of approximately 700 mA, the flow rate can go up to
600 µL/min. A new type of magnetic microvalve has been fabricated by Hartshorne
et al. [33]. Flow control was achieved by moving a ferrofluid in a microchannel to
open or close an intersection through an externally applied magnet.

Flow switch. A flow switch system has been developed by Blankenstein and Larsen
and used as a valveless five-way valve [34]. This system consists of two syringe
infusion pumps generating a constant flow rate and a microfabricated flow chip
with 3 inlets and 5 outlets. The basic principle of this type of valve is as follows.
A sample containing flow stream is centered and guided by two buffers on each
side through a linear microchannel and leaves the flow chip via the middle out-
let. Hence, if the flow ratio between the two control buffers is altered, the sample
stream becomes deflected and is forced to enter one of the four outlet channels,
depending on the set flow ratio. The time the sample flow stream is forced into
the selected outlet is determined by the actuation/switching time and the volu-
metric flow rate inside the microchannel is controlled by precision driven syringe
pumps. A microdevice called “flowFET,” with functionality comparable to that of
a field-effect transistor (FET) in microelectronics, has been developed [35]. The
magnitude and direction of the electroosmotic flow (EOF) inside the microfabri-
cated fluid channel can be controlled by a perpendicular electric field. In another
study, a novel elastomeric microfluidic switch has been developed by Ismagilov et
al. [36]. Two fluid switching methods were established by controlling the lateral
position of a stream in multiphase laminar flow and the channel aspect ratio in
tangentially connected microfluidic systems. Furthermore, an actuator based on a
thermoresponsive hydrogel, that shrinks or swells with fluid from a separate reser-
voir and thereby displaces a PDMS membrane to actuate fluid in the microchannel
underneath was reported lately [37]. Monolithic membrane valves, fabricated by
sandwiching an elastomer membrane between etched glass fluidic channels, that
are suitable for large-scale integration were presented [38].

5.2.2. Micropumps

Electrohydrodynamic pump. The electrohydrodynamic pump consists of two
planar-processed, conductive electrodes. When the electrodes are in contact with
fluids inside the microchannels, the pressure can be generated by ion dragging of
fluids [39]. Applied voltage ranging from 300–500 V should in general result in
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pressures on the order of inches of water. The dominant force in electrohydro-
dynamic pumping is the coulomb interaction with a space-charge region that is
formed by injected or induced charges in the fluid. These charges are due to elec-
trochemical reactions at the electrodes. Pumps like electrohydrodynamic pump
are particularly suitable for application where many different fluid samples need
to be transported from one place to another in a micromachined device.

Magnetohydrodynamic pump. An AC magnetohydrodynamic (MHD) pumping
system has been presented by Lemoff and Lee, in which the Lorentz force is used
to propel an electrolytic solution along a microchannel etched in silicon [40]. The
micropump has no moving parts, produces a continuous (not pulsatile) flow, and
is compatible with solutions containing biological specimens.

Electroosmotic pump. The first study on fluid flow driven by electroosmotic
pumping in a network of intersecting capillaries integrated on a glass chip was
reported in 1994 [41]. Controlling the surface chemistry and the potentials ap-
plied to the microchannels allowed accurate transport of sample and reagents of
fixed volume from different streams to an intersection of capillaries.

Traveling-wave pumping. Directed movement of fluid and particles suspended in
a solution can be achieved via traveling-wave pumping [42]. The driving force
is generated from the applied four high-frequency square-wave voltages, with se-
quential phase differences of 90◦ to the micrometer-sized electrodes arranged in
parallel and one next to another. The high-frequency traveling-wave field is able to
drive the liquid forward but simultaneously may also trap microparticles present
in the fluid on to the electrode edges through dielectrophoresis. The latter feature
of traveling-wave pumping may be especially useful for “filtering” particles such
as bacteria from a water sample.

Thermal capillary pump. The thermal capillary pump works by selectively allow-
ing the DC current to flow through the addressed electrodes built inside the mi-
crochannel fabricated on the silicon chip. Nanoliter-sized discrete drops of fluid
can be moved around through addressable local heating [43]. The electrodes were
made by first depositing a 0.35 µm thick layer of aluminum on the silicon wafer
using an electron beam coating technique, and then covering the aluminum elec-
trodes sequentially with 1 µm SiOx, 0.25 µm SixNy, and 1 µm SiOx using plasma-
enhanced chemical vapor deposition. This pump can accurately mix, measure, and
divide drops by simple electronic control thereby providing a versatile pumping
method with multiple functions.

Piezoelectric pump. One of the earliest piezoelectric pumps was built in 1993 with
two glass plates and a silicon wafer [44]. A pressure chamber and a raised flat sur-
face suspended with a thin diaphragm are formed on the upper glass plate. The
piezoelectric actuator is placed on the raised flat surface. In order to guide the flow
of the pumped liquid, two check valves made of polysilicon are fabricated on the
silicon wafer at the inlet and outlet of the pressure chamber. When the piezoelectric
actuator is switched on through the applied periodic voltages, the liquid is driven
to the outlet. When the actuator is switched off, the liquid flows from the inlet
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into the pressure chamber. A further development has been a dynamic passive
valve whose performance is superior to that of the traditional static passive valves.
To stop the flow of the fluid in a static passive valve, a mechanical element such as
a flap, a sphere, or a membrane is usually used. In contrast, the dynamic passive
valve uses flow-channels having a simple truncated pyramidal shape [45, 46]. Im-
provement has been also made in building a miniature piezoelectric pump with
high bubble tolerance and self-priming capability [47]. The pumprate is about
1 mL/min for water and 3.8 mL/min for gas. The driving electronics have a volume
of 30× 13.5× 8 mm3 which allows the pump to be suitable for use in any portable
lab-on-a-chip system. Furthermore, using injection-molding method a piezoelec-
tric pump was produced with self-priming capability and a high pumprate up to
2 mL/min for liquid and 4 mL/min for gases [48].

Magnetic pump. An electromagnetically driven peristaltic micropump on a silicon
wafer has been fabricated [32]. This pump can be operated at a maximum flow
rate of 30 µL/min at 10 Hz in peristaltic motions with a DC current of 300 mA. It
allows for bidirection pumping flows. In a recent report, a novel microperistaltic
pump with two separate parts is presented. One part of the pump was integrated
into a small disposable cartridge and the other was made reusable as an integrated
part in the analytical device. Regarding the first part, three identical chambers were
fabricated in the cartridge and actuated in peristaltic mode by strong permanent
magnetic forces as well as restoring forces. The peristaltic timing was generated by
the second part, which is a reusable rotating permanent sector magnet. A maxi-
mal flow rate of 3.1 mL/min and a backpressure of 20 kPa were obtained with this
pump [49].

Other type of pumps. A thermally driven phase-change nonmechanical microp-
ump has been investigated theoretically and experimentally [50]. The pumping of
fluids was realized by using the actuation of a moving vapor slug (bubble) gener-
ated by suitably phased heating elements along the channel. Pumping of aqueous
and organic liquids in millimeter- and micrometer-sized channels by controlling
both spatially and temporally the concentration of redox-active surfactants using
an electrode array was demonstrated by Gallardo et al. [51]. Surfactant species
generated at one electrode and consumed at another were used to manipulate the
magnitude and direction of spatial gradients in surface tension and guide droplets
of organic liquids through simple fluidic networks. Prins et al. have demonstrated
controlled fluid motion in 3D structures with thousands of channels using the
electrocapillary pressure by electrostatically controlling the channel-fluid interfa-
cial tension [52]. The velocities of several centimeters per second are nearly two
orders of magnitude higher than the velocities demonstrated by other electroflu-
idic actuation principles.

5.3. Sample processing

Sample preparation is the first stage of a lab-on-a-chip system. It generally implies
the ability to process crude biological samples such as blood, urine, water, and so
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forth to isolate target molecules or bioparticles of interest such as nucleic acids,
proteins, or cells. Currently, most of the analytical methods used in biomedical
research and clinical applications analyze samples at volumes greater than 2 µL.
Handling and processing of microsamples (e.g., µL and sub-µL volume) is diffi-
cult. Analysis of sub-µL volumes of sample has known problems such as loss of
sample on the walls of pipette tips, loss by evaporation, loss of the targeted an-
alyte because of adsorption onto the tubing walls or containment vessels during
manipulation and processing period, and difficulty in obtaining a representative
sample from a nonhomogeneous specimen. Additionally, the low concentration of
the analyte may restrict the scale of miniaturization. In many cases, the analytes are
usually present at extremely low concentration, for example, 100 molecules/mL.
Hence, in a 1 µL sample there is less than one molecule of the analyte, and thus
this degree of miniaturization is impracticable. Sample miniaturization is suitable
for molecular analysis of genomic targets. Generally speaking, there are approxi-
mately 4400–11 000 white cells in a 1 µL of adult human blood. In theory the DNA
molecules from a single white cell are sufficient to allow the amplification of the
region of interest millions of times through the use of molecular technologies such
as PCR. For a blood specimen, suppose the white blood cell count is 10 000/µL, the
average volume for a sample to contain one white blood cell is 100 pL. In the event
of detecting rare cell types or microorganisms (e.g., detection of cancerous cells,
fetal cells in maternal circulation, assessment of minimal residual disease), insist-
ing on the use of reduced volume of samples is no longer practical. Under these
circumstances, sample sizes compatible with detection will have to be determined
by the expected cell frequency or microbial load and sample volumes ranging from
100 µL to 5 mL may be desired. Moreover, specific selection (e.g., dielectrophoresis
technology) or a preconcentration step has to be adapted to ensure the presence of
the desired cells or microorganisms.

5.3.1. Microfiltration

To analyze nucleic acid by a lab-on-a-chip system the nucleic acids released from
white blood cells usually have to be amplified by various amplification technolo-
gies such as PCR or strand displacement amplification (SDA). However, these am-
plification processes might be inhibited by hemoglobin released from red blood
cells. Hence, a fundamental consideration in designing the microfilter chips for
sample preparation is to facilitate the largest possible isolation of white blood cell
populations or nucleic acids with very low red cell or hemoglobin contamination.
All microfilter chips so far have been fabricated directly from silicon using both
conventional wet etching and reactive ion etching. Different structural designs
were explored, including simple arrays of posts [53], tortuous channels, comb-
shape filter, and weir-type filters [54]. The general structure of a microfiltration
chip is an etched chamber that contains the filter element across the entire width
of the chamber. The structure is capped with a planar glass. Sample is normally
pumped into the microfilter chip. According to the design, different particulate
components should be trapped either at the front entrance or within the filter bed.
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The study of microfilter-facilitated cell separation soon revealed that the deforma-
bility of cells plays a critical role in the separation efficiency. The filter dimensions
were initially designed according to the reported sizes of blood cells obtained from
morphological measurements of the stained cells. Yet, filtration of white and red
blood cells was found to be influenced by the cell concentration, applied pressure,
viscosity of the medium, and the size of the filter port. And it was discovered that
red blood cells with relatively stable discoid architecture readily align themselves
to facilitate passage through a 3 µm gap while highly deformable white blood cells
with spherical diameters in excess of 15 µm will pass through filter gaps of only
7 µm. Thus, optimization of filter geometry was performed and weir-type filters
with a filter gap of approximately 3 µm were proved to be effective in isolating
large-sized white blood cells with relatively high yield [54]. For genomic studies us-
ing DNA/RNA amplifications, it is not essential to achieve high efficiency in white
cell collection, but rather to achieve an adequate number of cells for successful
amplification. Thus, a filter system that receives 1.0 µL of whole blood containing
approximately 5000 white blood cells would be effective if the resulting white cell
collection was only 10% (i.e., collected 500 cells) provided that the contained red
cell population was less than 50 000 cells. Therefore, a system that isolates white
blood cells with 10% efficiency and removes red blood cells with 99% efficiency
will meet requirements. For the isolation of cells with very small sizes (e.g., bacte-
rial or viral particles) or specific types or subtypes (e.g., CD4+), microfilter chips
may be incompetent despite their effectiveness in removing red blood cells from
blood. The following two isolation approaches may be found useful.

5.3.2. Magnetic cell sorting

A microfluidic structure has been made in silicon to enable the magnetic cell sort-
ing [55]. An enrichment rate of more than 300-fold has been achieved. However,
it was impossible to control the interaction time of particles with magnet due to
the parabolic flow profile in microchannel. In addition, build-up of magnetic par-
ticles increased the magnetic field gradient inside the channel and consequently
entrapment of particles was observed.

5.3.3. Electronic cell separation

Spiral gold electrodes were fabricated on the glass substrate. The electrode array
consists of four parallel spiral electrode elements energized with phase-quadrature
signals of frequencies between 100 Hz and 100 MHz. Depending on the frequency
and phase sequence of applied voltages, the 3D forces generated by spiral elec-
trodes could result in cell radial motion, levitation, and trapping. The chip bear-
ing spiral electrodes has been used for the enrichment of breast cancer cells and
isolation of breast cancer cells from blood [56]. Complicated design of platinum/
titanium and indium tin oxide electrodes have been fabricated also on glass sub-
strate for cell manipulation [57]. Negative dielectrophoresis has been employed in
this case for concentrating and switching the particles at flow speed up to 10 mm/s.
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In addition, planar microelectrodes were used to trap viral particles when a phase-
shifted high-frequency AC signal is applied [58]. Moreover, individually address-
able microelectrode array fabricated on silicon substrate has been used for the iso-
lation of cultured cervical carcinoma cells from human blood [59]. This demon-
strated the possibility of further integrating cell isolation devices with other mi-
crodevices through the use of established silicon processing technologies. Recently,
a novel method for continuous cell separation was developed by integrating
traveling-wave dielectrophoresis and laminar flow on a single biochip-based de-
vice, and the separation of Jurkat cells from red blood cells has been achieved
[60].

5.4. Biochemical reaction

Biochemical reaction may include various types of chemical or enzymatic reac-
tions such as chemical labeling, DNA amplification using PCR or SDA, or DNA
restriction enzyme digestion.

5.4.1. Amplification of nucleic acids

The amplification of nucleic acids has been performed in microchips fabricated
from different substrates such as glass [61, 62, 63], silicon-glass [59, 64, 65, 66],
and plastics [67, 68]. Both thermal [69, 70] and isothermal amplification tech-
niques were demonstrated [64, 71]. The reaction volumes varied from a 1 µL [68]
togreater than 25 µL [72]. The silicon-glass microchips were bonded by using ei-
ther silicone rubber [65] or anodic bonding [70]. The size of the amplification
products ranges from approximately 50–1600 bp. Thermal cycling was achieved
either by an on-chip polysilicon thin film heater or externally by means of a Peltier
heater-cooler, or an infrared irradiation [66, 72]. Nucleic acids have been amplified
in these microchips using conventional hot-start PCR, LCR, DOP-PCR [69, 72,
73], multiplex PCR, and SDA [64, 73]. RNA has been amplified using the single-
step RT-PCR protocol [74]. Rapid PCR was achieved recently on a microchip-
based PCR device using flexible printed circuit technology. An new digital tem-
perature control system was developed by introducing a heater/sensor switching
procedure. Temperature stability within ±0.3◦C and a transitional rate of 8◦C/s
during heating/cooling was achieved [75].

Surface chemistry plays a significant role in microchip amplification reactions
[70]. Various passivation procedures have been tested and several were identified
as PCR and LCR friendly. Covering a silicon surface with a thermally induced sili-
con dioxide layer (thickness of 2000 Å) is the most effective passivation procedure
discovered so far for nucleic acid amplification reactions [72]. Isothermal nucleic
acid amplification techniques (e.g., nucleic acid sequence-based amplification and
SDA) are candidate techniques for a microchip format. These techniques do not
require the use of the heater-cooler system and therefore greatly simplify the con-
struction and operation of a microchip for nucleic acid analysis and should prove
energy saving.
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5.4.2. Other chemical reactions

Apart from the DNA/RNA amplification performed in various microchips, other
chemical reactions have also been investigated using microchips. For example,
both quartz and glass microchips have been fabricated for performing capillary
electrophoresis and postcolumn reaction [76]. On-chip postcolumn reaction of
o-phthaldialdehyde and amino acids generated theoretical plate numbers up to
83 000 and approximately 90 milliseconds peak widths. Approximately 10% degra-
dation efficiency was due to the reactor geometry. Apart from that, it was found
through the study that pH differences in the mixing solutions play a role in the ef-
ficiency of the postcolumn reactions. In another report, enzymatic reactions were
performed within a microfabricated channel network [77]. Precise concentrations
of substrate, enzyme, and inhibitor were mixed in nanoliter volumes using elec-
trokinetic flow. Reagent dilution and mixing were controlled by regulating the ap-
plied potential at the terminus of each channel, using voltages derived from an
equivalent circuit model of the microchip. The β-galactosidase-catalyzed hydrol-
ysis of resorufin β-D-galactopyranoside was used as a model system for enzyme
kinetic and inhibition determinations. The microchip approach assay allowed the
studies to be completed with significant time-savings and reduction of reagent
consumption by more than 4 orders of magnitude while delivering results consis-
tent with conventional approaches.

5.5. Result detection

Result detection may be facilitated by microchannel-based separation approach,
microarray-based affinity binding approach, and so forth.

5.5.1. Microchannel-based separation methods

One distinct advantage for microfabricated chips is that they can be utilized as
platforms for multipurpose liquid sample handling and analysis. As a result, a va-
riety of separation methods have been developed for use with microchips. The
methods implemented on chips include free-solution capillary electrophoresis,
capillary gel electrophoresis, micellar electrokinetic chromatography, isotacho-
phoresis, isoelectric focusing, open-channel electrochromatography, and free-flow
electrophoresis.

Free-solution capillary electrophoresis. Free-solution capillary electrophoresis was
the earliest capillary electrophoresis transferred into microchip manifold. Repre-
sentative pioneer report was jointly made by Harrison’s and Manz’s groups [78].
Using glass capillary electrophoresis chip, they performed the free-solution cap-
illary electrophoretic separation of 6 γ-fluorescein isothiocyanate-labeled amino
acids in approximately 15 seconds. Many works have been done since then. In a
study conducted by Ramsey’s group [79], free-solution capillary electrophoresis
has been performed on a microchip capillary electrophoresis device. It is the first
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time that single chromophore molecules were separated and then counted using
confocal microscopy. Another study conducted by the same group demonstrated
the separation of rhodamine B and dichlorofluorescein in 0.8 milliseconds [80].
In this study a separation channel of 200 µm long and 26 µm wide was fabricated
and used to achieve a 100-fold decrease in electrophoretic separation. This high-
speed microchip electrophoresis has also shown improved efficiency and this was
made possible mainly by reducing the injected sample plug width and joule heat-
ing to increase the plate height. This system undoubtedly will become a valuable
measurement for monitoring millisecond time-scale kinetics for chemical and bio-
chemical reactions required commonly in ultra-high-throughput drug screening
processes.

Capillary gel electrophoresis. Gel electrophoresis is the most common approach for
separating biopolymers such as nucleic acids and proteins. Due to its wide appli-
cation and huge commercial value, gel electrophoresis has been exploited for quite
a few years in microchip platform. Effenhauser et al. [81] were the pioneers in this
transferring process. They reported the first case in 1994 where noncross-linked
10% T polyacrylamide-filled microchannels machined on planar glass substrates
were employed for size separation of phosphorothioate oligonucleotides ranging
from 10–25 bases. The separation was obtained in 45 seconds with a plate height
of 200 nm. Since then, a lot of research activities have been undertaken to advance
this technique and broaden its applications. More review on this technique is pre-
sented in a later section.

Micellar electrokinetic chromatography. Micellar electrokinetic chromatography
(MEKC) was initially developed by Terabe et al. [82]. In MEKC, surfactants with
concentrations larger than their critical micelle points are added to the separation
buffer facilitating the separation of uncharged solutes based upon differential par-
titioning. The separation of charged molecules is determined by electrophoresis,
electrostatic interactions, solute complexation with the surfactant, and also parti-
tioning between two phases. Microchip-based MEKC was first reported by Moore
et al. to separate three coumarin dyes in a separation buffer of 50 mM SDS and
10% methanol [83]. At field strength lower than 400 V/cm, excellent reproducibil-
ity was demonstrated. In another study, the separation of 8 most common bio-
genic amines was achieved in 75 seconds by running the MEKC in a glass chip
and also the biogenic amines from soy sauce samples were identified by the same
approach [84]. A quite different separation format was reported by von Heeren et
al., where a glass capillary electrophoresis chip with cyclic channels was fabricated
for achieving separation of 6 fluorescein isothiocyanate-labeled amino acids in a
few seconds [85]. The MEKC separation efficiency in this study was found com-
parable to that obtained by chip-based gel electrophoresis. Chip-based MEKC has
shown increased separation efficiency and several 10-fold declines in separation
time, when compared to conventional MEKC performed in fused-silica capillary.
Additionally, the efficient heat dissipation in glass, silica, or silicon chips enables
the application of very high field (up to 2 kV/cm) for separation achievable in mil-
lisecond to second time.
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Isotachophoresis. The transfer of isotachophoresis on a glass-glass microchip was
achieved to separate two herbicides [86]. The separated herbicides paraquat and
diquat with concentrations as low as 2.3 × 10−7 M were detected by Raman spec-
troscopy detection. The Raman microprobe was directly coupled to the microchip
without any interfacing. The Raman spectra were generated by using a 532 nm
NdY-VO4 laser of 2 watts and collected at 8 cm−1 resolutions with a holographic
transmissive spectrography and a cooled charge coupled device.

Isoelectric focusing. The capillary isoelectric focusing was performed in the sepa-
ration channel with a width of 200 µm, depth of 10 µm, and length of 7 cm etched
on a glass microchip [87]. The researchers found that compared to the chemi-
cal and hydrodynamic driven mobilization, EOF driven mobilization (occurring
simultaneously with focusing) is most suitable for use with chip format due to
its high speed, EOF compatibility, and low instrument requirements. Using chip-
based capillary isoelectric focusing a mixture of Cy5-labeled peptides could be fo-
cused in less than 30 seconds with plate heights of 0.4 µm.

Open-channel electrochromatography. Other than capillary electrophoresis, micro-
chip capillary platform has been adapted for a chromatographic technique called
open-channel electrochromatography (OCEC) [88, 89]. In this circumstance, elec-
troosmotic pumping was used to move the mobile phase through a serpentine-
shaped microchannel. In the first study reported by Jacboson et al., the interface
of the microchannel was chemically modified with octadecylsilane as stationary
phase [88]. The separation of three neutral coumarin dyes was demonstrated in
a mobile phase containing 10 mM sodium tetraborate and 25% acetonitrile. In a
further study, solvent programming has improved the efficiency for OCEC [89].
The computer-controlled application of voltages was applied to the terminals of
the chip for adjusting the isocratic and gradient elution condition. The researchers
found that linear gradients with different slopes, start times, duration times, and
start percentages of organic modifier are important elements for enhanced selec-
tivity and reduced assay time. A complete run including fast reconditioning took
only 60 seconds to accomplish.

Free-flow electrophoresis. In the separation of biopolymers or cells 2D methods
are inherently more powerful than 1D method since the resulting peak capacity
is increased. Free-flow electrophoresis (FFE) is one of these methods. Different
from other 2D separation methods such as 2D gel electrophoresis where a sup-
porting medium (like gel), high salt concentrations or even organic solvents have
been used, FFE is very gentle in the separation conditions used and therefore espe-
cially suitable for separations involving cells and proteins. For example, Raymond
et al. have performed FFE initially in a micromachined silicon device for continu-
ous separation of rhodamine-B isothiocyanate-labeled amino acids in 20 minutes
with an applied voltage of 40 v [90]. Later, they further separated high molecular
weight compounds, such as human serum albumin, bradykinin, and ribonucle-
ase A, in a 25-µL volume FFE microstructure [91]. Also continuous separation
of more complicated samples such as tryptic digests of mellitin and cytochrome
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c were obtained. The concentration of samples was detected using laser-induced
fluorescence detection. In another report dielectrophoretic free-flow fractiona-
tion was conducted to separate human leukemia (HL-60) cells from peripheral
blood mononuclear cells in a planar glass substrate plated with gold interdigi-
tated electrodes [92]. With this technique an appropriate AC voltage signal was
applied to the microelectrodes, the cells were levitated and suspended in the sep-
aration chamber with different equilibrium heights due to the dielectrophoretic
forces generated by the applied AC signal. The separation of cells was eventually
achieved based on the balance of dielectrophoretic, gravitational, and hydrody-
namic lift forces they were subjected to. Two reports published at the same time
described a method very similar in principle to that of FFE, differing in that mi-
crofabricated fractal arrays were adapted to replace the free zones created in FFE
for achieving much higher efficiency and separation resolution [93, 94]. Although
both works, were at their early stages the calculated separation of DNA with size
ranging from 100–20 000 bp were predicted. Once realized, this technique may fa-
cilitate simple set-up and automation, and also the device cost might be less than
1 dollar and so it could be disposed after single use.

Pulsed-field electrophoresis. In a study by Austin’s group, pulsed-field electropho-
resis (PFE) was transferred into the microfabricated silicon devices where arrays
etched on the silicon were utilized as separation matrix rather than gels used in
conventional PFE [95]. The study indicates that the motions of biopolymers in the
microarray matrix are more uniform compared to what happened in gels. Less dis-
persion in displacement is therefore anticipated which may lead to reduced band
broadening and improved resolution. The separation can be greatly increased as
megabase DNA will not be trapped in the array—arresting of long molecules in a
gel will not happen here, so much higher separation voltage can be applied. Excel-
lent heat dissipation through the silicon substrate further supported the applica-
tion of higher fields.

Nucleic acid analyses. The analyses of nucleic acids can be divided into two main
categories. One is the fragment sizing in most cases related to the detection of DNA
mutations. The other one is DNA sequence analysis. For the first category polymer
solution gel capillary electrophoresis has been used as the main separation media.
One of the earliest separation cases, the rapid sizing of PCR amplified HLA-DQα
alleles as well as the spiked DNA marker with size ranging from 72–1353 bp was
obtained in approximately 2 minutes in a glass capillary electrophoresis device
[96]. Hydroxyethyl cellulose (HEC) was used to form the entangled free-solution
sieving matrix in this study. Apart from glass chips, plastic chips have been fabri-
cated and used for fragment sizing [15, 97] and detection of single DNA molecules
[15]. Using injection-molded acrylic capillary electrophoresis chip and HEC as
sieving matrix all fragments in the DNA marker with size ranging from 72–1353 bp
was baseline resolved in 2.5 minutes. The standard deviation for run-to-run is less
than 1% and for chip-to-chip is between 2%–3% [97]. Also PDMS molded cap-
illary electrophoresis chip has been used together with hydroxypropyl cellulose as
sieving media in the separation of the marker same as that used in reference 6 and
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36. In the study of single DNA molecule detection efficiency larger than 50% was
obtained using the same device [15]. Fused-silica capillary electrophoresis chip
has been fabricated and used for fast DNA profiling [97]. In this case a replaceable
denaturing polyacrylamide matrix was employed for baseline-resolved separation
of single-locus short tandem repeats amplicons. The complete separation of four
amplicons containing loci of CSF1PO, TPOX, THO1, and vWA was achieved in
less than 2 minutes representing a 10- to 100-fold increase in speed compared to
the conventional capillary or slab gel electrophoresis systems. In another report,
glass capillary array electrophoresis chip filled with HEC solution was used for
high-speed DNA genotyping [98]. Twelve DNA samples with the largest fragment
size of 622 bp were separated in parallel in less than 3 minutes (Figure 5.2). For the
detection of all lanes a laser-excited confocal fluorescence scanner was developed
for achieving a temporal resolution of 0.3 seconds. In a study reported by Ogura
et al., ribosome RNA samples were separated in an injection-molded plastic mi-
crochannel with a cross-section of 100×40 µm and an effective length of 1 cm [99].
The sieving matrix employed is hydroxypropylmethylcelulose and the detection of
RNA, less than what can be obtained from a single cell, is achieved using a flu-
orescent microscope equipped with a photometer. Recently, a PDMS chip-based
temperature gradient capillary electrophoresis was developed for fast screening of
SNPs. A temporal temperature gradient with a precision of 0.1◦C per step was ap-
plied on the chip during the separation. The homoduplexes and heteroduplexes
were baseline resolved [100].

Ultra high speed DNA sequence analysis has been achieved on a glass capillary
electrophoresis chip where a denaturing 9% T and 0% C polyacrylamide solution
was used as the separation media [101]. When a four-color detection scheme was
used the readout of approximately 200 bases was obtained in 10 minutes in an
effective separation length of 3.5 cm. After optimization of both electrophoretic
channel design and methods, much higher readout in four-color DNA sequencing
was obtained, that is, 500 bases in less than 20 minutes (Figure 5.3) [102]. For the
purpose of fast DNA sequence analysis, when a 96-channel array chip is used one
can then easily see how significant the production rate could be compared to the
conventional DNA sequencers. A fast sequencing system named BioMEMS-768 is
being commercialized by Network Biosystems. Specific features of the system in-
clude throughput of 5 Mbp per day with a read length of 800 bp or greater and
operating cost reduction of at least 50% compared to current capillary-based sys-
tems [103].

Immunoassay. One of the main uses of microchip capillary electrophoresis is for
immunoassay where sensitivity and specificity of antibody-antigen interaction is
critical. The ability to separate and quantify immunological reactants and products
on-chip has been demonstrated [85, 104, 105]. In a clinically related study micro-
fabricated fused-silica chip has been made for the separation and quantitation of
free and bound labeled antigen in a competitive assay [105]. The microchip-based
capillary electrophoresis analysis could detect cortisol present in blood serum over
the range of clinical interest (1–60 µg/dL) without any sample pretreatment.
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Figure 5.2. (a) Mask design used to photolithographically pattern the 12-channel CAE chips. (A) In-
jection channels, 8 mm long. (B) Separation channels, 60 mm long. (C) Optical alignment channels.
(D) Detection region, ∼45 mm from the junctions of injection and separation channels. (1) Injection
waste reservoirs. (2) Ground reservoirs. (3) Injection reservoirs. (4) High-voltage anode reservoir. The
actual chip size was 50 mm×75 mm. (b) Representative electropherograms of the three different HLA-
H nucleotide 845 genotypes (B–D) generated from the microfabricated capillary array electrophoresis
chip, along with the pBR322 Mspl standard ladder (A). The HLA-H peaks are shaded. From [98], with
permission.

The separation and detection needs only 30 seconds to accomplish. In another
report micellar electrokinetic capillary chromatography has been performed on a
glass microchip fabricated with cyclic planar structure [85]. A competitive assay
for theophylline (an asthma treatment drug) presented in serum has been con-
ducted. The adsorption of proteins onto the uncoated walls of the injection chan-
nel can be overcome by adding some sodium dodecyl sulfate-containing buffer to
the reaction mixture before injection. The separation speed is approximately 50
times faster than the conventional capillary electrophoresis analysis. Free-solution
analysis of serum theophylline has also been performed on a capillary electropho-
resis chip [105].

5.5.2. Microarray-based affinity binding assay

Analyses of nucleic acids. A variety of DNA chips have been prepared for DNA
mutation detection [106, 107], SNP analysis [108, 109], DNA resequencing [110],
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Figure 5.3. Analyzed four-color M13 DNA sequencing traces from a CE chip. Separation was per-
formed on a 7 cm-long channel with a 100 µm twin-T injector using 4% LPA as the separation medium
at 40◦C. Separation was performed with a voltage of 160 V/cm, and the detector was 6.5 cm from the
injector. Only 0.2 µg of DNA template was employed per reaction, and 1 µL of the final reaction solu-
tion (33%) was loaded on the chip. This run was complete in less than 20 minutes. From [102], with
permission.

and gene expression studies [111, 112]. To screen for a wide range of heterozygous
mutations in the 3.45 kilobases exon 11 of the hereditary breast and ovarian can-
cer gene BRCA1, a glass-based DNA chip with a density of 96 600 sites was used
[106]. The oligonucleotide probes (each with a length of 20 nucleotides) were syn-
thesized in situ using a light-directed synthesis method. Each assay requires more
than 4 hours to complete. Comparatively speaking, performing DNA mutation de-
tection using microfabricated silicon bioelectronic chip has obvious advantages in
terms of saving time. Discrimination among oligonucleotide hybrids with widely
varying binding strengths was obtained using these active bioelectronic chips by
simply adjusting the applied field strength. Single base pair mismatch discrimi-
nation was achieved in less than 15 seconds with high resolution using an elec-
tronic field denaturation approach [107]. In another study, large-scale identifica-
tion, mapping, and genotyping of SNPs of a 2.3 megabase-long human genomic
DNA were performed using a glass-based high-density variation detection chip
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[108]. A total of 3241 candidate SNPs were identified and the constructed genetic
map shows 2227 locations of these SNPs. Each assay needs more than 15 hours.
Again, similar analyses could be performed in a much shorter time if an active
chip was used during hybridization [109]. Both oligonucleotide and cDNA has
been arrayed on glass substrate to monitor the gene expressions [110, 111]. In
one report genome-wide expression monitoring in Saccharomyces cerevisiae was
conducted using a glass chip with more than 260 000 specifically chosen oligonu-
cleotide probes [110]. Expression levels ranging from less than 0.1 copies to several
hundred copies per cell have been measured for cells grown in rich and minimal
media. The measurements are quantitative, sensitive, specific, and reproducible. In
another study, cDNA microarray containing 9996 elements was made on glass us-
ing a robotic arm, and was used for the investigation of the response of fiberblasts
to serum. It demonstrated that many features of the transcriptional program could
be related to the physiology of the wound repair [111]. Recently, genomic gene ex-
pression was analyzed in relation to the response of the Saccharomyces cerevisiae
to two antibiotics, amphotericin B, and nystatin. There are approximately 6000
ORFs from Saccharomyces cerevisiae printed on the slide to make the microar-
ray [113]. Also, a microarray with 14 160 human cDNAs was utilized to study the
mechanism of Alzheimer’s disease. The preliminary results support the amyloid
cascade hypothesis as the mechanism of the disease [114].

Analyses of proteins. To bridge genomics and proteomics, protein microarrays are
a powerful tool for linking gene expression to molecular binding on a whole-
genome level. If differentially expressed genes are discovered through cDNA mi-
croarray approach, the same clones can then be examined simultaneously for pro-
tein expression in different cellular systems or by in vitro transcription/translation.
Peptide microarrays were made on active silicon chips [112]. Each microelectrode
fabricated on the chip is individually addressable through a CMOS circuitry built
also on the silicon substrate. The peptide arrays were made through the electro-
polymerization process of the pyrrole-modified peptide. The peptide fragments
belong to adrenocorticotrophic hormone. Once arrayed, these peptides were ex-
amined through immunodetection. In a different study, protein solutions were
arrayed onto polyvinylidene difluoride filters at high density by a robotic system
[115]. The fabricated protein chips were used for protein expression studies and
could also be used for antibody specificity screening against whole libraries of pro-
teins. Techniques developed for deposition of macromolecules onto solid supports
include microdispensing [116], electrospray deposition [117], robotic printing
[118], stamping [119], inkjet deposition [120], and ion soft-landing [121]. In a re-
cent study, protein microarrays were generated by printing complementary DNAs
onto glass slides and then translating target proteins with mammalian reticulocyte
lysate. Epitope tags fused to the proteins allowed them to be immobilized in situ.
This obviated the need to purify proteins, avoided protein stability problems dur-
ing storage, and captured sufficient proteins for functional studies. They used the
technology to map pairwise interactions among 29 human DNA replication ini-
tiation proteins, recapitulate the regulation of Cdt1 binding to select replication
proteins, and map its geminin-binding domain [122]. In our laboratory, a protein
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chip was developed for doping analysis. The assay was competitive immunoassay-
based. Rather high detection sensitivity was obtained with the real athlete urine
samples [123].

5.6. System integration

Building lab-on-a-chip systems has now become the central focus in miniaturiza-
tion of bioanalytical processes. In general, a lab-on-a-chip system should include
three representative parts of all biological assays, namely sample processing, bio-
chemical reaction, and detection [124]. Sample handling and manipulation gener-
ally includes cell separation, lysis, and DNA/RNA isolation. Biochemical reaction
may include various enzymatic reactions such as polymerase chain reaction or
proteinase K digestion, and chemical labeling. Detection for reactants has mainly
been done through two approaches. One is based on molecular separation us-
ing techniques such as capillary electrophoresis or high performance liquid chro-
matography, and the other is based on affinity binding. The integration of the three
steps described above cannot be achieved without the use of microfabricated de-
vices (such as cell separation chip, DNA amplification chip, etc.) and microfluidic
control units (such as miniaturized valves and pumps). Several achievements have
been made with partial integration of these three key steps including the integra-
tion of sample preparation with biochemical reaction [54, 125, 126] and the inte-
gration of the biochemical reaction with molecular detection [62, 63, 71, 127, 128].
A complete lab-on-a-chip system has been constructed which clearly demonstrates
the possibility of this type of work [64]. Compared to the traditional approaches, a
fully integrated portable lab-on-a-chip system has the advantages of reduced con-
tamination, minimal human intervention, mobility, reproducibility, and low con-
sumption of costly reagents and samples. It is anticipated that a completely inte-
grated and self-contained portable lab-on-a-chip will have numerous applications
in areas such as point-of-care diagnosis, scene-of-crime identification, outer-space
exploitation, on-site agricultural testing, and environmental monitoring. The fol-
lowing summarizes the efforts towards the construction of various lab-on-a-chip
systems.

5.6.1. Nucleic acid analysis system

Integration of sample processing and reaction. The separation of white blood cells
from red blood cells followed by thermal lysis and PCR amplification was per-
formed in a single silicon-glass chip [54]. The integrated microchip was designed
to combine a microfilter and a reactor together. In a different study, isolation of
Escherichia coli cells from human blood through dielectrophoresis followed by the
electronic lysis of the isolated E. coli cells was achieved [125]. Moreover, trans-
portation of different cells in microchannels by either electrophoretic pumping or
electroosmotic pumping followed by chemical lysis was attempted [126].

Separation-based system. The ultimate goal of developing microchip-based de-
vices is to build a so-called lab-on-a-chip system. Generally, a lab-on-a-chip
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system should be composed of three typical steps usually seen with all biologi-
cal assays, that is, sample preparation, chemical reactions, and detection [124].
Sample preparation generally includes the cell isolation, lysis and DNA/RNA ex-
traction. Chemical reaction usually is represented by various enzymatic reactions
such as PCR or proteinase K digestion, or chemical labeling and so forth. De-
tection for nucleic acids is achieved through two approaches. One is separation-
based detection such as capillary electrophoresis or HPLC, and the other is repre-
sented by hybridization-based approach. In the following only the efforts devoted
for the construction of capillary electrophoresis-based lab-on-a-chip systems are
reviewed.

In the integration process of combining sample preparation, chemical reac-
tion and capillary electrophoresis-based detection together, only partial integra-
tion has been obtained. The group at University of Pennsylvania led by Wilding
and Kricka have reported the first case of performing sample preparation and
chemical reaction in one chip [54]. In this report a silicon-glass chip with a micro-
filter and reactor integrated has been utilized for the isolation of white blood cells
from red blood cells followed by a PCR amplification of the DNA released from
the isolated white blood cells (Figure 5.4). Using a single bioelectronic chip Cheng
et al. have made possible the isolation of E. coli cells from human blood through
dielectrophoretic separation process followed by the electronic lysis of the isolated
cells (Figure 5.5) [125]. Similarly cultured cervical carcinoma cells were isolated
from normal human blood cells by this group [59]. Cell transportation in mi-
crochannels by electrophoretic pumping and/or electroosmotic pumping has been
investigated followed by chemical lysis using SDS buffer [126]. The partial inte-
gration of enzymatic reaction and capillary electrophoretic separation has been
made on a single glass chip by Jacobson and Ramsey [128]. In this study both the
plasmid pBR322 DNA and the restriction enzyme Hinf I was electrophoretically
pumped into a 0.7 nL reaction chamber where the digestion occurred. The di-
gested DNA fragments were then sized in the capillary etched on the same chip.
The entire process was completed in 5 minutes. In a joint study DNA was ampli-
fied randomly in a silicon-glass chip using DOP-PCR followed by specific multi-
plex PCR amplification of dystrophin gene in a second chip. The amplicons were
then separated in a glass microchip by capillary electrophoresis (Figure 5.6) [73].
Functional integration of PCR amplification followed by capillary electrophoretic
fragment sizing was done by coupling the silicon PCR chip with the glass capillary
electrophoresis chip [127]. Using the in-chip polysilicon heater, fast PCR ampli-
fication of a β-globin target cloned from M 13 was finished in 15 minutes. The
followed capillary electrophoresis separation took approximately 2 minutes. One
single glass chip has been fabricated by Ramsey’s group to perform combined cell
lysis, multiplex PCR, and capillary electrophoresis separation [62, 63]. The PCR,
thermal cycling took a couple of hours and the separation of amplicons took about
3 minutes using either HEC or poly(dimethylacrylamide) as sieving gels. Great
progress has been made in the fabrication and utilization of a microfabricated sil-
icon chip with integrated metering capability, thermal pump, isothermal reactor,
and capillary electrophoresis structure [71]. The amplification of DNA through
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Figure 5.4. Filtration-PCR chip designs and results of direct PCR for dystrophin gene. (a) Integrated
filter-PCR chip based on linear weir-type filter in the PCR chamber. (b) Integrated filter-PCR chip
based on coiled weir-type filter in the PCR chamber. (c) Electrophoretograms of 202 bp-amplification
product (exon 6, dystrophin gene) from direct PCR of DNA in filtered white blood cells using a filter-
PCR chip (A) and a positive control (B). A 0.5-µL sample was removed from the chip, diluted with
99.5 µL water, and then injected (5 kV/5 s) onto a 100 µm × 27 cm-long DB-1-coated capillary in a
P/ACE 5050 (run 8 kV/10 min). From [54], with permission.

SDA—an isothermal amplification technique like PCR has been adopted and the
amplicon was separated in the microchannel and detected by the integrated pho-
todetector. The total performance of metering the reactants, amplification, and
capillary electrophoresis-based separation took approximately 20 minutes (Figure
5.7). This milestone work has shown the possibility in making a complete inte-
grated and self-contained portable device in the near future for many applications
such as point-of-care in hospitals, scene-of-crime identification, outerspace ex-
ploitation, on-site agricultural testing, and environmental monitoring.

Hybridization-based system. There have been only a few studies about the con-
struction of a lab-on-a-chip through DNA hybridization. Integration of PCR reac-
tion and hybridization was achieved using passive glass chips packaged in a plastic
cartridge made of polycarbonate [129]. The fluidic manipulation was achieved us-
ing pneumatically actuated valves, pumps, and porous hydrophorbic vents. Once
DNA is extracted, the premixed components for PCR were introduced into the in-
let port on the cartridge. The amplicons were then allowed to go through a series of
reactions inside the cartridge to become fragmented and fluorescently labeled. In
the end the labeled DNA targets were detected by hybridization with the oligonu-
cleotide probes attached on a glass microarray chip. The chemical processing stage
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Figure 5.5. Dielectrophoretic separation of E. coli from blood cells. The mixture is separated according
to charge, bacteria localizing in zones under electric field maxima (white) and erythrocytes localizing
in zones under filed minima (red). From [125], with permission.

needs approximately 2–3 hours and the detection via hybridization takes approxi-
mately 8 hours. The overall time spent is over 10 hours. The reason for the lengthy
processes is as follows. Thermal cycling for PCR accomplished by heating/cooling
the plastic cartridge with the thermoelectric devices is not efficient as plastic is not
a good thermal material. Furthermore, hybridization on a glass microarray chip
takes place by the passive diffusion process and therefore hours of processing time
is required. In another system, sample processing and hybridization-based elec-
tronic detection has been integrated into a hand-held instrument [130]. This sys-
tem can process the crude samples such as blood, lyse cells and release DNA. The
released DNA molecules are hybridized with the immobilized DNA probes. The
DNA probe was attached to the electrode pads on the chip through phenylacety-
lene polymer. After hybridization, reporter DNA molecules linked to ferrocene
redox labels (an amperometric bioelectronic reporter) were added. When voltage
is increased an electric current associated with reduction/oxidation of ferrocene
labels is detected to differentiate hybridized and unhybridized DNAs at electrodes.
The current detection sensitivity is around 107 copies. Two issues should be fur-
ther examined here. First, if the directly released DNA is always used without any
amplification stage, complexity reduction in sample components has to be con-
sidered for many applications. Second, the hybridization stringency required by
point mutation detection and the detection sensitivity for rare events should be
ensured.

Progress has been made on the miniaturization of the fluorescence-based op-
tical detection system. A custom-designed integrated circuit containing 4 × 4 ar-
ray of phototransistors and on-board signal processing was fabricated [131]. Each
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Figure 5.6. Chip CE electropherograms of multiplex PCR amplicons produced using extracted human
genomic DNA as template. (A) The amplicons generated in a GeneAmp test tube where a normal
human genomic DNA sample was used as template; (B) the amplicons generated in a silicon-glass
chip using the same human genomic DNA sample as in (A) was used as template; (C) the amplicons
generated in a silicon-glass chip where the human genomic DNA from an affected patient was used as
template. Conventional CE electropherograms (D–F) for amplicons used in (A–C), respectively. From
[73], with permission.

phototransistor-sensing element fabricated on the integrated circuit chip com-
posed of 220 phototransistor cells connecting in parallel, and can completely con-
vert an optical signal to an electronic signal suitable for data digitization and cap-
ture by a computer. When used for the detection of the induced fluorescence signal
in DNA microarray, the signals from this amplifier/transistor chip were directly
recorded without the need of any electronic interface system or signal amplifi-
cation device. Such integrated circuit device is useful in constructing a portable
lab-on-a-chip system with the capability of detecting multiple DNA targets simul-
taneously.

A complete sample-to-answer system with portable size and short operation
time has been constructed and reported using active bioelectronic chips [64]. To
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Figure 5.7. Schematic of integrated device with two liquid samples and electrophoresis gel present.
The only electronic component not fabricated on the silicon substrate, except for control and data-
processing electronics, is an excitation light source placed above the electrophoresis channel. (a) Color
code: blue, liquid sample (ready for metering); green, hydrophobic surfaces; purple, polyacrylamide
gel. (b) Optical micrograph of the device from above. Wire bonds to the printed circuit board can be
seen along the top edge of the device. The blue tint is due to the interference filter reflecting the short-
wavelength light. The pressure manifold and buffer wells that fit over the entry holes at each end of the
device are not shown. From [71], with permission.

improve the cell isolation efficiency, 100×100 microelectrode array was fabricated
on a 1 cm2 electronic chip to replace the previous 10 × 10 array. To construct a
functional device, a thin layer of sol-gel was first coated on the chip to prevent
biomolecules from being damaged and to reduce the nonspecific adsorption of
chemical components. Secondly, a flow cell was glued onto the coated chip to fa-
cilitate the fluidic manipulation. The machined plastic flow cell has four ports for
the introduction of sample and reagents, and also for chemical mixing. This chip
assembly has been used for cell separation, cell lysis, and also DNA amplification.
To facilitate the SDA reaction a ceramic chip heater is attached to the bottom sur-
face of the electronic chip (Figure 5.8). The details of the fluidic assembly may
be found in a report by Cheng et al. [64]. The DNA amplicons obtained in the
100× 100 chip was then transported through the connecting tubing to the second
chip by a fluidic system with twelve miniature three-way solenoid valves driven
by a computer-controlled solenoid pump. The second chip has an array of 5 × 5
microelectrodes. The agarose coating on the chip works as permeation layer with
oligonucleotide probes preimmobilized (through biotin-streptavidin interaction)
on the selected microlocations right above the electrodes. When the denatured
and desalted amplicons were transported into this chip a DC-based electronic hy-
bridization process [125] was adapted to detect specific marker sequences in the
amplified DNA. To enable the detection, a battery-operated 635 nm diode laser
and a CCD camera coupled with a set of filters and a zoom lens was used. The
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Figure 5.8. (a) The front view of the packaged bioelectronic chip with 100× 100 microelectrodes and
four-ports flow cell for dielectrophoresis enabled cell separation and SDA-based DNA amplification.
(b) The back view of the above-mentioned bioelectronic chip where the miniature ceramic heater was
placed tightly against the back side of the silicon chip for providing constant temperatures required by
isothermal DNA amplification. (c) The front view of the packaged DNA hybridization chip with 5× 5
microelectrodes. (d) The close-up of the cartridge bearing the chip for sample preparation and reaction
and the chip for hybridization-based DNA analysis (bottom right). These two chips were connected
through complex fluidic tubing.

use of a sinusoidal wave signal for both cell separation and electronic hybridiza-
tion greatly simplified the design of the device. The battery-operated diode laser
has a power of 2 mW and an emission wavelength of 635 nm. The fluorescent dye
used to label the reporter probe was Bodipy-630. The wavelength of the emis-
sion filter is 670 nm. The dichromatic mirror has a wavelength cutoff at 645 nm.
With this prototype lab-on-a-chip system, cell separation and lysis process takes
15–25 minutes depending on the complexity of the sample. Other processes in-
cluding denaturation and desalting, SDA amplification, and hybridization-based
detection requires approximately 5, 30, and 5 minutes, respectively. Typically, a
complete sample-to-answer process requires a total of approximately 1 hour to
complete (Figure 5.9). As the first commercial, analytical instrument based on
chip-based capillary electrophoresis technology the Agilent 2100 bioanalyzer has
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Figure 5.9. (a) The completed lab-on-a-chip system. (b) Industrial design of the lab-on-a-chip system
with the assay chamber lid open. Shown in the bottom left corner is a plastic molded cartridge. (c)
The SDA reaction products detected by gel electrophoresis. Note that the SDA reaction yields two
specific amplification products, a full-length product, and a sorter, endonuclease-cleaved product. (d)
Electronic hybridization of amplification products detected by the CCD-based imaging system used for
the prototyping of the portable instrument. The parameters for sine wave applied for each electrode
are 1.6 V, 10 HZ, offset +1.2 V for 3 minutes (bottom right). The parameter for DC applied to each
electrode is 400 nA for 2 min. From [64], with permission.

proven to be an excellent alternative to messy and labor-intensive gel electrophore-
sis techniques; delivering fast, automated, high-quality digital data instead of the
subjective, time-consuming results associated with gels.

5.6.2. Immunoassay system

The development of chip-based devices for immunoassay has just started. Using
Borofloat glass as substrate a 7.6 × 7.6 cm device was fabricated to accommodate
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the electroosmotic pump, mixer/reactor as well as the electrophoretic microchan-
nels [132]. This functionally integrated device was tested for a competitive assay.
Serum sample and theophyl labeled tracer was driven into the first mixer by elec-
troosmotic pumping and becomes mixed. The reactant was then allowed to react
with antitheophylline in the second mixer at a fixed ratio. The components from
the competitive reaction were finally separated and identified by the capillary elec-
trophoresis on chip. The total time required for reagent mixing with diluted serum
samples, immunological reaction, and capillary electrophoresis separation is a few
minutes. An MEMS-based generic microfluidic system has been built to facilitate
electrochemical immunoassay [32]. The microfluidic system consists of two inter-
sected fluidic paths, one for sampling and one for detection. Magnetic beads, mag-
netic valves, magnetic pumps, and flow sensors have been adapted or developed
for both sampling and manipulating the target biological molecules. This fluidic
system was tested for detecting model target molecules called p-Aminophenol us-
ing the bead-based sandwich enzyme immunoassay.

5.6.3. Cell analysis system

Optical characterization. The dielectric property of cells has been exploited for
cell analysis using a biological microcavity laser system [133]. The vertical cavity
surface emitting laser device fabricated in the GaAs is the most important unit
of the entire system. When cells were introduced into the chip, different lasing
spectra were generated as a result of the dielectric changes among different cells.
Submicron-size biochemical sensors and electrodes can be used for the analysis of
intracellular parameters (e.g., pH, conductivity) and to detect the presence of cell
metabolites (e.g., calcium). The electrochemical signature of peroxynitrite oxida-
tion, an important biologically active species, has been studied using microelec-
trodes at the single-cell level [134]. A method for preparing platinum electrodes
with nanometer dimensions has been reported [135], demonstrating the ability to
voltammetrically detect zeptomole quantities of an electroactive species. Recently,
an attempt was made to make a micro-ion sensor array to determine intracellular
ion concentrations [136].

Electrical characterization of single cells. Chip-based patch clamping has the ob-
jective to replace traditional patch electrodes with a planar array of recording
interfaces miniaturized on the surface of either a silicon, polymer, or glass sub-
strate. One chip-based device for patch clamping was presented by Schmidt et al.
[137] and consists of planar insulating diaphragms on silicon. In this work it was
shown that stable gigaohm seals over micrometer-sized holes could be obtained
in the time frame of seconds by the electrophoretic self-positioning of charged
lipid membranes. Recording chips can be produced in large numbers with de-
fined geometry and material properties by standard silicon technology. Multiple
recording sites can be integrated on one single chip because of the small lateral
size of the diaphragms. 3D silicon oxide micronozzles integrated into a fluidic
device for patch clamping were developed by Lehnert et al. [138]. A cell can be
positioned on the nozzle by suction through the hollow nozzle that extends to
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(a)

(b)

Figure 5.10. (a) The glass-chip-based patch-clamping devices for high-throughput screening. There
are 16 channels on each device capable of analyzing 16 individual cells during each run. The through
hole on the glass chip is around 1 µm. (b) The instrument facilitates the fully automated patch-
clamping screening processes.

the back of the chip. A microanalysis system for multipurpose electrophysiologi-
cal analyses has been presented by Han et al. [139]. This system has the capability
to perform whole-cell patch clamping, impedance spectroscopy, and general ex-
tracellular stimulation/recording using integrated, multielectrode configurations.
A high-throughput patch-on-chip device (SealChip 16) was developed by Aviva
Bioscience with 16 channels to process 16 single cells in each run (Figure 5.10). The
chip-based patch clamping was fully automated with the instrument PatchXpress-
7000 provided by Axon Instrument [140].

The loss of physical integrity in the plasma membrane is one of the major indi-
cations of cell death. Cell viability is thus usually determined through examination
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of membrane integrity with colorometic of fluorescent dyes. Huang et al. [141]
developed a new technology that employs a microfabricated device for high-
resolution, real-time evaluation of membrane electrical properties of single cells.
The chip allows a single cell to be probed with low electrical potentials without
introducing membrane damage and permits the corresponding electrical currents
flow through that cell to be measured. Electrical resistances of dead (membrane
impaired) cells and live cells were found to be significantly different. This suggests
that evaluating membrane resistances of individual cells can provide an instant
and quantitative measure to determine cell membrane integrity and cell viability
of single cells.

The research and development in biochips progressed rapidly. DNA chip tech-
nology for mutation detection and gene expression profiling are well established.
Now more and more effort is dedicated to the development of chips for the anal-
ysis of protein content and cell metabolic substances. For the identification of ge-
nomic transcription factor (TF) binding sites in vivo in a high-throughput man-
ner, a microarray-based assay of chromatin immunoprecipitation (“ChIP-chip”),
also referred to as genome-wide location analysis [19] was developed. ChIP-chip
technology is the method that can help to answer which genes are regulated by
one specific TF. Following this, enabling multiple TF profiling technologies such as
oligonucleotide array-based transcription factor assay (OATFA) may answer which
TFs are activated in the cell. Other chips for protein analysis may include protein-
spotted microarrays or antibody microarrays for drug screening purposes. But the
maintenance of the protein structures on the chip after immobilization remains a
challenge. Chips for cell analysis especially single-cell analysis are worthy of watch-
ing. Ideally we are hoping to have the electronic measurement and fluorescence
assay combined and integrated for cell-based assays. Sensitive detection scheme
and nano-sized feature design are essential for the success in the area. System in-
tegration for constructing a lab-on-a-chip system is still an ongoing effort, a lot of
progress has been made so far but more effort is still needed.
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6
Modeling and simulation of genetic
regulatory networks by ordinary
differential equations

Hidde de Jong and Johannes Geiselmann

A remarkable development in molecular biology has been the recent upscaling to
the genomic level of its experimental methods. These methods produce, on a rou-
tine basis, enormous amounts of data on different aspects of the cell. A large part of
the experimental data available today concern genetic regulatory networks under-
lying the functioning and differentiation of cells. In addition to high-throughput
experimental methods, mathematical and computational approaches are indis-
pensable for analyzing these networks of genes, proteins, small molecules, and
their mutual interactions. In this chapter, we review methods for the modeling
and simulation of genetic regulatory networks. A large number of approaches have
been proposed in the literature, based on such formalisms as graphs, Boolean net-
works, differential equations, and stochastic master equations. We restrict the dis-
cussion here to ordinary differential equation models, which is probably the most
widely used formalism. In particular, we compare nonlinear, linear, and piecewise
linear differential equations, illustrating the application of these models by means
of concrete examples taken from the literature.

6.1. Introduction

A remarkable development in molecular biology today is the upscaling to the ge-
nomic level of its experimental methods. Hardly imaginable only 20 years ago, the
sequencing of complete genomes has become a routine job, highly automated and
executed in a quasi-industrial environment. The miniaturization of techniques for
the hybridization of labeled nucleic acids in solution to DNA molecules attached
to a surface has given rise to DNA microarrays, tools for measuring the level of
gene expression in a massively parallel way [1]. The development of proteomic
methods based on two-dimensional gel electrophoresis, mass spectrometry, and
the double-hybrid system allows the identification of proteins and their interac-
tions on a genomic scale [2].

These novel methods in genomics produce enormous amounts of data about
different aspects of the cell. On one hand, they allow the identification of interac-
tions between the genes of an organism, its proteins, metabolites, and other small
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molecules, thus mapping the structure of its interaction networks. On the other
hand, they are able to detect the evolution of the state of the cell, that is, the tem-
poral variation of the concentration and the localization of the different molec-
ular components, in response to changes in the environment. The big challenge
of functional genomics or systems biology consists in relating these structural and
functional data to each other, in order to arrive at a global interpretation of the
functioning of the organism [3, 4]. This amounts to predicting and understanding
how the observed behavior of the organism—the adaptation to its environment,
the differentiation of its cells during development, even its evolution on a longer
time scale—emerges from the networks of molecular interactions.

The molecular interactions in the cell are quite heterogeneous in nature. They
concern the transcription and translation of a gene, the enzymatic conversion of a
metabolite, the phosphorylation of a regulatory protein, and so forth. While study-
ing a cellular process, it is often sufficient, at least to a first approximation, to fo-
cus on a part of the interaction network, dominated by a particular type of inter-
action. Thus biologists have become used to distinguish metabolic networks, sig-
nal transduction networks, genetic regulatory networks, and other types of network.
Metabolic networks connect the small molecules of the cell by way of enzymatic
reactions, whereas the connectivity of signal transduction networks is to a large
extent determined by the posttranslational modification of proteins. Genetic reg-
ulatory networks mainly concern interactions between proteins and nucleic acids,
controling the transcription and translation of genes.

In this chapter, we focus on genetic regulatory networks, which play an im-
portant role in the functioning and differentiation of cells. For instance, they al-
low the genetic program of a bacterium, the level of expression of its genes, to be
adapted in response to an external stress. A large part of the experimental data
available today, notably transcriptome data, concern genetic regulatory networks.
Not withstanding the importance of these networks, one should bear in mind that
they are integrated in the cell with other types of network, sometimes to the point
that it may be difficult to distinguish the one from the other.

Besides high-throughput experimental methods, mathematical and computa-
tional approaches are indispensable for the analysis of genetic regulatory networks.
Given the large number of components of most networks of biological interest,
connected by positive and negative feedback loops, an intuitive comprehension of
the dynamics of the system is often difficult, if not impossible, to obtain. Mathe-
matical modeling supported by computer tools can contribute to the analysis of a
regulatory network by allowing the biologist to focus on a restricted number of
plausible hypotheses. The formulation of a mathematical model requires an ex-
plicit and nonambiguous description of the hypotheses being made on the regula-
tory mechanisms under study. Furthermore, its simulation by means of the model
yields predictions on the behavior of the cell that can be verified experimentally.

An approach for analyzing the dynamics of genetic regulatory networks—
based on the coordinated application of experimental, mathematical, statistical,
and computational tools—is summarized in Figure 6.1. As a first step, one or sev-
eral initial models are constructed from previous knowledge of the system and
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Figure 6.1. An approach for analyzing the dynamics of genetic regulatory networks: coordinated ap-
plication of experimental, mathematical, statistical, and computational tools.

observations of its behavior. These models are then used to simulate the system
under chosen experimental conditions, giving rise to predictions that can be com-
pared with the observations made under the same experimental conditions. The
fit between predictions and observations gives an indication of the adequacy of
the models and may lead to their revision, thus initiating a new cycle of simulation
of the behavior of the system, experimental verification of the predictions, and
revision of the models.

In this chapter, we review methods for the modeling and simulation of genetic
regulatory networks, showing how the approach summarized in Figure 6.1 can be
put to work. In the last forty years, a large number of approaches for modeling
genetic regulatory networks have been proposed in the literature, based on for-
malisms such as graphs, Boolean networks, differential equations, and stochastic
master equations (Figure 6.2, see [5, 6, 7, 8, 9] for reviews). In their simplest form,
graph models represent genetic regulatory networks by vertices (genes) connected
by edges (interactions). More complicated graph models may label the edges with
information on the type of interaction or associate probability distributions with
the nodes, as in the case of Bayesian networks [10]. While graph models are static
representations of genetic regulatory networks, Boolean networks describe their dy-
namics in a simple manner [11]. Using a Boolean variable for the state of a gene
(on or off), and a Boolean function for the regulatory logic of the interactions,
the temporal evolution of the state of the network can be described by means of
a sequence of Boolean vectors. Various extensions of Boolean networks have been
proposed in the literature, such as probabilistic Boolean networks [12] and gener-
alized logical networks [13]. Differential equations provide a continuous, instead of
discrete, description of the dynamics of genetic regulatory networks. The applica-
tion of these models can be based on a well-established theoretical framework for
modeling biochemical reactions [14, 15], while powerful analysis and simulation
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Figure 6.2. Hierarchy of different types of formalisms proposed for the modeling of genetic regulatory
networks.

techniques exist. Stochastic master equations go beyond the deterministic charac-
ter of differential equations, by recognizing that chemical reactions are basically
stochastic processes [16, 17, 18]. The dynamics of genetic regulatory networks are
modeled in the latter formalism as the temporal evolution of the probability distri-
bution of the number of molecules of the different molecular species. The solution
of the master equation can be approximated by means of stochastic simulation.

By climbing up the hierarchy from graph models to stochastic master equa-
tion models (Figure 6.2), we obtain increasingly precise descriptions of genetic
regulatory networks. Not suprisingly, the information required for the application
of the models to actual regulatory networks, as well as the necessary computational
resources, increase in parallel, thus making it more difficult to use fine-grained
models in practice. In this chapter, we restrict the discussion to ordinary differen-
tial equations, which probably form the most widely used class of models of genetic
regulatory networks. However, as we argue in more detail later in this chapter, or-
dinary differential equation models should not be seen as appropriate for each and
every problem. In the end, the suitability of a modeling formalism depends on the
extent to which it is adapted to the biological problem under study.

In Section 6.2, we introduce some biological notions, fundamental for un-
derstanding the nature of genetic regulation and genetic regulatory networks. The
next three sections focus on three different kinds of ordinary differential equation:
nonlinear, linear, and piecewise-linear. In each section, we illustrate the properties
of the kind of model with an example of a network of two genes, and we describe
its application to real biological systems. The chapter ends with a more general dis-
cussion on the strengths and weaknesses of the modeling and simulation methods
summarized here, taking into account the stochastic nature of biological processes
and the complexity of the networks controling their evolution.

6.2. Genetic regulatory networks

We illustrate the main interactions in a genetic regulatory network by means of an
example: the regulation of the expression of the sigma factor σS in Escherichia coli.
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The role of the sigma subunits of the RNA polymerase is to recognize specific
transcription initiation sites on the DNA, the so-called promoters. The expression
or activation of a certain sigma factor therefore leads to the expression of a specific
subset of genes of the organism. This type of regulation is often used by bacteria to
assure a global response to an important change in their environment. Because of
their importance for the global functioning of the cell, the expression of the sigma
factors themselves is often tightly regulated.

E. coli possesses seven different sigma factors [19, 20]. The principal sigma
factor, σ70, directs the transcription of the so-called housekeeping genes. In many
stress situations (lack of nutriments, high osmolarity, change of pH or of temper-
ature, etc.), E. coli expresses the alternative sigma factor σS, encoded by gene rpoS.
σS takes its name from the fact that it plays an important role in the adaptation to a
particular stress, frequently encountered by bacteria: the depletion of nutriments
in the environment, which leads to a considerable slowing down of cell growth,
called the stationary growth phase. However, σS is activated in response to many
other kinds of stress [21]. In order to illustrate the complexity of a genetic reg-
ulatory network, as well as the underlying molecular mechanisms, the following
sections briefly summarize the different interactions by which the concentration
of σS in the cell is regulated.

6.2.1. Regulation of transcription

Although regulation of transcription constitutes the preferred mode of regulating
gene expression in bacteria, few studies have addressed this subject in the case
of rpoS. As a consequence, our knowledge on the transcriptional regulation of
this gene remains incomplete. Protein CRP, a typical repressor-activator, specif-
ically binds the DNA at two sites close to the major promoter of rpoS [21]. One
of these sites overlaps with the promoter, which implies that CRP and RNA poly-
merase cannot simultaneously bind to the DNA, due to sterical constraints. As a
consequence, CRP represses the transcription of rpoS. The second binding site of
CRP is located just upstream of the promoter. This geometry is reminiscent of the
lac operon, where CRP binding to a similarly-positioned site establishes protein-
protein interactions with the RNA polymerase, thus favoring the recruitment of
RNA polymerase to the promoter [22]. The molecular details of this apparently
contradictory regulation of the transcription of rpoS by CRP are still only partially
understood. Nevertheless, the example illustrates one type of regulation that is
quite widespread in bacteria: a protein binding the DNA (the regulator) prevents
or favors the binding of RNA polymerase to the promoter.

A second factor regulates the transcription of rpoS as a function of the physi-
ological state of the cell: when E. coli lacks amino acids, it synthesizes a small sig-
naling molecule, guanosine tetraphosphate or ppGpp [23]. This molecule directly
binds to the RNA polymerase and increases the activity of the latter at certain
promoters—in particular, those involved in the biosynthesis of amino acids—and
reduces the activity of RNA polymerase at other promoters—notably the riboso-
mal RNA promoters. A genetic analysis clearly shows that ppGpp strongly activates
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Figure 6.3. Regulation of the synthesis and degradation of the sigma factor σS. Only the interactions
detailed in the text are shown. The notation is inspired by the graphical conventions proposed by Kohn
[28].

the transcription of rpoS, but the same experiments also suggest that ppGpp does
not act at the level of transcription initiation [24, 25]. The hypothesis currently
favored is that ppGpp activates the transcription of rpoS indirectly, via the inhibi-
tion of exopolyphosphatase, the enzyme degrading polyphosphate in the cell [26].
However, the molecular mechanism of the activation of transcription of rpoS by
polyphosphate remains badly understood.

The different interactions regulating the transcription of rpoS, as detailed in
the above paragraphs, are summarized in Figure 6.3. Other factors are involved
in the regulation of the expression of σS, we mention here protein BarA, which is
part of a two-component system detecting several environmental parameters, such
as iron starvation or the contact with the epithelium of the urinary tract during
infection by pathogenic strain E. coli [27].

6.2.2. Regulation of translation

The expression of rpoS is regulated not only on the transcriptional level but also at
the posttranscriptional level. The translation of the mRNA of rpoS is stimulated by
environmental stress factors such as high osmolarity, low temperature, or low pH.
The translation begins with the recognition of the so-called Shine-Dalgarno se-
quence by the ribosome, followed by the binding of the latter to this sequence. The
efficiency of translation depends on the similarity of the Shine-Dalgarno sequence
to the consensus sequence, and its accessibility to the ribosome. The mRNA of
rpoS, like any other RNA, is not only a linear molecule, but possesses a particular
secondary and tertiary structure. If the Shine-Dalgarno sequence is sequestered in
a secondary structure (e.g., an RNA helix), it will be less accessible to the ribosome
and the efficiency of translation will be reduced.

In the case of rpoS, at least three small regulatory RNAs and an equal number
of proteins modify the structure of the RNA near the Shine-Dalgarno sequence.
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In this way, they are able to modulate the efficiency of translation [21, 29]. By de-
fault, the mRNA of rpoS folds into a secondary structure that sequesters the Shine-
Dalgarno sequence in a double helix. An alternative helix structure is formed in
the presence of the small RNAs DsrA or RprA, thus releasing the binding site of
the ribosome and increasing the efficiency of translation. Genes dsrA and rprA are
transcribed in response to different environmental stresses: the expression of dsrA
is strongly increased at low temperatures, while rprA transcription is regulated by
stress factors modifying the surface properties of the cell (such as osmolarity or the
presence of other bacteria). A third regulatory RNA, OxyS, inhibits the translation
of rpoS. OxyS accumulates in the cell following an oxidative stress. The molecu-
lar mechanism of this regulation is not well understood, even though convincing
evidence demonstrates the involvement of Hfq, a protein necessary for the rapid
association of small RNAs with their targets.

Other proteins exert an influence on the translation of rpoS. We can cite at
least two “histone-like” proteins, called HU and H-NS. HU binds with high affinity
to the mRNA of rpoS and modifies the structure of the RNA [30]. The molecular
details are not known, but the consequence of the binding of HU to the mRNA
of rpoS is a strong increase in the translation of the latter. Protein H-NS has an
inverse effect [21], but the molecular mechanism is not understood either, H-NS
can bind to the mRNA of rpoS, but the specificity of the interaction has not been
proven yet. It is equally possible that the effect of H-NS is indirect, for instance
by preventing the action of a positive regulator like HU. Although the molecular
details remain unclear, molecular genetics experiments have allowed to infer the
regulatory logic. As we will see in the following sections, this knowledge is often
sufficient to predict the global behavior of the network.

6.2.3. Regulation of degradation and activity

Not only the synthesis of σS is tightly regulated, but its stability and activity are
also subject to multiple environmental and physiological influences. Like many
proteins in E. coli, σS is degraded by proteases. All proteins are recognized by pro-
teases when they are misfolded or truncated. In addition, certain proteins contain
sequences (often at the N- or C-terminal region) that are specifically recognized
by proteases. In the case of σS, a highly specialized system targets the protein for
degradation by the ATP-dependent protease ClpXP. Protein RssB, when phospho-
rylated, forms a tight complex with σS [31]. RssB also interacts with ClpX, the sub-
unit of the ClpXP complex that recognizes the substrates of the protease, and thus
targets σS towards ClpXP. The catalytic subunit, ClpP, degrades σS and phosphory-
lated RssB is released, ready to dispatch another σS molecule towards degradation.
The system is finely regulated by a feedback loop: the synthesis of RssB depends
on σS [32].

In addition to this homeostatic regulation, the σS-RssB system is subject to
environmental signals. RssB only binds to σS, if it is phosphorylated. RssB is a
response regulator in a two-component system, a signal transduction mechanism
frequently encountered in prokaryotes [33]. A so-called sensor protein detects
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a physiological or an environmental signal and autophosphorylates itself on a his-
tidine. The phosphate is then transferred to an aspartate of the second protein,
called response regulator (in our case, RssB). The response regulator launches an
appropriate response, such as the activation of a promoter or the degradation of
a target protein (in our case, σS). The sensor corresponding to RssB has not been
identified yet, so we do not know the signals modulating the phosphorylation of
RssB and the capacity of the latter to target σS for degradation.

Even the stable protein σS is subject to further regulation. In order to fulfil its
role as a recognition factor of promoters, σS must form a complex with the RNA
polymerase. E. coli possesses seven different sigma factors that compete for binding
to RNA polymerase. Certain proteins and small molecules influence this compe-
tition and thus control the “activity” of σS. It has been shown that ppGpp—in
addition to its above-mentioned function in transcriptional initiation—favors the
formation of the complex between σS and RNA polymerase [34]. We have recently
discovered that the small protein Crl specifically interacts with σS, and increases
the affinity of RNA polymerase containing σS for a subset of promoters recognized
by this sigma factor (see http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=
retrieve&db=pubmed&dopt=abstract&list uids=14978043). This interaction con-
nects the activity of σS to other physiological signals, due to the fact that Crl is
regulated by temperature, growth phase, and other environmental stimuli.

6.2.4. Complexity of the network and interactions with other networks

Transcription, translation, and degradation are regulated by a large number of in-
teractions, as illustrated here for σS. This convergence or “fan-in” of influences
on rpoS and its protein is accompanied by an even more important divergence
or “fan-out,” in the sense that σS regulates the transcription of at least 70 genes
of E. coli [21]. Among these genes, several encoding proteins that are directly or
indirectly involved in the regulation of the synthesis and degradation of σS. This
endows the network with a complex feedback structure, responsible for the adap-
tation of the transcriptional program of the bacterium to external perturbations.

The complexity of the genetic regulatory network is further increased by the
fact that it is integrated with other networks. As we mentioned above, by citing
the examples of the response regulators BarA and RssB, the σS regulon is the tar-
get of signals transduced by two-component systems. In the cases of BarA and
RssB, we do not yet know the principal sensor of the signal transduction pathway.
The σS regulon is also the target of regulatory factors originating in the cellular
metabolism. In addition to the above-mentioned signaling molecule ppGpp, the
expression of σS, or at least of genes dependent on σS, is also sensitive to the con-
centration of more classical metabolites, such as lactic acid or the redox state of the
cell (as measured by the ratio of NADH and NAD+). The presence of weak acids
in the growth medium activates the expression of genes dependent on σS [35],
whereas a high ratio of NADH and NAD+ decreases the transcription of rpoS [36].

The genetic regulatory network controling the expression of rpoS as well as the
regulation of expression of target genes of σS is thus embedded in the metabolic
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and signal transduction networks of the cell. A complete understanding of the
dynamics of this system would require a detailed description of all these elements.
However, we can often abstract from the metabolic and signal transduction net-
works—by focusing on their effects on gene expression—and nevertheless obtain
an adequate description of the global functioning of the regulatory system [37].

6.3. Nonlinear ordinary differential equation models

6.3.1. Equations and mathematical analysis

Nonlinear ordinary differential equations are probably the most-widespread for-
malism for modeling genetic regulatory networks. They represent the concen-
tration of gene products—mRNAs or proteins—by continuous, time-dependent
variables, that is, x(t), t ∈ T , T being a closed time interval (T ⊆ R≥0). The vari-
ables take their values from the set of nonnegative real numbers (x : T → R≥0),
reflecting the constraint that a concentration cannot be negative. In order to model
the regulatory interactions between genes, functional or differential relations are
used.

More precisely, gene regulation is modeled by a system of ordinary differential
equations having the following form:

dxi
dt

= fi(x), i ∈ [1, . . . ,n], (6.1)

where x = [x1, . . . , xn]′ is the vector of concentration variables of the system, and
the function fi : R

n
≥0 → R, usually highly nonlinear, represents the regulatory in-

teractions. The system of equations (6.1) describes how the temporal derivative
of the concentration variables depends on the values of the concentration vari-
ables themselves. In order to simplify the notation, we can write (6.1) as the vector
equation

dx
dt
= f(x), (6.2)

with f = [ f1, . . . , fn]′. Several variants of (6.2) can be imagined. For instance,
by taking into account the input variables u, it becomes possible to express the
dependence of the temporal derivative on external factors, such as the presence of
nutriments. In order to account for the delays resulting from the time it takes to
complete transcription, translation, and the other stages of the synthesis and the
transport of proteins, (6.2) has to be changed into a system of delay differential
equations [9].

The above definitions can be illustrated by means of a simple network of two
genes (Figure 6.4). Each of the genes encodes a regulatory protein that inhibits the
expression of the other gene, by binding to a site overlapping the promoter of the
gene. Simple as it is, this mutual-inhibition network is a basic component of more
complex, real networks and allows the analysis of some characteristic aspects of
cellular differentiation [13, 38].
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Figure 6.4. Example of a simple genetic regulatory network, composed of two genes a and b, the pro-
teins A and B, and their regulatory interactions.
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Figure 6.5. (a) Nonlinear ordinary differential equation model of the mutual-inhibition network
(Figure 6.4). The variables xa and xb correspond to the concentrations of proteins A and B, respectively,
parameters κa and κb to the synthesis rates of the proteins, parameters γa and γb to the degradation
constants, parameters θa and θb to the threshold concentrations, and parameters ma and mb to the
degree of cooperativity of the interactions. All parameters are positive. (b) Graphical representation of
the characteristic sigmoidal form, for m > 1, of the Hill function h−(x, θ,m).

An ordinary differential equation model of the network is shown in Figure
6.5a. The variables xa and xb represent the concentration of proteins A and B, en-
coded by genes a and b, respectively. The temporal derivative of xa is the difference
between the synthesis term κah−(xb, θb,mb) and the degradation term γaxa. The first
term expresses that the rate of synthesis of protein A depends on the concentra-
tion of protein B and is described by the function h− : R≥0 ×R

2
>0 → R≥0. This so-

called Hill function is monotonically decreasing. It takes the value 1 for xb = 0, and
asymptotically reaches 0 for xb → ∞. It is characterized by a threshold parameter
θb and a cooperativity parameter mb (Figure 6.5b). For mb > 1, the Hill function
has a sigmoidal form that is often observed experimentally [39, 40]. The synthesis
term κah−(xb, θb,mb) thus means that, for low concentrations of protein B, gene a
is expressed at a rate close to its maximum rate κa (κa > 0), whereas for high con-
centrations of B, the expression of the gene is almost completely repressed. The
second term of the differential equation, the degradation term, expresses that the
degradation rate of protein A is proportional to its own concentration xa, γa being
a degradation parameter (γa > 0). In other words, the degradation of the protein
is not regulated in this example. The differential equation for xb has an analogous
interpretation.

Because of the nonlinearity of the functions f , the solutions of the system of
ordinary differential equations (6.2) cannot generally be determined by analytical
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means. This is even true for the nonlinear model of the two-gene network (Figure
6.5). However, because the model has only two variables, we can obtain a qualita-
tive understanding of the dynamics of the network, by applying the tools available
for analysis in the phase plane (see [41] for an accessible introduction).

The phase plane of the system is represented in Figure 6.6. Every point in the
plane represents a pair of concentrations xa and xb. The solutions of the system
of differential equations give rise to trajectories in the phase plane, as illustrated in
Figure 6.6a. Another way of studying the dynamics of the system consists in ana-
lyzing the vector field, that is, the vector of temporal derivatives [dxa/dt,dxb/dt]′

associated with each point. This gives an indication of the direction of the trajec-
tories passing through the point, as illustrated in Figure 6.6b. The analysis can be
refined by tracing the nullclines in the phase plane, that is, the curves on which
the temporal derivatives of xa and xb equal 0 (here, these curves are defined by
xa = (κa/γa)h−(xb, θb,mb) and xb = (κb/γb)h−(xa, θa,ma). The points where the
nullclines intersect are the equilibrium points of the system. If all trajectories in
a neighborhood of the equilibrium point remain in that neighborhood, then the
equilibrium point is stable. If, in addition, they converge towards the equilibrium
point, the latter is asymptotically stable. So, by studying the vector field around
the equilibrium point, one can determine its stability. In the case of the non-
linear model of the network in Figure 6.4, there are three equilibrium points:
two of these are asymptotically stable and one is unstable (Figure 6.6). The re-
sult of the analysis summarized in this paragraph is often called the phase por-
trait.

The above phase-plane analysis predicts that the mutual-inhibition network is
bistable. That is, starting from certain initial conditions, the system will reach one
of the two stable equilibria. From a practical point of view, the unstable equilib-
rium has no importance, because it is only attained for quite specific initial con-
ditions. Moreover, a perturbation of the unstable equilibrium, even vanishingly
small, will cause the system to converge towards one of the stable equilibria. The
phase portrait also reveals that the system exhibits hysteresis. If one perturbs the
system from one of its stable equilibria—for instance, by provoking a strong degra-
dation of the protein present at a high concentration—the other equilibrium can
be reached (Figure 6.6c). From then onwards, even if the source of strong degra-
dation has disappeared, the system will remain at the new equilibrium. In other
words, the example suggests that a simple molecular mechanism may allow the
system to switch from one functional mode to another. For this reason, mutual-
inhibition networks, or more generally networks with positive feedback loops,
have been assigned a central role in cellular differentiation [13].

It is important to remark that the above analysis is not just a theoretical ex-
ercise. In fact, the properties of the mutual-inhibition network revealed by the
analysis—bistability and hysteresis—have been experimentally tested by Gardner
et al. [42]. The network of Figure 6.4 has been reconstructed in E. coli cells by
cloning the genes on a plasmid. The genes have been chosen such that the activ-
ity of the corresponding proteins can be regulated by external signals. In addition,
reporter genes have been added that allow the state of the cell to be measured.
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Figure 6.6. Phase portrait of the nonlinear model of the mutual-inhibition network (Figure 6.5). (a)
Examples of trajectories. (b) Vector field and nullclines. The system has two asymptotically stable equi-
librium points (se) and one unstable equilibrium point (ue). (c) Hysteresis effect resulting from a
transient perturbation of the system (broken line with arrow).

The resulting mutual-inhibition network functions independently from the rest
of the cell, like a “genetic applet,” in the words of the authors. Carefully chosen
experiments have shown that the system is bistable and can switch from one equi-
librium to the other following chemical or heat induction.

The qualitative analysis of the dynamics of the mutual-inhibition network,
summarized in Figure 6.6, is valid for a large range of parameter values. However,
for certain parameter values, the behavior of the system changes, as can be verified
in Figure 6.7. By increasing the value of parameter θb, the nullcline of xa, defined
by xa = (κa/γa)h−(xb, θb,mb), moves upwards. As a consequence, one of the stable
equilibria and the unstable equilibrium approach and then annihilate each other.
For values of θb close to, or above, κb/γb, the system loses its bistability and hys-
teresis properties. In the terminology of dynamical systems theory, a bifurcation
has occurred [41].
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Figure 6.7. Analysis of the bifurcation occurring when the value of parameter θb is increased. The value
in (a) is smaller than the value in (b).

Generally, for networks having more than two genes, an analysis in the phase
plane is no longer possible. In certain cases, one can reduce the dimension of the
system by simplifying the model, but most of the time, numerical techniques be-
come necessary. Numerical simulation approximates the exact solution of the sys-
tem of equations, by computing approximate values x0, . . . , xm for x at consecutive
time points t0, . . . , tm (see [43] for an introduction). Many computer tools for nu-
merical simulation have been developed, some specifically adapted to networks of
molecular interactions. Well-known examples of the latter are GEPASI [44], DB-
solve [45], and Ingeneue [46]. Recently, formats for the exchange of models be-
tween different simulation tools have appeared [47], as well as platforms enabling
interactions between different tools [48].

Numerical simulation tools are at the heart of the analysis of nonlinear models
of genetic regulatory networks. Unfortunately, their practical application is often
difficult, due to the general absence of in vitro and in vivo measurements of the
parameters of the model. These values are only available for a few systems whose
functioning has already been well characterized experimentally. Several solutions
exist for dealing with the lack of quantitative data on the network components and
their interactions. A first approach consists in using the increasing amounts of ex-
pression data, obtained by, for example, DNA microarrays or quantitative RT-PCR
(reverse transcriptase-polymerase chain reaction). Starting with measurements of
the concentration variables x at several stages of the process under investigation in
different experimental conditions, the parameter values can be estimated by means
of system identification techniques [49]. This approach will be examined in more
detail in Section 6.4. Here, we focus on another solution to the problem of the lack
of measured values of the kinetic parameters. This approach, illustrated by means
of a study of the establishment of segment polarity in Drosophila melanogaster, is
based on the hypothesis that essential properties of the system are robust to varia-
tions in parameter values.
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6.3.2. Simulation of the establishment of segment
polarity in D. melanogaster

The first stages of the development of the embryo of the fruit fly D. melanogaster
consist of a segmentation of the anterio-posterior axis by the maternal genes and
the gap, pair-rule, and segment-polarity gene classes [50, 51]. The majority of seg-
mentation events take place before cellularization, in a syncytium in which tran-
scription factors can freely diffuse. This leads to the establishment of concentration
gradients that control the expression of genes playing a role later in development.
After cellularization has occurred, the anterio-posterior axis is divided into 15 re-
gions, prefiguring the segments of the embryo.

The identity of the segments is determined by the expression of the segment-
polarity genes, of which the principal ones are wingless (wg), hedgehog (hh),
and engrailed (en). These genes code for transcription factors that are secreted and
can therefore modulate gene expression in neighboring cells. The initial activation
of the segment-polarity genes is largely determined by the pair-rule genes but, once
established, the spatiotemporal expression profile of these genes is stable—until
the fly has reached adulthood—and entirely determined by the interactions be-
tween the segment-polarity genes. This expression profile is expected to be
quite robust, because it identifies the future function of each segment of the em-
bryo.

The segmentation process has been studied in sufficient detail to allow us to
draw an outline of the genetic regulatory network connecting the segment-polarity
genes. In a recent publication, von Dassow et al. [52] propose such a network in-
cluding the three genes mentioned above, as well as two other genes: cubitus in-
terruptus and patched (Figure 6.8). Quite a few interactions between these genes
are known, which makes it possible to formulate an ordinary differential equation
model similar to the models presented in Section 6.3.1. However, in order to re-
produce the expression profiles, the model has to take into account not only the
temporal, but also the spatial aspects of the establishment of segment polarity. The
model proposed by the authors includes a row of cells along the anterio-posterior
axis, such that each of the cells contains a copy of the genetic regulatory network
and interacts with its neighboring cells.

The resulting model contains almost 50 parameters, the values of which are
unknown in most cases. The authors therefore searched for a set of parameters
that would lead, starting from reasonable initial conditions (determined by the
pair-rule genes), to a behavior of the network that is consistent with the biological
observations, that is, corresponding to the observed expression profile in the em-
bryo. Despite an extensive search, no such set of parameters could be found (Figure
6.9b). By analyzing the reasons for this negative result, the authors concluded that
there must be missing interactions. In fact, when they added two additional in-
teractions, suggested by genetic experiments and circumstantial evidence, a large
number of parameter sets led to the desired behavior (Figure 6.9c). In fact, the re-
vised model shows an extraordinary stability to variations in the parameter values,
sometimes spanning several orders of magnitude.
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Figure 6.8. Interactions between the products of the five genes included in the segment-polarity model
of von Dassow et al. (figure reproduced from [52]). The following abbreviations have been used: WG
(wingless), EN (engrailed), HH (hedgehog), CID (C. interruptus), CN (repressor fragment of C. inter-
ruptus), PTC (patched), and PH (complex of patched and hedgehog). The figure represents the RNAs
(ellipses) as well as the proteins (rectangles), while the positive interactions are indicated by arrows and
the negative interactions by circles. The rhombus containing the plus sign indicates that C. interrup-
tus has a basal expression level. The interactions denoted by a broken line were added after the other
interactions had been shown to be insufficient to reproduce the observed expression profile (see the
text).

This surprising result suggests that it may not be the exact value of the pa-
rameters that accounts for the functioning of the system, but rather the struc-
ture of the regulatory network. One might of course argue that the robustness of
the developmental dynamics is particular to the segment-polarity network, which
counts among the most important in Drosophila. As we mentioned above, the ex-
pression profile of the segment-polarity genes directs the further development of
the organism. However, the robustness of properties decisive for the functioning
of a network of molecular interactions has been observed in other cases as well.
Large variations in parameter values do not change, for instance, the behavior of
the neurogenic network in Drosophila [53] and the chemotaxic response in E. coli
[54].

The segment-polarity example illustrates several construction principles of
genetic regulatory networks. First, crucial properties of the system probably have
to be robust against variations in the parameter values, due to inevitable mutations
of the genes. As a consequence, the structure of the network is largely responsible
for the behavior. Second, modeling can be used to study the dynamical conse-
quences of the connectivity of the genetic regulatory network. Also, as illustrated
in the example, modeling can suggest missing interactions that can then be ver-
ified experimentally. Finally, the fact that the behavior of the organism emerges
from the interactions between a limited number of genes might be an indication
that biological networks are organized in a modular fashion [55]. The multiple
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Figure 6.9. Spatial expression profiles of the segment-polarity genes in the cells along the anterio-
posterior axis: (a) observed profile, (b) profile predicted by the model without additional interactions,
(c) idem, but with additional interactions (figures reproduced from [52]).

additional influences on these genes—which may modulate the strengths of their
interactions, as reflected by the parameter values—do not affect the fundamental
dynamics of the network.

6.4. Linear ordinary differential equation models

6.4.1. Equations and mathematical analysis

Nonlinear ordinary differential equation models give an adequate description of
important aspects of the dynamics of genetic regulatory networks, as shown by the
in vivo construction of the mutual-inhibition network by Gardner et al. (Section
6.3). Unfortunately, the nonlinear models become quite difficult to treat mathe-
matically when passing from simple synthetic networks to the complex networks
involved in, for example, the control of the establishment of segment polarity in
Drosophila. This raises the question whether the dynamics of genetic regulatory
networks could be equally well described by linear differential equation models,
which possess more favorable mathematical properties.

A system of linear ordinary differential equations has the form (6.2), but the
functions f are linear. That is, (6.2) can be rewritten as follows:

dx
dt
= Ax + b, A ∈ R

n×n, b ∈ R
n. (6.3)
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Figure 6.10. (a) Linear ordinary differential equation model of the mutual-inhibition network (Figure
6.4). The variables xa and xb correspond to the concentrations of proteins A and B, respectively, param-
eters κa and κb to the synthesis rates of the proteins, parameters γa and γb to the degradation constants,
and parameters θa and θb to the strength of the interactions. All parameters are positive. (b) Graphical
representation of the linear function l−(x, θ). (c) Reformulation of the model in (a) in the matrix form
of (6.3).

Henceforward, we make the hypothesis that the element of the matrix A and the
vector b are constants. As a consequence, system (6.3) has an analytical solution,
given by linear systems theory [56].

How can we model a genetic regulatory network by means of linear ordinary
differential equations? By way of example, the model of the mutual-inhibition net-
work is shown in Figure 6.10a. It much resembles the nonlinear model presented in
Section 6.3.1: as before, the time derivative is equal to the difference between a syn-
thesis term and a degradation term. However, a linear function l− : D×R>0 → R≥0,
D ⊂ R≥0 is now used instead of the sigmoidal function h−. As the latter func-
tion, l− is monotonically decreasing, but it is characterized by a single parameter,
θ, defining the slope. In addition, the domain of the variable x is restricted to
D = [0, 2θ] ⊂ R≥0, because 1− x/(2θ) becomes negative for x > 2θ, thus violating
the obvious constraint that the synthesis rate must be nonnegative (Figure 6.10b).
It is easily verified that the model can be rewritten in the form (6.3) (Figure 6.10c).
Note that the model is only valid for xa ∈ [0, 2θa] and xb ∈ [0, 2θb], due to the
definition of l−.

As in the case of the nonlinear model, the qualitative dynamics of the network
can be studied in the phase plane. Figure 6.11a shows some examples of trajec-
tories in the phase plane. From a superficial comparison with Figure 6.6a, one
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Figure 6.11. Phase portrait of the linear model of the mutual-inhibition network (Figure 6.10). (a)
Examples of trajectories. (b) Vector field and nullclines. The system has a single unstable equilibrium
point (ue). (c) Analysis of the bifurcation occurring when the value of parameter θb is increased. The
value of θb in (c) is larger than that in (b). The analysis is restricted to [0, 2θa] × [0, 2θb], the part of
the phase space where the linear model is defined.

would be inclined to conclude that the linear and nonlinear models make more
or less identical predictions of the dynamics of the system. However, analysis of
the nullclines—defined by xa = (κa/γa)l−(xb, θb) and xb = (κb/γb)l−(xa, θa)—
shows that this is not the case (Figure 6.11b). In fact, the linear system has only a
single equilibrium point corresponding to the unstable equilibrium point of the
nonlinear system in Figure 6.6b. Almost all trajectories reach one of the segments
xa = 2θa or xb = 2θb after a while and would continue towards (−∞,∞)′ or
(∞,−∞)′, respectively, if the system were defined outside [0, 2θa]×[0, 2θb]. Figure
6.11c shows that the equilibrium point disappears if one increases the value 2θb
above κb/γb, while keeping the other parameters at the same value. In that case, all
trajectories reach the segment xa = 2θa.
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The phase-plane analysis summarized in Figure 6.11 teaches us that, when
modeled by a system of linear differential equations, the mutual-inhibition net-
work no longer exhibits bistability or hysteresis. The predictions of the model
therefore contradict what is experimentally observed by Gardner et al. In fact, the
example shows that the nonlinear character of the inhibition of gene expression by
regulatory proteins, expressed by means of the function h−, is crucial for the global
dynamics of the network. The approximation of h− by l− is unable to preserve es-
sential properties of the dynamics. On the other hand, the analysis of the two-gene
network suggests that linear models could contribute to the analysis of the local
dynamics of the system. For example, even though they do not converge towards a
stable equilibrium point, the trajectories in Figure 6.11a resemble those predicted
by the nonlinear model in the neighborhood of the unstable equilibrium (Figure
6.6a).

This property of linear models can be exploited when trying to reconstruct
the connectivity of a genetic regulatory network from experimental data. Suppose
one had a time series of measurements of the concentration variables, obtained
by DNA microarrays or quantitative RT-PCR. This series of measurements can be
represented in the form of a matrix X̂, where X̂ ∈ Rn×m. Every element x̂i j of
this matrix represents a measurement, more specifically the measurement of the
variable xi at time point j. Instead of a time series of measurements, the columns
of the matrix X̂ could also represent measurements realized under various experi-
mental conditions, for instance, the steady state reached by a mutant of the organ-
ism after a physiological perturbation.

System identification techniques [49] allow the values of the elements of the
matrix A and the vector b to be estimated from measurements X̂. These estima-
tions make it possible to infer the interaction structure of a network, as can be
easily understood by considering the matrix A in the case of the mutual-inhibition
network (Figure 6.10c, see also [37, 57]). In fact, the negative sign of the off-
diagonal elements aab and aba corresponds to the inhibition of gene a by protein
B, and the inhibition of gene b by protein A, respectively. If B activated a and A
activated b, these elements would have been positive (which can be simply verified
by replacing l−(x, θ) by l+(x, θ) = 1− l−(x, θ) in the model of Figure 6.10a). More
generally, it follows that the estimation of the values of A and b from expression
data provides us with information about the regulatory structure of the system,
that is, on the existence of interactions between the genes and the nature of these
interactions (activation, inhibition).

From a technical point of view, the use of linear ordinary differential equa-
tion models simplifies the approach of reconstructing genetic regulatory networks
from gene expression data. In comparison with nonlinear models, linear models
have a restricted number of parameters, as can be seen by comparing the models in
Figures 6.5a and 6.10a. In addition, powerful techniques for parameter estimation
exist for linear models. Taken together, this makes linear models more adapted to
the quantitative and qualitative limitations of the experimental data available to-
day. In fact, the expression data obtained by DNA microarrays are often noisy and
the number of measurements m much smaller than the number of variables n.
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Therefore, most studies on network reconstruction to date have used linear or
pseudolinear models. In the next section, we discuss one recent example in more
detail.

6.4.2. Reconstruction of the SOS regulon in E. coli

A large number of environmental stresses may damage the DNA. The bacterium
responds to these attacks by expressing a certain number of genes allowing the
DNA to be repaired or to be replicated despite it being damaged. In E. coli and
other bacteria, the regulatory system coordinating the response to this type of
stress is called the SOS regulon [58, 59]. The central regulator is not a sigma factor,
as in the case of the general stress response described in Section 6.2, but involves
the interactions between two proteins: RecA and LexA.

LexA is a transcription factor repressing all genes of the SOS regulon during
normal growth by binding to operator sites overlapping the promoters of its target
genes. Protein LexA is a dimer and each monomer is composed of two domains.
Besides its binding activity to DNA, LexA has the ability to cut the connection be-
tween the two domains of each monomer. The affinity of LexA for its DNA binding
sites strongly diminishes after having been cut into two, as a consequence of which
the genes of the SOS regulon are derepressed. However, the autoproteolytic activ-
ity of LexA remains quite weak when it does not interact with RecA in a particular
conformational state.

The main function of RecA, an important protein for which homologues exist
in all organisms, is to catalyze DNA strand exchanges during homologous recom-
bination. RecA possesses a high affinity for single-stranded DNA. This form of
DNA is an intermediate of the recombination reaction, but DNA damage also, di-
rectly or indirectly, leads to its appearance in the cell. The formation of a complex
with single-stranded DNA induces RecA to change its conformation, which allows
it to interact with LexA and to stimulate the autoproteolytic activity of the latter.

In a certain way, RecA thus functions as a detector of DNA damage, while
LexA regulates the response to this stress. The structure of the SOS regulon is
therefore relatively simple. However, to this simple picture, we need to add the
transcriptional autoregulation of LexA, the transcription of various genes of the
regulon by three sigma factors (including σS), and the fact that key target genes
allow the DNA to be repaired or replicated (Figure 6.12). The repair of the DNA
removes the stimulus, so that LexA starts to accumulate in the cell again, the SOS
regulon is repressed, and the normal growth state restored. By its relative sim-
plicity, and by the fact that this regulon has been much studied, the SOS system
is an excellent test case for two tasks: (i) inferring the connectivity of the genetic
regulatory network from expression data, and (ii) characterizing the interactions
through the estimation of kinetic parameters.

In [60], the group of Collins at Boston University tackled the first task, infer-
ring the connectivity of the network from gene expression data. The authors chose
nine key genes of the SOS system in E. coli and they measured, by quantitative
RT-PCR, the RNA concentration of these genes at an equilibrium growth state.
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Figure 6.12. Genetic regulatory network of the SOS regulon in E. coli (figure reproduced from [60]).
The figure represents genes (rectangles) as well as proteins (ellipses). Positive interactions are indicated
by arrows and negative interactions by circles.

Next, they perturbed the regulatory network by overexpressing one of the nine
genes. A new equilibrium was established after a transition period and the RNA
concentrations were measured again. A considerable number of repetitions of the
experiment and careful experimental work have thus led to reliable measurements
of the expression level of the nine genes under nine different conditions (overex-
pression of each of the nine genes).

Close to the equilibrium, a linear description of the system often provides
a good approximation of its dynamics. The regulatory interactions between the
nine genes are therefore modeled by a system of linear differential equations of
the form (6.3), where b represents external perturbations applied to the cell. In
order to determine the parameters of the linear system, it would in principle be
sufficient to measure the RNA concentration at nine different equilibrium states
[49]. However, even careful measurements of the expression level are still too noisy
to make this direct approach possible. For this reason, multiple regression is used
to find the set of values for the parameters that fit the expression data with the
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smallest error. In addition, the authors make the reasonable assumption that the
regulatory network is only sparsely connected, that is, that each gene is regulated
by few of the other genes. This restriction considerably reduces the number of
possibilities to be explored.

The approach summarized above makes it possible to identify the major inter-
actions of the regulatory network. For instance, the analysis correctly identifies the
mutual inhibition of LexA and RecA, as well as the autoregulation of LexA. The
model also correctly predicts that RecA and LexA exert the strongest regulatory
influences in the SOS system. By analyzing the nine data sets, the authors uncover
more than half of the known regulatory interactions between the nine genes of the
network. However, about 40% of the predicted interactions by the linear analysis
are false positives, that is, they do not occur in the real network. This is not sur-
prising, if one takes into account the error level inherent in measurements of RNA
concentrations. By computing the mean of sixteen measurements of each tran-
script (i.e., eight replications of each experiment, analyzed by two separate PCR
reactions), the authors are able to measure the RNA concentration with an error
(the ratio of the mean standard error and the mean) of about 68%. The error in an
experiment using DNA microarrays is generally even larger. The authors show by
means of simulations that a 10% reduction of the experimental error allows one
to find 75% of the existing interactions with only 20% of false positives.

The example shows that an analysis by means of linear models can provide
a good first sketch of an unknown regulatory network. The interpretation of the
results must take into account not only that the network is probably incomplete
and that false positives may be present, but also that the identified regulatory in-
teractions are not necessarily direct. An enzyme increasing the concentration of
a metabolite, which activates a kinase phosphorylating a transcription factor that
activates a gene, would give rise to the activation of the gene by the enzyme [37].
An additional problem, inherent to linear models, is the difficulty to find coop-
erative interactions, involving several components of the network. For instance,
the initiation of the transcription of a gene might require two transcription fac-
tors to simultaneously bind upstream of a promoter. The majority of interac-
tions in the SOS regulon are direct and noncooperative, which allows the method
based on linear models to provide a good idea of the connectivity of the net-
work.

However, in order to better characterize the interactions of the network, go-
ing beyond the mere connectivity of the network, one has to pass from linear to
nonlinear models. This allows the interactions to be described in more detail, but
necessitates the use of more powerful methods and larger amounts of more precise
data. The group of Alon at the Weizmann Institute of Science has recently taken
up this challenge for the SOS regulon [61]. Given the connectivity of the network,
somewhat simplified in comparison with Figure 6.12, the authors have estimated
the values of the parameters characterizing the interactions.

The experimental approach of the authors is similar to the one used by the
group of Collins for the reconstruction of the connectivity of the network. The
expression of the genes being studied is not measured by quantitative RT-PCR,
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but by transcriptional fusions of the promoters with the GFP (green fluorescent
protein) gene. This allows the expression of a gene to be measured in vivo in real
time. The high sampling frequency (one measurement every few minutes) makes
it possible to follow the kinetics of the change in gene expression after a pertur-
bation. A single perturbation is used in these experiments: irradiation with UV
light, which entails DNA damage and induces the SOS system. Contrary to the
experiments of the group of Collins, where the expression of the genes is deter-
mined at two successive equilibria, what is measured here is the transient phase
between the perturbation of the equilibrium by means of UV light and the re-
turn to the same equilibrium after repair of the damage. Each expression profile
consists of a time series of some 30 measurements, performed at three-minute in-
tervals.

The dynamics of the SOS system is essentially described by eight nonlinear
ordinary differential equations which describe the repression of eight target genes
by LexA. Each equation is of the Michaelis-Menten form and therefore described
by two parameters: the first represents the strength of the promoter and the second
the apparent affinity of LexA for this promoter. The challenge consist in estimat-
ing the sixteen parameters from experimental data. After transformation of the
model in a quasi-linear form, a standard optimization algorithm allows a set of
parameter values to be found that minimizes the difference between predictions
and observations. If the error in the prediction of the expression profile of a gene
is too important, then one may suppose that a nonidentified interaction has been
omitted. In the results presented by the authors, the error for gene uvrY is close to
45%. In fact, recent biological data suggest that this gene is subject to an additional
regulation [62, 63].

Because it is assumed here that all regulatory interactions of the network are
known, and the form of the differential equations is simple, one can estimate the
parameter values from high-quality temporal expression profiles (the mean error
is of the order of 10%). However, for most genetic regulatory networks these con-
ditions are more difficult to satisfy than for the relatively simple and well-studied
SOS regulon.

6.5. Piecewise-linear ordinary differential equation models

6.5.1. Equations and mathematical analysis

The linear differential equation models are easier to analyze than the nonlinear
models, as we have seen in Section 6.4.1. However, this mathematical simplicity
comes at the price of a reduced ability to take into account essential properties of
the dynamics of the system. Are there models that are easy to treat mathematically
and nevertheless capable of adequately representing the dynamics of the system? In
this section, we study a class of models that answer both requirements: piecewise-
linear differential equations.

The general form of the models is given by (6.2), with the additional con-
straint that the functions f are piecewise linear. That is, the phase space R

n
≥0 is
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Figure 6.13. (a) Piecewise-linear differential equation model of the mutual-inhibition network (Figure
6.4). The variables xa and xb represent the concentration of proteins A and B, respectively, parameters
κa and κb the synthesis rates, parameters γa and γb the degradation constants, and parameters θa and
θb threshold concentrations for A and B, respectively. All parameters are positive. (b) Graphical repre-
sentation of the step function s−(x, θ). (c) Piecewise-linear structure of the model in (a), corresponding
to the division of the phase space into four regions (∆(1), . . . ,∆(4)) by xa = θa and xb = θb .

divided into regions ∆( j), j ∈ [1, . . . , p], in each of which the network is de-
scribed by a system of linear differential equations. While being globally nonlinear,
a piecewise-linear differential equation model is locally linear

dx
dt
=A( j)x+b( j), A( j)∈R

n×n, b( j)∈R
n, x∈∆( j)⊆R

n
≥0, j∈[1, . . . , p]. (6.4)

As for the linear models, we assume that the elements of A( j) and b( j) are constants.
This implies that in each region ∆( j), (6.4) can be solved analytically.

Piecewise-linear differential equations have been used to model genetic reg-
ulatory networks since the early seventies [64, 65, 66, 67]. In order to illustrate
their application, we again consider the example of the two-gene network. The
piecewise-linear model, presented in Figure 6.13, is obtained from the nonlinear
model by replacing the sigmoidal function h− by another approximation, the step
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function s− : D ×R>0 → R≥0, D ⊂ R≥0. For concentrations x below the threshold
θ, s−(x, θ) equals 1, whereas for concentrations x above θ, the function evaluates
to 0. For x = θ, it is not defined. As one can verify in Figure 6.13c, the model
can be rewritten in the form (6.4). The segments xa = θa and xb = θb divide
the phase space into four regions, ∆(1), . . . ,∆(4). In each region, after evaluation of
the step functions, the model reduces to a system of two linear differential equa-
tions.

In the cases that interest us, the reduced system of differential equations as-
sociated with a region ∆( j) is not only linear, but also uncoupled. That is, A( j) is
a diagonal matrix and the temporal derivative of the variable xi does not depend
on variables other than xi. Such a system has a very simple analytical solution. In
fact, one can show that, in region ∆( j), all solutions locally converge towards the

point φ(∆( j)) = (b
( j)
1 /a

( j)
11 , . . . , b

( j)
n /a

( j)
nn )′ [64]. For instance, in ∆(1), the solutions

converge towards φ(∆(1)) = (κa/γa, κb/γb)′, while in ∆(2), they converge towards
φ(∆(2)) = (κa/γa, 0)′ (Figure 6.14b). If φ(∆( j)) ∈ ∆( j), then φ(∆( j)) is an equilib-
rium point of the system, which is, for instance, the case for ∆(2) and ∆(3).

The piecewise-linear model does not specify how the system behaves on the
segments xa = θa and xb = θb, where one or more step functions, and hence the
corresponding differential equations, are not defined. In order to treat this prob-
lem, Gouzé and Sari [68] have proposed an approach which consists of extending
the differential equation model (6.4) to a differential inclusion model, following
ideas developed in control theory. This solution exploits mathematical concepts
that are outside the scope of this chapter, but for our purposes, it is sufficient to
know that the approach is elegant from a theoretical point of view and easy to use
in practice. In the example, it allows the local analysis of the dynamics of the net-
work to be extended to regions of the phase space located on the segments xa = θa
and xb = θb, that is, ∆(5), . . . ,∆(9) (Figure 6.14c). The results of the analysis are in-
tuitive: the solutions of the system instantaneously traverse ∆(5), . . . ,∆(8), whereas
solutions reaching ∆(9) can remain indefinitely in this region or leave it after a
certain time (Figure 6.14d).

The local analyses of the dynamics of the system in the different regions of the
phase space can be combined into a global analysis, as illustrated in Figure 6.15.
The predictions of the piecewise-linear model are qualitatively equivalent to those
obtained by the nonlinear model. The network has three equilibrium points, of
which two are stable and one is unstable (Figure 6.15a). Figure 6.15c shows that a
transient perturbation may cause the system to switch from one stable equilibrium
to the other. As for the nonlinear model, an increase of the value of parameter θb,
without changing the value of the other parameters, can bring about a bifurcation:
one of the two stable equilibria and the unstable equilibrium disappear (Figure
6.15b). In summary, the example shows that, while facilitating the mathematical
analysis, the piecewise-linear models allow us to preserve essential properties of
the mutual-inhibition network. There are good reasons to believe that this is also
true for other, more complex networks, but this has not been formally proven yet.

The analysis of the piecewise-linear model of the two-gene network suggests a
discrete, more compact representation of the dynamics of the system [69].
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Figure 6.14. Local phase portraits of the piecewise-linear model of the mutual-inhibition network
(Figure 6.13). (a) Regions ∆(1), . . . ,∆(4), (b) examples of trajectories in these regions, (c) regions
∆(5), . . . ,∆(9) located on the segments xa = θa or xb = θb , and (d) examples of trajectories arriving
at or departing from these regions. The trajectories are straight lines, because in the simulations we
have set γa = γb .

In fact, every region of the phase space can be seen as a qualitative state, in which
the system behaves in a qualitatively homogeneous way. For instance, in region
∆(1), all trajectories converge towards the point φ(∆(1)) = (κa/γa, κb/γb)′, whereas
in ∆(2), they converge towards φ(∆(2)) = (0, κb/γb)′. Two qualitative states can
be connected by a transition, if there exists a solution starting in the region cor-
responding to the first state that reaches the region corresponding to the second
state, without passing through a third region. This is the case for the solutions
in ∆(1) which, while converging towards φ(∆(1)), reach ∆(5), ∆(6), or ∆(9). The set
of qualitative states and transitions between these states defines a state transition
graph.
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Figure 6.15. Global phase portrait of the piecewise-linear model of the mutual-inhibition network
(Figure 6.13). (a) Vector field and nullclines. The system has two stable equilibrium points (se) and one
unstable equilibrium point (ue). (b) Analysis of the bifurcation produced when the value of parameter
θb is increased. The value of θb in (b) is larger than that in (a). (c) Hysteresis phenomenon, following
a transient perturbation of the system (broken line with arrow).

The state transition graph obtained for the model of the mutual-inhibition
network is shown in Figure 6.16a. The graph is composed of nine qualitative states,
associated to the regions of the phase space (Figure 6.14), and the transitions be-
tween these states. Three of the nine states are qualitative equilibrium states, that
is, states corresponding to a region containing an equilibrium point. The graph
summarizes the dynamics of the network in a qualitative manner. For instance,
it provides information on the reachability of an equilibrium point from a given
region. If the equilibrium point is reachable, there must exist a path in the graph
going from the qualitative state corresponding to the initial region to the qualita-
tive equilibrium state corresponding to the region in which the equilibrium point
is contained.
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Figure 6.16. (a) State transition graph produced from the piecewise-linear model of the mutual-
inhibition network (Figure 6.13). The qualitative equilibrium states are circled [69]. (b) Detailed de-
scription of the sequence of qualitative states QS1,QS5,QS2.

Generally speaking, the state transition graph associated to a piecewise-linear
model will vary with the parameter values. However, following de Jong et al. [69],
one can define a class of models determined by inequality constraints on the pa-
rameters. Under certain, not too restrictive conditions, each model in that class
produces the same state transition graph. This can be illustrated by means of the
example of the two-gene network, by considering the transitions from QS1, the
qualitative state corresponding to region ∆(1). The transitions from QS1 to the
states QS5, QS6, and QS9 do not depend on the exact values of the parameters, as
long as κa/γa > θa and κb/γb > θb. In fact, under these conditions, φ(∆(1)) ∈ ∆(4)

and the trajectories in ∆(1) all reach QS5, QS6, or QS9 after a certain time. A qual-
itative simulation method has been proposed, which symbolically computes the
state transition graph for a piecewise-linear differential equation model, supple-
mented by inequality constraints on the parameters [69]. This method has been
implemented in a computer tool called Genetic Network Analyzer (GNA) [70].

The interest of qualitative simulation derives from the fact that it is adapted
to the lack of quantitative information on genetic regulatory networks, a problem
already referred to in previous sections. Instead of numerical values, the method
uses inequality constraints that can usually be specified by means of the qualita-
tive information available in the experimental literature. On the formal level, the
qualitative simulation method is related to a method developed by Thomas et al.,
which is based on asynchronous logical models [13, 71]. A similar approach has
also emerged in the hybrid-system community [72, 73]. The above methods have
demonstrated their usefulness in the study of a certain number of prokaryotic and
eukaryotic networks, whose analysis is rendered difficult by the almost complete
absence of numerical parameter values (see [73, 74, 75, 76, 77, 78]; see [79] for a
review). In the next section, we present the results of the qualitative simulation of
the network controling the initiation of sporulation in Bacillus subtilis.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


H. de Jong and J. Geiselmann 229
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Sporulation

Figure 6.17. Life cycle of B. subtilis: decision between vegetative growth and sporulation (adapted from
[81]).

6.5.2. Simulation of the initiation of sporulation in B. subtilis

Under conditions of nutrient deprivation, the Gram positive soil bacterium B. sub-
tilis can abandon vegetative growth and form a dormant, environmentally resistant
spore instead [80]. During vegetative growth, the cell divides symmetrically and
generates two identical cells. During sporulation, on the other hand, cell division
is asymmetric and results in two different cell types: the smaller cell (the forespore)
develops into the spore, whereas the larger cell (the mother cell) helps to deposit a
resistant coat around the spore and then disintegrates (Figure 6.17).

The decision to abandon vegetative growth and initiate sporulation involves
a radical change in the genetic program, the pattern of gene expression, of the
cell. The switch of genetic program is controled by a complex genetic regulatory
network integrating various environmental, cell-cycle, and metabolic signals. Due
to the ease of genetic manipulation of B. subtilis, it has been possible to identify
and characterize a large number of the genes, proteins, and interactions making
up this network. Currently, more than 125 genes are known to be involved [82].
A graphical representation of the regulatory network controlling the initiation of
sporulation is shown in Figure 6.18, displaying key genes and their promoters,
proteins encoded by the genes, and the regulatory action of the proteins.

The network is centered around a phosphorelay, which integrates a variety of
environmental, cell-cycle, and metabolic signals. Under conditions appropriate for
sporulation, the phosphorelay transfers a phosphate to the Spo0A regulator, a pro-
cess modulated by kinases and phosphatases. The phosphorelay has been simpli-
fied in this paper by ignoring intermediate steps in the transfer of phosphate to
Spo0A. However, this simplification does not affect the essential function of the
phosphorelay: modulating the phosphate flux as a function of the competing ac-
tion of kinases and phosphatases (here KinA and Spo0E). Under conditions con-
ducive to sporulation, such as nutrient deprivation or high population density, the
concentration of phosphorylated Spo0A (Spo0A∼P) may reach a threshold value
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Figure 6.18. Key genes, proteins, and regulatory interactions making up the network involved in B.
subtilis sporulation. In order to improve the legibility of the figure, the control of transcription by
the sigma factors σA and σH has been represented implicitly, by annotating the promoter with the
corresponding sigma factor (figure reproduced from [74]).

above which it activates various genes that commit the bacterium to sporulation.
The choice between vegetative growth and sporulation in response to adverse envi-
ronmental conditions is the outcome of competing positive and negative feedback
loops, controling the accumulation of Spo0A∼P.

Not withstanding the enormous amount of work devoted to the elucidation
of the network of interactions underlying the sporulation process, very little quan-
titative data on kinetic parameters and molecular concentrations are available. de
Jong et al. have therefore used the qualitative simulation method introduced in
Section 6.5.1 to analyze the network [74]. The objective of the study was to re-
produce the observed qualitative behavior of wild-type and mutant bacteria from
a model synthesizing data available in the literature. To this end, the graphical
representation of the network has been translated into a piecewise-linear model
supplemented by qualitative constraints on the parameters. The resulting model
consists of nine state variables and two input variables. The 48 parameters are con-
strained by 70 parameter inequalities, the choice of which is largely determined by
biological data.

The tool GNA [70] has been used to simulate the response of a wild-type B.
subtilis cell to nutrient depletion and high population density. Starting from ini-
tial conditions representing vegetative growth, the system is perturbed by a sporu-
lation signal that causes KinA to autophosphorylate. Simulation of the network
takes less than a few seconds to complete on a PC (500 MHz, 128 MB of RAM),
and gives rise to a transition graph of 465 qualitative states. Many of these states
are associated with regions in the phase space that the system traverses instan-
taneously. Since the biological relevance of the latter states is limited, they can be
eliminated from the transition graph. This leads to a reduced transition graph with
82 qualitative states.
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The transition graph faithfully represents two possible responses to nutrient
depletion that are observed for B. subtilis: either the bacterium continues vegeta-
tive growth or it enters sporulation. Sequences of qualitative states typical for these
two developmental modes are shown in Figure 6.19. The initiation of sporulation
is determined by positive feedback loops acting through Spo0A and KinA, and a
negative feedback loop involving Spo0E. If the rate of accumulation of the kinase
KinA outpaces the rate of accumulation of the phosphatase Spo0E, we observe
transient expression of sigF, that is, a spo+ phenotype (Figure 6.19a). Gene sigF
is a sigma factor essential for the development of the forespore [83]. If the kinet-
ics of these processes are inversed, sigF is never activated and we observe a spo−

phenotype (Figure 6.19b). Deletion or overexpression of genes in the network of
Figure 6.18 may disable a feedback loop, leading to specific changes in the observed
sporulation phenotype. The results of the simulation of a dozen sporulation mu-
tants are discussed in [74].

6.6. Discussion

The functioning and development of living things—from bacteria to humans—
are controled by genetic regulatory networks composed of interactions between
DNA, RNA, proteins, and small molecules. The size and complexity of these net-
works make it difficult to intuitively understand their dynamics. In order to pre-
dict the behavior of regulatory systems in a systematic way, we need modeling and
simulation tools with a solid foundation in mathematics, statistics, and computer
science. In this chapter, we have examined the modeling and simulation of genetic
regulatory networks by means of ordinary differential equations. In particular, we
have compared nonlinear, linear, and piecewise-linear differential equation mod-
els. Concrete examples, taken from the literature, have illustrated the application
of these models.

Nonlinear ordinary differential equations provide an adequate description of
the dynamics of a genetic regulatory network, as shown by the analysis of the
mutual-inhibition network. Unfortunately, they are difficult to treat mathemat-
ically for networks comprising more than two genes, in which case we have to take
recourse to numerical simulation. However, the application of numerical tech-
niques is often difficult in practice, due to the absence of numerical values for the
parameters in the model. A possible alternative is the use of linear ordinary differ-
ential equations. Powerful techniques for solving these equations exist, as well as
techniques for estimating parameter values from experimental data. This facility
comes at a price though: the models are often too simple for reproducing essential
dynamical properties of genetic regulatory networks.

In addition, we have presented a third type of ordinary differential equations,
piecewise-linear models. Globally nonlinear and locally linear, these models rep-
resent a good compromise between the two types of models previously discussed.
On one hand, they allow the network dynamics to be described in an adequate
way, while on the other hand, they are easy to treat mathematically. The favorable
mathematical properties have allowed the elaboration of a qualitative simulation
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Figure 6.19. (a) Temporal evolution of selected protein concentrations in a typical qualitative behavior
corresponding to the spo+ phenotype. (b) Idem, but for a typical qualitative behavior corresponding to
the spo− phenotype (figure adapted from [74]).
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method, capable of producing a qualitative description of the dynamics of the
network from a piecewise-linear differential equation model supplemented by in-
equality constraints on the parameters. Contrary to numerical values, these con-
straints can be often inferred from the experimental literature.

The ordinary differential equation models discussed in this chapter should
not be mistaken for a panacea for the analysis of genetic regulatory networks. In
fact, the applicability of these models can be questioned for different reasons and,
based on these criticisms, other modeling approaches can be advanced. Here we
concentrate on two objections.

First, the biochemical reactions occurring in a cell are discrete and stochas-
tic processes [18]. The time between different reactions, as well as the type of the
next reaction, is random, and each reaction increases and/or decreases the num-
ber of each molecular species. Ordinary differential equation models abstract from
this molecular vision by reasoning in terms of continuous concentration variables
and deterministic rates. This is an adequate approximation as long as the num-
ber of molecules is high. However, this condition is not always verified [18]. A
bacterial cell, for instance, contains only a few dozens of molecules of certain tran-
scription factors. In order to treat this problem, stochastic master equation models,
based on the discrete and stochastic character of biochemical reaction systems,
have been proposed (Section 6.1). The practical application of these models de-
mands stochastic simulation methods [17, 84, 85], supported by efficient computer
tools [86, 87]. The use of stochastic simulation has given rise to impressive results
[16, 85], but has the disadvantage of demanding as input detailed information on
the biochemical reactions as well as the associated kinetic parameters, information
that is only seldom available. Moreover, its application to regulatory networks of
more than a few genes requires huge computational resources.

The second objection is not directed at the validity of the models encountered
in this chapter, but rather concerns the feasibility of their application. It takes as
its point of departure the observation that the genetic regulatory networks of in-
terest generally involve a large number of genes and proteins, interacting in com-
plex ways. If one wishes to model these networks in the same way as the example
network of two genes, the resulting models will have hundreds of variables and
parameters. Given the difficulties of obtaining reliable parameter values, the con-
clusions that one will be able to draw from the analysis of these gigantic models
have to be taken with circumspection. Moreover, it is not sure that the predictions
of the temporal evolution of all these concentration variables will help us to better
understand the functioning of the system. In this case, it seems more appropriate
and informative to distinguish subnetworks of the network of interest, describe the
dynamics of these subnetworks individually—using more abstract models than
those presented here—and couple the abstract models in order to analyze the in-
teractions between subnetworks [88, 89]. This modular approach can be justified
by what we know or suspect about the structure of biological regulatory networks
[55, 90].

The two objections seem to point in two opposite directions: towards more
fine-grained models for the first objection, and towards more abstract models for

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


234 Modeling and simulation of genetic regulatory networks

the second objection. However, the contradiction is only apparent; it disappears
when one recalls that a model is constructed in order to answer a certain biolog-
ical question. If one is interested in the analysis of the behavior emerging from
the interactions between several dozens of genes, the ordinary differential equa-
tion models presented in this chapter are quite appropriate. On the contrary, a
more fine-grained analysis of a particular regulatory mechanism may demand the
use of stochastic models, while a global comprehension of a very large network
is probably better approached by means of approximate models, describing the
interactions between different modules of the system.

This perspective emphasizes the importance of the modeling task, the con-
struction of a model adapted to the question being asked, as well as the revision of
the model when one discovers that it is not adequate (Figure 6.1). Globally, there
exist two approaches for model construction [6]. On one hand, they can be com-
posed from knowledge on the molecular components of the regulatory system and
their mutual interactions, whereas on the other hand, they can be inferred from
expression data and other measurements of the kinetics of the system. In practice,
the two approaches must be combined in order to be able to efficiently exploit
the rich store of information available on the structure and functioning of genetic
regulatory networks. One of the big challenges of bioinformatics, statistics, and
system biology today consists in the development of computer environments ca-
pable of supporting the construction of simulation models [91].

Another challenge consists in the integration of genetic regulatory networks
with metabolic networks, signal transduction networks, and other interaction net-
works (Section 6.1). Even if, for certain problems, the study of one type of net-
works in isolation may be satisfactory, the comprehension of the functioning of
an entire cell obliges us to build models combining gene regulation with metabo-
lism, signal transduction, and other processes. Excellent mathematical models of
different cellular processes exist nowadays, for example of the cell cycle in the toad
Xenopus laevis and the yeasts Schizosaccharomyces pombe and Saccharomyces cere-
visiae [92, 93, 94, 95], the metabolism of the red-blood cell in humans [96, 97], and
the signaling pathway involved in the maturation of oocytes in X. laevis [98, 99].
However, the integration of models of different processes of the cell remains a
very difficult task. As remarked in the introductory section, the networks involve
different types of interaction, modeled by different types of equations. Moreover,
the processes that are concerned evolve on different time scales, sometimes dif-
fering by several orders of magnitude. Among other things, this raises mathemat-
ical problems associated with the stiffness of the resulting differential equations.
Several approaches for the integration of different types of networks have been
proposed (e.g., [100]), but there can be no doubt that the subject remains largely
unexplored.
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7
Modeling genetic regulatory networks
with probabilistic Boolean networks

Ilya Shmulevich and Edward R. Dougherty

7.1. Introduction

High-throughput genomic technologies such as microarrays are now allowing sci-
entists to acquire extensive information on gene activities of thousands of genes
in cells at any physiological state. It has long been known that genes and their
products in cells are not independent in the sense that the activation of genes with
subsequent production of proteins is typically jointly dependent on the products
of other genes, which exist in a highly interactive and dynamic regulatory net-
work composed of subnetworks and regulated by rules. However, discovering the
network structure has thus far proved to be elusive either because we lack suffi-
cient information on the components of the network or because we lack the nec-
essary multidisciplinary approaches that integrate biology and engineering princi-
ples and computational sophistication in modeling. During the past several years a
new mathematical rule-based model called probabilistic Boolean networks (PBN)
has been developed to facilitate the construction of gene regulatory networks to
assist scientists in revealing the intrinsic gene-gene relationships in cells and in ex-
ploring potential network-based strategies for therapeutic intervention (Shmule-
vich et al. [1, 2, 3, 4, 5, 6], Datta et al. [7, 8], Kim et al. [9], Zhou et al. [10], and
Hashimoto et al. [11]). There is already evidence that PBN models can reveal bi-
ologically relevant gene regulatory networks and can be used to predict the effects
of targeted gene intervention. A key goal of this chapter is to highlight some im-
portant research problems related to PBNs that remain to be solved, in hope that
they will stimulate further research in the genomic signal processing and statistics
community.

7.2. Background

Data comprised of gene expression (mRNA abundance) levels for multiple genes is
typically generated by technologies such as the DNA microarray or chip. The role
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Data Model Goals

Figure 7.1

of the dynamical model or network is to simulate, via iteration of explicit rules, the
dynamics of the underlying system presumed to be generating the observations.
Such simulations can be useful for making predictions while the rules themselves,
characterizing the relationships between the expressions of different genes, may
hold important biological information. Time-course data, which are measure-
ments taken at a number of time points, are often used for the inference of the
model.

Before we discuss Probabilistic Boolean Networks, it may be worthwhile to
pose several general but fundamental questions concerning modeling of genetic
regulatory networks. The first and perhaps the most important question is the
following.

7.2.1. What class of models should we choose?

We would like to argue that this choice must be made in view of (1) the data
requirements and (2) the goals of modeling and analysis. Indeed, as shown in
Figure 7.1 data is required to infer the model parameters from observations in
the physical world, while the model itself must serve some purpose, in particu-
lar, prediction of certain aspects of the system under study. Simply put, the type
and quantity of data that we can gather together with our prescribed purpose for
using a model should be the main determining factors behind choosing a model
class.

The choice of a model class involves a classical tradeoff. A fine-scale model
with many parameters may be able to capture detailed low-level phenomena such
as protein concentrations and reaction kinetics, but will require very large amounts
of highly accurate data for its inference, in order to avert overfitting the model. In
contrast, a coarse-scale model with lower complexity may succeed in capturing
high-level phenomena, such as which genes are on or off, while requiring smaller
amounts of more coarse-scale data. In the context of genetic regulatory systems,
fine-scale models, typically involving systems of differential equations, can be ap-
plied to relatively small and isolated genetic circuits for which many types of ac-
curate measurements can be made. On the other hand, coarse-scale models are
more suited to global (genome-wide) measurements, such as those produced by
microarrays. Such considerations should drive the selection of the model class.
Needless to say, according to the principle of Ockham’s razor, which underlies all
scientific theory building, the model complexity should never be made higher than
what is necessary to faithfully “explain the data” (Shmulevich [12]).
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There is a rather wide spectrum of approaches for modeling gene regulatory
networks, each with its own assumptions, data requirements, and goals, including
linear models (van Someren et al. [13], D’haeseleer [14]), Bayesian networks (Mur-
phy and Mian [15], Friedman et al. [16], Hartemink et al. [17], Moler et al. [18]),
neural networks (Weaver et al. [19]), differential equations (Mestl et al. [20], Chen
et al. [21], Goutsias and Kim [22]), as well as models including stochastic com-
ponents on the molecular level (McAdams and Arkin [23]; Arkin et al. [24]) (see
Smolen et al. [25], Hasty et al. [26], and de Jong [27] for reviews of general
models).

The model system that has received, perhaps, the most attention is the Boolean
network model originally introduced by Kauffman (Kauffman [28], Glass and
Kauffman [29]). Good reviews can be found in Huang [30], Kauffman [31], So-
mogyi and Sniegoski [32], Aldana et al. [33]. In this model, the state of a gene is
represented by a Boolean variable (on or off) and interactions between the genes
are represented by Boolean functions, which determine the state of a gene on the
basis of the states of some other genes.

One of the appealing properties of Boolean networks is that they are inher-
ently simple, emphasizing generic principles rather than quantitative biochemi-
cal details, but are able to capture the complex dynamics of gene regulatory net-
works. Computational models that reveal these logical interrelations have been
successfully constructed (Bodnar [34], Yuh et al. [35], Mendoza et al. [36], Huang
and Ingber [37]). Let us now pose several questions related to this class of mod-
els.

7.2.2. To what extent do such models represent reality?

This question pertains more to modeling in general. All models only approxi-
mate reality by means of some formal representation. It is the degree to which
we hope to approximate reality and, more importantly, our goals of modeling,
namely, to acquire knowledge about some physical phenomenon that determines
what class of models should be chosen. In the context of Boolean networks as
models of genetic regulatory networks, the binary approximation of gene expres-
sion is only suitable to capture those aspects of regulation that possess a some-
what binary character. Even though most biological phenomena manifest them-
selves in the continuous domain, we often describe them in a binary logical lan-
guage such as “on and off,” “up-regulated and down-regulated,” and “responsive
and nonresponsive.” Moreover, recent results suggest that gene regulation may
indeed function “digitally” (Lahav et al. [38]). Before embarking on modeling
gene regulatory networks with a Boolean formalism, it is prudent to test whether
or not meaningful biological information can be extracted from gene expression
data entirely in the binary domain. This question was taken up by Shmulevich
and Zhang [39]. They reasoned that if the gene expression levels, when quan-
tized to only two levels (1 or 0), would not be informative in separating known
subclasses of tumors, then there would be little hope for Boolean modeling of
realistic genetic networks based on gene expression data. Fortunately, the results

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


244 Modeling genetic regulatory networks with probabilistic Boolean networks

were very promising. By using binary gene expression data, generated via cDNA
microarrays, and the Hamming distance as a similarity metric, they were able to
show a clear separation between different subtypes of gliomas (a similar exper-
iment was also performed for sarcomas), using multidimensional scaling. This
seems to suggest that a good deal of meaningful biological information, to the
extent that it is contained in the measured continuous-domain gene expression
data, is retained when it is binarized. Zhou et al. [40] took a similar approach,
but in the context of classification. The revealing aspect of their approach is that
classification using binarized expressions proved to be only negligibly inferior to
that using the original continuous expression values, the difference being that the
genes derived via feature selection in the binary setting were different than the
ones selected in the continuous. The expression values of those possessing binary-
like behavior fell into bimodal distributions and these were naturally selected for
classification.

7.2.3. Do we have the “right” type of data to infer these models?

With cDNA microarray data, it is widely recognized that reproducibility of mea-
surements and between-slide variation is a major issue (Zhang et al. [41], Chen
et al. [42], Kerr et al. [43]). Furthermore, genetic regulation exhibits consider-
able uncertainty on the biological level. Indeed, evidence suggests that this type
of “noise” is in fact advantageous in some regulatory mechanisms (McAdams and
Arkin [44]). Thus, from a practical standpoint, limited amounts of data and the
noisy nature of the measurements can make useful quantitative inferences prob-
lematic, and a coarse-scale qualitative modeling approach seems to be justified.
To put it another way, if our goals of modeling were to capture the genetic in-
teractions with fine-scale quantitative biochemical details in a global large-scale
fashion, then the data produced by currently available high-throughput genomic
technologies would not be adequate for this purpose.

Besides the noise and lack of fine-scale data, another important concern is the
design of dynamic networks using nondynamic data. If time-course data is avail-
able, then it is usually limited and the relation between the biological time-scale
under which it has been observed and the transition routine of an inferred net-
work is unknown. Moreover, most often the data being used to infer networks does
not consist of time-course observations. In this situation, the usual assumption is
that the data comes from the steady state of the system. There are inherent limi-
tations to the design of dynamical systems from steady-state data. Steady-state be-
havior constrains the dynamical behavior, but does not determine it. Thus, while
we might obtain good inference regarding the attractors, we may obtain poor in-
ference relative to the steady-state distribution (see Section 7.4.2 for the definition
of an attractor). Building a dynamical model from steady-state data is a kind of
overfitting. It is for this reason that we view a designed network as providing a reg-
ulatory structure consistent with the observed steady-state behavior. If our main
interest is in steady-state behavior, then it is reasonable to try to understand dy-
namical regulation corresponding to steady-state behavior.
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7.2.4. What do we hope to learn from these models?

Our last question is concerned with what type of knowledge we hope to acquire
with the chosen models and the available data. As a first step, we may be interested
in discovering qualitative relationships underlying genetic regulation and control.
That is, we wish to emphasize fundamental generic coarse-grained properties of
large networks rather than quantitative details, such as kinetic parameters of in-
dividual reactions (Huang [30]). Furthermore, we may wish to gain insight into
the dynamical behavior of such networks and how it relates to underlying biolog-
ical phenomena, such as cellular state dynamics, thus providing the potential for
the discovery of novel targets for drugs. As an example, we may wish to predict
the downstream effects of a targeted perturbation of a particular gene. Recent re-
search indicates that many realistic biological questions may be answered within
the seemingly simplistic Boolean formalism. Boolean networks are structurally
simple, yet dynamically complex. They have yielded insights into the overall be-
havior of large genetic networks (Somogyi and Sniegoski [32], Szallasi and Liang
[45], Wuensche [46], Thomas et al. [47]) and allowed the study of large data sets
in a global fashion.

Besides the conceptual framework afforded by such models, a number of prac-
tical uses, such as the identification of suitable drug targets in cancer therapy, may
be reaped by inferring the structure of the genetic models from experimental data,
for example, from gene expression profiles (Huang [30]). To that end much recent
work has gone into identifying the structure of gene regulatory networks from ex-
pression data (Liang et al. [48], Akutsu et al. [49, 50, 51], D’haeseleer et al. [52],
Shmulevich et al. [53], Lähdesmäki et al. [54]). It is clear that “wet” lab exper-
imental design and “dry” lab modeling and analysis must be tightly integrated
and coordinated to generate, refine, validate, and interpret the biologically rele-
vant models (see Figure 7.2).

Perhaps the most salient limitation of standard Boolean networks is their in-
herent determinism. From a conceptual point of view, it is likely that the regularity
of genetic function and interaction known to exist is not due to “hard-wired” log-
ical rules, but rather to the intrinsic self-organizing stability of the dynamical sys-
tem, despite the existence of stochastic components in the cell. From an empirical
point of view, there are two immediate reasons why the assumption of only one
logical rule per gene may lead to incorrect conclusions when inferring these rules
from gene expression measurements: (1) the measurements are typically noisy and
the number of samples is small relative to the number of parameters to be inferred;
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(2) the measurements may be taken under different conditions, and some rules
may differ under these varying conditions.

7.3. Probabilistic Boolean networks

7.3.1. Background

The probabilistic Boolean network model was introduced by Shmulevich et al.
[1]. These networks share the appealing properties of Boolean networks, but are
able to cope with uncertainty, both in the data and the model selection. There
are various reasons for utilizing a probabilistic network. A model incorporates
only a partial description of a physical system. This means that a Boolean function
giving the next state of a variable is likely to be only partially accurate. There will
be conditions under which different Boolean functions may actually describe the
transition, but these are outside the scope of the conventional Boolean model. If,
consequently, we are uncertain as to which transition rule should be used, then
a probabilistic Boolean network involving a set of possible Boolean functions for
each variable may be more suitable than a network in which there is only a single
function for each variable.

Even if one is fairly confident that a model is sufficiently robust that other
variables can be ignored without significant impact, there remains the problem of
inferring the Boolean functions from sample data. In the case of gene-expression
microarrays, the data are severely limited relative to the number of variables in
the system. Should it happen that a particular Boolean function has even a mod-
erately large number of essential variables, its design from the data is likely to be
imprecise because the number of possible input states will be too large for precise
estimation. This situation is exacerbated if some essential variables are either un-
known or unobservable (latent). As a consequence of the inability to observe suffi-
cient examples to design the transition rule, it is necessary to restrict the number of
variables over which a function is defined. For each subset of the full set of essential
variables, there may be an optimal function, in the sense that the prediction error
is minimized for that function, given the variables in the subset. These optimal
functions must be designed from sample data. Owing to inherent imprecision in
the design process, it may be prudent to allow a random selection between several
functions, with the weight of selection based on a probabilistic measure of worth,
such as the coefficient of determination (Dougherty et al. [55]).

The other basic issue regarding a probabilistic choice of transition rule is
that in practice we are modeling an open system rather than a closed system. An
open system has inputs (stimuli) that can affect regulation. Moreover, any model
used to study a physical network as complex as a eukaryotic genome must in-
evitably omit the majority of genes. The states of those left out constitute external
conditions to the model. System transition may depend on a particular external
condition at a given moment of time. Such effects have been considered in the
framework of using the coefficient of determination in the presence of external
stresses (Kim et al. [56]). Under the assumption that the external stimuli occur
asynchronously, it is prudent to allow uncertainty among the transition rules and
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weight their likelihood accordingly. It may be that the probability of applying a
Boolean function corresponding to an unlikely condition is low; however, system
behavior might be seriously misunderstood if the possibility of such a transition is
ignored.

It has been shown that Markov chain theory could be used to analyze the
dynamics of PBNs (Shmulevich et al. [1]). Also, the relationships to Bayesian net-
works have been established, and the notions of influences and sensitivities of genes
defined. The latter have been used to study the dynamics of Boolean networks
(Shmulevich and Kauffman [57]). The inference of networks from gene expres-
sion data has received great attention. It is important for the inferred network to
be robust in the face of uncertainty. Much work in this direction has already been
carried out specifically in the context of gene regulatory networks (Dougherty et
al. [58], Kim et al. [56, 59], Shmulevich et al. [53], Lähdesmäki et al. [54], Zhou et
al. [10, 60, 61]). Visualization tools for the inferred multivariate gene relationships
in networks are described by Suh et al. [62].

A framework for constructing subnetworks, adjoining new genes to subnet-
works, and mapping between networks in such a way that the network structure
and parameters remain consistent with the data has been established by Dougherty
and Shmulevich [5]. An algorithm for growing subnetworks from so-called “seed
genes” has been developed by Hashimoto et al. [11] and applied to several datasets
(glioma and melanoma). An important goal of PBN modeling is to study the long-
run behavior of the genetic networks. This was studied by Shmulevich et al. [6],
using Markov chain Monte Carlo (MCMC) methods, along with a detailed anal-
ysis of convergence. In particular, the effect of network mappings on long-run
behavior is critically important and a preliminary study has been carried out re-
garding the effect of network compression, including the issue of how to compress
a network to reduce complexity while at the same time maintain long-run behav-
ior to the extent possible (Ivanov and Dougherty [63]).

A gene perturbation model was extensively studied by Shmulevich et al. [2].
This approach not only simplified the steady-state analysis, but also provided a
theoretical framework for assessing the effects of single-gene perturbations on the
global long-run network behavior. In addition, a methodology for determining
which genes would be good potential candidates for intervention was developed.
Intervention and perturbation were presented in a unified framework. In addi-
tion, another approach for intervention, based on structural control with the use
of genetic algorithms, was presented by Shmulevich et al. [3]. Finally, interven-
tion based on external control was considered by Datta et al. [7, 8]. In that work,
given a PBN whose state transition probabilities depend on an external (control)
variable, a dynamic programming-based procedure was developed by which one
could choose the sequence of control actions that minimized a given performance
index over a finite number of steps.

7.3.2. Biological significance

One of the main objectives of Boolean-based network modeling is to study generic
coarse-grained properties of large genetic networks and the logical interactions of
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Figure 7.3. A diagram illustrating the cell cycle regulation example. Arrowed lines represent activation
and lines with bars at the end represent inhibition.

genes, without knowing specific quantitative biochemical details, such as kinetic
parameters of individual reactions. The biological basis for the development of
Boolean networks as models of genetic regulatory networks lies in the fact that
during regulation of functional states, the cell exhibits switch-like behavior, which
is important for cells to move from one state to another in a normal cell growth
process or in situations when cells need to respond to external signals, many of
which are detrimental. Let us use cell cycle regulation as an example. Cells grow
and divide. This process is highly regulated; failure to do so results in unregulated
cell growth in diseases such as cancer. In order for cells to move from the G1 phase
to the S phase, when the genetic material, DNA, is replicated for the daughter
cells, a series of molecules such as cyclin E and cyclin-dependent kinase 2 (CDK2)
work together to phosphorylate the retinoblastoma (Rb) protein and inactivate it,
thus releasing cells into the S phase. CDK2/cyclin E is regulated by two switches:
the positive switch complex called CDK activating kinase (CAK) and the nega-
tive switch p21/WAF1. The CAK complex can be composed of two gene products:
cyclin H and CDK7. When cyclin H and CDK7 are present, the complex can acti-
vate CDK2/cyclin E. A negative regulator of CDK2/cyclin E is p21/WAF1, which in
turn can be activated by p53. When p21/WAF1 binds to CDK2/cyclin E, the kinase
complex is turned off (Gartel and Tyner [64]). Further, p53 can inhibit cyclin H,
a positive regulator of cyclin E/CDK2 (Schneider et al. [65]). This negative regu-
lation is an important defensive system in the cells. For example, when cells are
exposed to mutagens, DNA damage occurs. It is to the benefit of cells to repair
the damage before DNA replication so that the damaged genetic materials do not
pass onto the next generation. Extensive amount of work has demonstrated that
DNA damage triggers switches that turn on p53, which then turns on p21/WAF1.
p21/WAF1 then inhibits CDK2/cyclin E, thus Rb becomes activated and DNA syn-
thesis stops. As an extra measure, p53 also inhibits cyclin H, thus turning off the
switch that turns on CDK2/cyclin E. Such delicate genetic switch networks in the
cells are the basis for cellular homeostasis.

For purposes of illustration, let us consider a simplified diagram, shown in
Figure 7.3, illustrating the effects of CDK7/cyclin H, CDK2/cyclin E, and p21/
WAF1 on Rb. Thus, p53 and other known regulatory factors are not considered.
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CDK7
Cyclin H
Cyclin E

p21/WAF1

CDK2
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Figure 7.4. The logic diagram describing the activity of retinoblastoma (Rb) protein in terms of 4
inputs: CDK7, cyclin H, cyclin E, and p21. The gate with inputs CDK7 and cyclin H is an AND gate,
the gate with input p21/WAF1 is a NOT gate, and the gate whose output is Rb is a NAND (negated
AND) gate.

While this diagram represents the above relationships from a pathway perspective,
we may also wish to represent the activity of Rb in terms of the other variables in
a logic-based fashion. Figure 7.4 contains a logic circuit diagram of the activity of
Rb (on or off) as a Boolean function of four input variables: CDK7, cyclin H, cy-
clin E, and p21/WAF1. Note that CDK2 is shown to be completely determined by
the values of CDK7 and cyclin H using the AND operation and thus, CDK2 is not
an independent input variable. Also, in Figure 7.3, p21/WAF1 is shown to have an
inhibitive effect on the CDK2/cyclin E complex, which in turn regulates Rb, while
in Figure 7.4, we see that from a logic-based perspective, the value of p21/WAF1
works together with CDK2 and cyclin E to determine the value of Rb. Such dual
representations in the biological literature were pointed out by Rzhetsky et al. [66].

7.3.3. Definitions

Mathematically, a Boolean network G(V ,F) is defined by a set of nodes V =
{x1, . . . , xn} and a list of Boolean functions F = { f1, . . . , fn}. Each xi represents
the state (expression) of a gene i, where xi = 1 represents the fact that gene i is
expressed and xi = 0 means it is not expressed. It is commonplace to refer to
x1, x2, . . . , xn as genes. The list of Boolean functions F represents the rules of regu-
latory interactions between genes. Each xi ∈ {0, 1}, i = 1, . . . ,n, is a binary variable
and its value at time t + 1 is completely determined by the values of some other
genes xj1(i), xj2(i), . . . , xjki (i) at time t by means of a Boolean function fi ∈ F. That is,
there are ki genes assigned to gene xi and the set {xj1(i), xj2(i), . . . , xjki (i)} determines
the “wiring” of gene xi. Thus, we can write

xi(t + 1) = fi
(
xj1(i)(t), xj2(i)(t), . . . , xjki (i)(t)

)
. (7.1)

The maximum connectivity of a Boolean network is defined by K = maxi ki. All
genes are assumed to update synchronously in accordance with the functions as-
signed to them and this process is then repeated. The artificial synchrony simplifies
computation while preserving the qualitative, generic properties of global network
dynamics (Huang [30], Kauffman [31], Wuensche [46]). It is clear that the dynam-
ics of the network are completely deterministic.

The basic idea behind PBNs is to combine several promising Boolean func-
tions, now called predictors, so that each can make a contribution to the predic-
tion of a target gene. A natural approach is to allow a random selection of the
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Figure 7.5. A basic building block of a probabilistic Boolean network. Although the “wiring” of the
inputs to each function is shown to be quite general, in practice, each function (predictor) has only a
few input variables.

predictors for a given target gene, with the selection probability being propor-
tional to some measure of the predictor’s determinative potential, such as the co-
efficient of determination, described later. At this point, it suffices for us to assume
that each predictor has an associated probability of being selected. Given genes

V = {x1, . . . , xn}, we assign to each xi a set Fi = { f (i)
1 , . . . , f (i)

l(i)} of Boolean func-
tions composed of the predictors for that target gene. Clearly, if l(i) = 1 for all
i = 1, . . . ,n, then the PBN simply reduces to a standard Boolean network. The
basic building block of a PBN is shown in Figure 7.5.

As first introduced in Shmulevich et al. [1], at each point in time or step of
the network, a function f (i)

j is chosen with probability c(i)
j to predict gene xi. Con-

sidering the network as a whole, a realization of the PBN at a given instant of
time is determined by a vector of Boolean functions, where the ith element of that
vector contains the predictor selected at that instant for gene xi. If there are N
possible realizations, then there are N vector functions, f1, f2, . . . , fN , of the form
fk = ( f (1)

k1
, f (2)

k2
, . . . , f (n)

kn
), for k = 1, 2, . . . ,N , 1 ≤ ki ≤ l(i), and where f (i)

ki
∈ Fi

(i = 1, . . . ,n). In other words, the vector function fk : {0, 1}n → {0, 1}n acts as
a transition function (mapping) representing a possible realization of the entire
PBN. Such functions are commonly referred to as multiple-output Boolean func-
tions. In the context of PBNs we refer to them as network functions. If we assume
that the predictor for each gene is chosen independently of other predictors, then
N = ∏n

i=1 l(i). More complicated dependent selections are also possible. Each of
the N possible realizations can be thought of as a standard Boolean network that
operates for one time step. In other words, at every state x(t) ∈ {0, 1}n, one of the
N Boolean networks is chosen and used to make the transition to the next state
x(t + 1) ∈ {0, 1}n. The probability Pi that the ith (Boolean) network or realization
is selected can be easily expressed in terms of the individual selection probabilities

c(i)
j (see Shmulevich et al. [1]).

The PBN model is generalized by assuming that the decision to select a new
network realization is made with probability λ at every time step. In other words,
at every time step, a coin is tossed with probability λ of falling on heads, and if
it does, then a new network realization is selected as described above; otherwise,
the current network realization is used for the next time step. The original PBN
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definition as described above corresponds to the case λ = 1. We will refer to the
model with λ = 1 as an instantaneously random PBN. The λ < 1 has a natural
interpretation relative to external conditions. The Boolean network remains un-
changed from moment to moment, except when its regulatory structure is altered
by a change in an external condition. Any given set of conditions may be consid-
ered to correspond to a context of the cell. Hence, when λ < 1 we refer to the
network as a context-sensitive PBN. Assuming conditions are stable, λ will tend to
be quite small (Braga-Neto et al. [67], Zhou et al. [61], Brun et al. [68]).

Thus far, randomness has only been introduced relative to the functions
(hence, implicitly, also the connectivity); however the model can be extended to
incorporate transient gene perturbations. Suppose that a gene can get perturbed
with (a small) probability p, independently of other genes. In the Boolean setting,
this is represented by a flip of value from 1 to 0 or vice versa. This type of “random-
ization,” namely, allowing genes to randomly flip value, is biologically meaningful.
Since the genome is not a closed system, but rather has inputs from the outside,
it is known that genes may become either activated or inhibited due to external
stimuli, such as mutagens, heat stress, and so forth. Thus, a network model should
be able to capture this phenomenon.

Suppose that at every step of the network we have a realization of a random
perturbation vector γ ∈ {0, 1}n. If the ith component of γ is equal to 1, then the
ith gene is flipped, otherwise it is not. In general, γ need not be independent and
identically distributed (i.i.d.), but will be assumed so for simplicity. Thus, we will
suppose that Pr{γi = 1} = E[γi] = p for all i = 1, . . . ,n. Let x(t) ∈ {0, 1}n be the
state of the network at time t. Then, the next state x(t + 1) is given by

x(t + 1) =

x(t)⊕ γ, with probability 1− (1− p)n,

fk
(
x1(t), . . . , xn(t)

)
, with probability (1− p)n,

(7.2)

where ⊕ is componentwise addition modulo 2 and fk, k = 1, 2, . . . ,N , is the net-
work function representing a possible realization of the entire PBN, as discussed
above.

For a PBN with random perturbation, the following events can occur at any
point of time: (1) the current network function is applied, the PBN transitions
accordingly, and the network function remains the same for the next transition;
(2) the current network function is applied, the PBN transitions accordingly, and
a new network function is selected for the next transition; (3) there is a random
perturbation and the network function remains the same for the next transition;
(4) there is a random perturbation and a new network function is selected for the
next transition.

7.4. Long-run behavior

7.4.1. Steady-state distribution

In the absence of random perturbations, the states of an instantaneously ran-
dom PBN form a finite-state homogeneous Markov chain and that possesses a
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stationary distribution, where the transition probabilities depend on the network
functions. When random perturbations are incorporated into the model, the chain
becomes ergodic and possesses a steady-state distribution. In Shmulevich et al. [2],
an explicit formulation of the state-transition probabilities of the Markov chain as-
sociated with the PBN is derived in terms of the Boolean functions and the prob-
ability of perturbation p.

In the case of a context-sensitive PBN, the state vector of gene values at time t
cannot be considered as a homogeneous Markov chain anymore because the tran-
sition probabilities depend on the function selected at time t. Instead of represent-
ing the states x of the PBN as the states of a Markov chain, we can represent the
state-function pairs (x, fk) as states of a homogeneous Markov chain with transi-
tion probabilities

Py,fl

(
x, fk

) = P
(

Xt = x, Ft = fk | Xt−1 = y, Ft−1 = fl
)

(7.3)

for any time t. The chain must possess a stationary distribution, and if there are
random perturbations, then it possesses a steady-state distribution. The proba-
bilities π(x) are the marginal probabilities of the steady-state distribution defined
by

π
(

x, fk
) = lim

t→∞P
(

Xt0+t = x, Ft0+t = fk | Xt0 = y, Ft0 = fl
)
, (7.4)

where t0 is the initial time. These steady-state distributions for context-sensitive
PBNs have been studied by Brun et al. [68].

7.4.2. Attractors

Owing to its deterministic and finite nature, if a Boolean network is initialized and
then allowed to dynamically transition, it will return to a previously visited state
within a bounded amount of time (based on the total number of genes). Once
this occurs, it will cycle from that state through the same set of states and in the
same order as it did after following the first visit to the state. The cycle of states is
called an attractor cycle. Note that attractor cycles must be disjoint and either every
state is a member of an attractor or it is transient, meaning it cannot be visited
more than once. Each initialization leads to a unique attractor and the set of states
leading to an attractor is called the basin of attraction for the attractor. A singleton
attractor (absorbing state) has the property that once entered, the network cannot
leave it.

The attractors of a Boolean network characterize its long-run behavior. If,
however, we incorporate random perturbation, then the network can escape its
attractors. In this case, full long-run behavior is characterized by its steady-state
distribution. Nonetheless, if the probability of perturbation is very small, the net-
work will lie in its attractor cycles for a large majority of the time, meaning that
attractor states will carry most of the steady-state probability mass. The amount
of time spent in any given attractor depends on its basin. Large basins tend to
produce attractors possessing relatively large steady-state mass.
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Figure 7.6. An illustration of the behavior of a context-sensitive PBN.

Let us now consider context-sensitive PBNs. So long as there is no switching,
the current Boolean-network realization of the PBN characterizes the activity of
the PBN and it will transition into one of its attractor cycles and remain there until
a switch occurs. When a network switch does occur, the present state becomes
an initialization for the new realization and the network will transition into the
attractor cycle whose basin contains the state. It will remain there until another
network switch. The attractor family of the PBN is defined to be the union of all the
attractors in the constituent Boolean networks. Note that the attractors of a PBN
need not be disjoint, although those corresponding to each constituent Boolean
network must be disjoint.

Figure 7.6 shows an example of the behavior of a context-sensitive PBN rela-
tive to its attractors under a change of function. Part (a) shows the attractor cycles
A11 and A12 for a network function f1, its corresponding basins, and some trajec-
tories. Part (b) shows the attractor cycles A21 and A22 for a network function f2

and its corresponding basins. In part (c), we can see that if the system is using the
function f2 and it makes a function change, to f1, then the future of the system de-
pends on which part of the trajectory it is at the moment of the function change.
In this example, for the particular trajectory shown with the dotted line toward the
attractor A22, the first part of the trajectory is in the basin corresponding to the at-
tractor A11, and the end of the trajectory is inside the basin corresponding to the
attractor A12. Therefore, if the change of function occurs before the system crosses
the boundary between the basins, it will transition toward the attractor A11. If the
change of function occurs after it crosses the boundary, then it will transition to-
ward the attractor A12. In particular, we see that the attractor A22 lies completely
inside the basin corresponding to the attractor A12. In this case, if a change of func-
tion occurs when the system is inside the attractor A22, it will always transition to
the attractor A12.

If one now incorporates perturbation into the PBN model, the stationary dis-
tribution characterizes the long-run behavior of the network. If both the switching
and perturbation probabilities are very small, then the attractors still carry most
of the steady-state probability mass. This property has been used to formulate an-
alytic expressions of the probabilities of attractor states (Brun et al. [68]) and to
validate network inference from data (Kim et al. [9], Zhou et al. [61]).
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7.4.3. Monte-Carlo estimation of the steady-state distribution

Model-based simulations are invaluable for gaining insight into the underlying
functioning of a genetic regulatory network. Simulation-supported decision mak-
ing is essential in realistic analysis of complex dynamical systems. For example,
one may wish to know the long-term joint behavior of a certain group of genes
or the long-term effect of one gene on a group of others. After having robustly
inferred the model structure and parameters, such questions can be answered by
means of simulations. We have developed a methodology for analyzing steady-
state (or long-run) behavior of PBNs using MCMC-type approaches (Shmulevich
et al. [6]). By simulating the network until it converges to its steady-state distri-
bution and monitoring the convergence by means of various diagnostics (Cowles
and Carlin [69]), we can obtain the limiting probabilities of the genes of interest.
Thus, the effects of permanent and transient interventions (e.g., turning a gene
off) can be assessed on the long-run network behavior.

An approach found to be useful for determining the number of iterations
necessary for convergence to the stationary distribution of the PBN is based on a
method by Raftery and Lewis [70]. This method reduces the study of the conver-
gence of the Markov chain corresponding to a PBN to the study of the convergence
of a two-state Markov chain. Suppose that we are interested in knowing the steady-
state probability of the event {Gene A is ON and Gene B is OFF}. Then, we can
partition the state space into two disjoint subsets such that one subset contains
all states on which the event occurs and the other subset contains the rest of the
states. Consider the two meta-states corresponding to these two subsets. Although
the sequence of these meta-states does not form a Markov chain in itself, it can
be approximated by a first-order Markov chain if every k states from the original
Markov chain is discarded (i.e., the chain is subsampled). It turns out in practice
that k is usually equal to 1, meaning that nothing is discarded and the sequence
of meta-states is treated as a homogeneous Markov chain (see Raftery and Lewis
for details) with transition probabilities α and β between the two meta-states. Us-
ing standard results for two-state Markov chains, it can be shown that the burn-in
period (the number of iterations necessary to achieve stationarity) m0 satisfies

m0 ≥ log
(
ε(α + β)/max(α,β)

)
log(1− α− β)

. (7.5)

We set ε = 0.001 in our experiments. In addition, it can be shown that the
minimum total number of iterations N necessary to achieve a desired accuracy r
(we used r = 0.01 in our experiments) is

N = αβ(2− α− β)
(α + β)3

(
r

Φ
(
(1/2)(1 + s)

))−2

, (7.6)

where Φ(·) is the standard normal cumulative distribution function and s is a pa-
rameter that we set to 0.95 in our experiments. For detailed explanations of the
precision parameters ε, r, and s, see Raftery and Lewis [70]. The question becomes
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Table 7.1. An example of the joint steady-state probabilities (in percentages) of several pairs of genes,
computed from the network inferred from glioma gene expression data.

Tie-2 NFκB % Tie-2 TGFB3 % TGFB3 NFκB %

Off Off 15.68 Off Off 14.75 Off Off 10.25

Off On 41.58 Off On 42.50 Off On 12.47

On Off 9.21 On Off 7.96 On Off 14.64

On On 31.53 On On 32.78 On On 60.65

how to estimate the transition probabilities α and β, as these are unknown. The
solution is to perform a test run from which α and β can be estimated and from
which m0 and N can be computed. Then, another run with the computed burn-in
period m0 and the total number of iterations N is performed and the parameters α
and β are reestimated from which m0 and N are recomputed. This can be done sev-
eral times in an iterative manner until the estimates of m0 and N are smaller than
the number of iterations already achieved. We have used this method to determine
the steady-state probabilities of some genes of interest from our gene expression
data set, as described below.

We analyzed the joint steady-state probabilities of several combinations of
two genes from a subnetwork generated from our glioma expression data: Tie-
2 and NFκB, Tie-2 and TGFB3, and TGFB3 and NFκB. The steady-state prob-
abilities for all pairs of considered genes are shown in Table 7.1 as percentages.
Tie-2 is a receptor tyrosine kinase expressed on the endothelial cells. Its two lig-
ands, angiopoietins 1 and 2, bind Tie-2 and regulate vasculogenesis (Sato et al.
[71]), an important process in embryonic development and tumor development.
Other related regulators for vasculogenesis are VEGF and VERF receptors, which
are often overexpressed in the advanced stage of gliomas (Cheng et al. [72]). Al-
though no experimental evidence supports a direct transcriptional regulation of
those regulators by the transcriptional factor NFκB, which is also frequently acti-
vated in glioma progression (Hayashi et al. [73]) as predicted in this analysis, the
results show that NFκB, at least indirectly, influence the expression of Tie-2 ex-
pression. Thus, it may not be surprising that when NFκB is on, Tie-2 is on about
31.53/(41.58 + 31.53) = 43% of time. Because Tie-2 is only one of the regulators
of vasculogenesis, which is important in glioma progression, it is consistent that
our analysis of long-term (steady-state) gene expression activities shows that about
40% of the time Tie-2 is on. In contrast, NFκB is on 73% of the time, implying that
fewer redundancies exist for NFκB activity.

Interestingly, a similar relationship exists between Tie-2 and TGFB3, as can be
seen by comparing the percentages in columns 3 and 6 of Table 7.1. This suggests
that TGFB3 and NFκB are more directly linked, which is also shown in the last
three columns of the table (60% of the time, they are both on). This relationship
is supported by the fact that TGFB1, a homologue of TGFB3, was shown to have a
direct regulatory relationship with NFκB (Arsura et al. [74]) as well as by the recent
work of Strauch et al. [75], who recently showed that NFκB activation indeed up-
regulates TGFB expression.
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7.5. Inference of PBNs from gene expression data

Owing to several current limitations, such as availability of only transcriptional
measurements (much regulation occurs on the protein level), cell population asyn-
chrony and possible heterogeneity (different cell types exhibiting different gene ac-
tivities), and latent factors (environmental conditions, genes that we are not mea-
suring, etc.), it is prudent to strive to extract higher-level information or knowl-
edge about the relationships between measurements of gene transcript levels. If
we can discover such relationships, then we can potentially learn something new
about the underlying mechanisms responsible for generating these observed quan-
tities. The burden of discovery remains in the wet lab, where potentially interesting
relationships must be examined experimentally. We now discuss some approaches
to the inference problem. These approaches have already been used in a number
of different studies. At this point it still remains to be known which aspects of the
data tend to be emphasized by which approach and whether one approach reflects
the actual regulatory relationships more faithfully than another. This constitutes
an important research problem.

7.5.1. Coefficient of determination

A basic building block of a rule-based network is a predictor. In a probabilistic
network, several good predictors are probabilistically synthesized to determine the
activity of a particular gene. A predictor is designed from data, which means that
it is an approximation of the predictor whose action one would actually like to
model. The precision of the approximation depends on the design procedure and
the sample size.

Even in the context of limited data, modest approaches can be taken. One
general statistical approach is to discover associations between the expression pat-
terns of genes via the coefficient of determination (CoD) (Dougherty et al. [55, 58],
Kim et al. [56, 59]). This coefficient measures the degree to which the transcrip-
tional levels of an observed gene set can be used to improve the prediction of the
transcriptional state of a target gene relative to the best possible prediction in the
absence of observations. Let Y be a target variable, X a set of variables, and f the
function such that f (X) is the optimal predictor of Y relative to minimum mean-
square error, ε(Y , f (X)). The CoD for Y relative to X is defined by

θX(Y) = ε•(Y)− ε
(
Y , f (X)

)
ε•(Y)

, (7.7)

where ε•(Y) is the error of the best constant estimate of Y in the absence of any
conditional variables. The CoD is between 0 and 1.

The method allows incorporation of knowledge of other conditions relevant
to the prediction, such as the application of particular stimuli, or the presence of
inactivating gene mutations, as predictive elements affecting the expression level
of a given gene. Using the coefficient of determination, one can find sets of genes
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related multivariately to a given target gene. The CoD has been used in gene-
expression studies involving genotoxic stress (Kim et al. [56]), melanoma (Kim
et al. [9]), glioma (Hashimoto et al. [11]), and atherogenesis (Johnson et al. [76]).

The coefficient of determination is defined in terms of the population distri-
bution. However, in practice, we use the sample-based version; much like the sam-
ple mean (average) is the estimate of the population mean. An important research
goal related to the CoD is to study and characterize the behavior of its estimator in
the context of robustness. That is, it is important to understand to what extent the
presence of outliers influences the estimate of the CoD. Various tools to analyze
robustness, used in the nonlinear signal processing community (e.g., Shmulevich
et al. [77]), may be applicable in this context.

7.5.2. Best-fit extensions

Most recent work with Boolean networks has focused on identifying the structure
of the underlying gene regulatory network from gene expression data (Liang et al.
[48], Akutsu et al. [49, 50], Ideker et al. [78], Karp et al. [79], Maki et al. [80],
Noda et al. [81], Shmulevich et al. [53]). A related issue is to find a network that
is consistent with the given observations or determine whether such a network
exists at all. Much work in this direction has been traditionally focused on the
so-called consistency problem, namely, the problem of determining whether or not
there exists a network that is consistent with the observations.

The consistency problem represents a search for a rule from examples. That
is, given some sets T and F of true and false vectors, respectively, the aim is to
discover a Boolean function f that takes on the value 1 for all vectors in T and
the value 0 for all vectors in F. It is also commonly assumed that the target func-
tion f is chosen from some class of possible target functions. In the context of
Boolean networks, such a class could be the class of canalizing functions (dis-
cussed later) or functions with a limited number of essential variables. More for-
mally, let T( f ) = {v ∈ {0, 1}n : f (v) = 1} be called the on-set of function f and
let F( f ) = {v ∈ {0, 1}n : f (v) = 0} be the off-set of f . The sets T ,F ⊆ {0, 1}n,
T ∩ F = ∅, define a partially defined Boolean function gT ,F as

gT ,F(v) =




1, v ∈ T

0, v ∈ F

∗, otherwise.

(7.8)

A function f is called an extension of gT ,F if T ⊆ T( f ) and F ⊆ F( f ). The
consistency problem (also called the extension problem) can be posed as follows:
given a class C of functions and two sets T and F, is there an extension f ∈ C of
gT ,F?

While this problem is important in computational learning theory, since it
can be used to prove the hardness of learning for various function classes (e.g.,
Shmulevich et al. [82]), it may not be applicable in realistic situations containing
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noisy observations, as is the case with microarrays. That is, due to the complex
measurement process, ranging from hybridization conditions to image process-
ing techniques, as well as actual biological variability, expression patterns exhibit
uncertainty.

A learning paradigm that can incorporate such inconsistencies is called the
best-fit extension problem. Its goal is to establish a network that would make as
few misclassifications as possible. The problem is formulated as follows. Suppose
we are given positive weights w(x) for all vectors x ∈ T ∪ F and define w(S) =∑

x∈S w(x) for a subset S ⊆ T ∪ F. Then, the error size of function f is defined as

ε( f ) = w
(
T ∩ F( f )

)
+ w

(
F ∩ T( f )

)
. (7.9)

If w(x) = 1 for all x ∈ T∪F, then the error size is just the number of misclas-
sifications. The goal is then to output subsets T∗ and F∗ such that T∗ ∩ F∗ = ∅
and T∗ ∪ F∗ = T ∪ F for which the partially defined Boolean function gT∗ ,F∗ has
an extension in some class of functions C and so that w(T∗ ∩ F) + w(F∗ ∩ T) is
minimum. Consequently, any extension f ∈ C of gT∗ ,F∗ has minimum error size.
A crucial consideration is computational complexity of the learning algorithms.
In order for an inferential algorithm to be useful, it must be computationally
tractable. It is clear that the best-fit extension problem is computationally more
difficult than the consistency problem, since the latter is a special case of the for-
mer, that is, when ε( f ) = 0. Shmulevich et al. [53] showed that, for many function
classes, including the class of all Boolean functions, the best-fit extension problem
is polynomial-time solvable in the number of genes and observations, implying its
practical applicability to real data analysis. Also, fast optimized and scalable search
algorithms for best-fit extensions were developed by Lähdesmäki et al. [54].

The best-fit method is very versatile in the sense that one can specify the rela-
tive cost of making an error in the inference for various states of gene expression.
There are a number of available quality measurements (Chen et al. [83]) which
could be used in this fashion. Thus, instead of discarding low-quality measure-
ments, one may be able to control their relative influence by down-weighting them
in the best-fit extension inference method, in proportion to their quality measure.
This is a useful topic to explore in future research.

7.5.3. Bayesian connectivity-based design

A recently proposed Bayesian method for constructing PBNs (that applies to a
more general class of networks) is based on the network connectivity scheme
(Zhou et al. [61]). Using a reversible-jump MCMC technique, the procedure finds
possible regulatory gene sets for each gene, the corresponding predictors, and the
associated probabilities based on a neural network with a very simple hidden layer.
An MCMC method is used to search the network configurations to find those with
the highest Bayesian scores from which to construct the PBN. We briefly outline
the method, leaving the details to the original paper.
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Consider a Boolean network G(V ,F) as previously defined, V being the genes
and F the predictors. Construction is approached in a Bayesian framework rela-
tive to network topology by searching for networks with the highest a posteriori
probabilities

P
(
V |D)∝ P(D|V)P(V), (7.10)

where D is the data set and P(V), the prior probability for the network, is assumed
to satisfy a uniform distribution over all topologies. Note that P(V |D) is given by

P
(
V |D) =

∫
p
(
D|V ,F

)
p(F)dF, (7.11)

where p denotes the density. The computation of this integral is virtually intract-
able and therefore it is approximated (Zhou et al. [61]).

In the context of this Bayesian framework, a PBN is constructed by search-
ing the space of network topologies and selecting those with the highest Bayesian
scores P(V |D) to form the PBN. The algorithm proceeds in the following general
manner: generate an initial graph V (0); compute P(V |D); for j = 1, 2, . . . , calcu-
late the predictors F( j) corresponding to G( j); compute the Bayesian P(V |D) score;
and choose G( j+1) via an MCMC step.

7.5.4. Plausible classes of genetic interactions

While the focus in computational learning theory has mostly been on the com-
plexity of learning, very similar types of problems have been studied in nonlinear
signal processing, specifically, in optimal filter design (Coyle and Lin [84], Coyle
et al. [85], Yang et al. [86], Dougherty and Loce [87], Dougherty and Chen [88]).
This typically involves designing an estimator from some predefined class of esti-
mators that minimizes the error of estimation among all estimators in the class. An
important role in filter design is played by these predefined classes or constraints.
For example, the so-called stack filters are represented by the class of monotone
Boolean functions. Although it would seem that imposing such constraints can
only result in a degradation of the performance (larger error) relative to the op-
timal filter with no imposed constraints, constraining may confer certain advan-
tages. These include prior knowledge of the degradation process (or in the case of
gene regulatory networks, knowledge of the likely class of functions, such as canal-
izing functions), tractability of the filter design, and precision of the estimation
procedure by which the optimal filter is estimated from observations. For example,
we often know that a certain class of filters will provide a very good suboptimal fil-
ter, while considerably lessening the data requirements for its estimation. It is with
the issue of filter complexity versus sample size that the design of nonlinear filters
intersects with the theory of classification (Dougherty and Barrera [89]). We now
discuss several promising constraints for inferring Boolean predictors for PBNs.
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An important class of functions, known to play an important role in regu-
latory networks (Kauffman [31, 90], Harris et al. [91]), is the class of canalizing
functions. Canalizing functions constitute a special type of Boolean function in
which at least one of the input variables is able to determine the value of the out-
put of the function. For example, the function f (x1, x2, x3) = x1 + x2x3, where the
addition symbol stands for disjunction and the multiplication for conjunction, is
a canalizing function, since setting x1 to 1 guarantees that the value of the function
becomes 1 regardless of the value of x2 or x3. Although their defining property is
quite simple, canalizing functions have been implicated in a number of phenom-
ena related to discrete dynamical systems as well as nonlinear digital filters (see
references in Shmulevich et al. [92]).

Canalizing functions, when used as regulatory control rules, are one of the
few known mechanisms capable of preventing chaotic behavior in Boolean net-
works (Kauffman [31]). In fact, there is overwhelming evidence that canalizing
functions are abundantly utilized in higher vertebrate gene regulatory systems. In-
deed, a recent large-scale study of the literature on transcriptional regulation in
eukaryotes demonstrated an overwhelming bias towards canalizing rules (Harris
et al. [91]).

Recently, Shmulevich et al. [93] have shown that certain Post classes, which
are classes of Boolean functions that are closed under superposition (Post [94]),
also represent plausible evolutionarily selected candidates for regulatory rules in
genetic networks. These classes have also been studied in the context of synthesis
(Nechiporuk [95]) and reliability (Muchnik and Gindikin [96]) of control
systems—a field that bears an important relationship to genetic control networks.
The Post classes considered by Shmulevich et al. [93] play an important role in the
emergence of order in Boolean networks. The closure property mentioned above
implies that any gene at any number of steps in the future is guaranteed to be gov-
erned by a function from the same class. It was demonstrated that networks con-
structed from functions belonging to these classes have a tendency toward ordered
behavior and are not overly sensitive to initial conditions, moreover and dam-
age does not readily spread throughout the network. In addition, the considered
classes are significantly larger than the class of canalizing functions, as the number
of inputs per Boolean function increases. Additionally, functions from this class
have a natural way to ensure robustness against noise and perturbations, thus rep-
resenting plausible evolutionarily selected candidates for regulatory rules in ge-
netic networks. Efficient spectral algorithms for testing membership of functions
in these classes as well as the class of canalizing functions have been developed by
Shmulevich et al. [92].

An important research goal is to determine whether the constraints described
above are plausible not only from the point of view of evolution, noise resilience,
and network dynamical behavior, but also in light of experimental data. Tools from
model selection theory can be used to answer this question. Should this prove to
be the case, by having prior knowledge of the plausible rules of genetic interaction,
one can significantly improve model inference by reducing data requirements and
increasing accuracy and robustness.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


I. Shmulevich and E. R. Dougherty 261

7.6. Subnetworks

It is likely that genetic regulatory networks function in what might be called a mul-
tiscale manner. One of the basic principles in multiscale modeling is that mean-
ingful and useful information about a system or object exists on several different
“levels” simultaneously. In the context of genetic networks, this would imply that
genes form small groups (or clusters) wherein genes have close interactions. Some
of these clusters are functionally linked forming larger “metaclusters” and these
metaclusters have interactions as well. This process may continue on several differ-
ent scales. This type of clustering effect has been observed in many other types of
networks, such as social networks (Newman et al. [97]), the power grid of the west-
ern United States, and neural networks (Watts and Strogatz [98]). Interestingly,
dynamical systems that have this property exhibit enhanced signal-propagation
speed and computational power.

7.6.1. Growing subnetworks from seed genes

An important goal is to discover relatively small subnetworks, out of the larger
overall network, that function more or less independently of the rest of the net-
work. Such a small subnetwork would require little or sometimes even no infor-
mation from the “outside.” We can proceed by starting with a “seed” consisting of
one or more genes that are believed to participate in such a subnetwork. Then, we
iteratively adjoin new genes to this subnetwork such that we maintain the afore-
mentioned “autonomy” of the subnetwork as much as possible, using the notions
of gene influence (Shmulevich et al. [1]) or the coefficient of determination. Such
an algorithm for growing subnetworks from seed genes has been developed by
Hashimoto et al. [11].

Subnetwork construction proceeds in a way that enhances a strong collective
strength of connections among the genes within the subnetwork and also limits
the collective strength of the connections from outside the subnetwork. Consider
Figure 7.7. Suppose we have a subnetwork S and are considering the candidate
gene Y for inclusion in this subnetwork. We would like the collective strength (to
be defined in a moment) of the genes in S on the candidate gene Y as well as
the strength of gene Y on the genes in S to be high. In other words, the genes
in S and Y should be tightly interdependent. At the same time, other genes from
outside of the subnetwork should have little impact on Y if we are to maintain the
subnetwork autonomy or “self determinacy.” Thus, their collective strength on Y
should be low. At each step, the subnetwork grows by one new gene so as to ensure
maximal autonomy. An overall measure of subnetwork autonomy, which serves
as an objective function in the subnetwork growing algorithm, is a combination
of the three types of strength just described (Hashimoto et al. [11]). Finally, the
strength itself can be naturally captured either by the coefficient of determination
or by the influence, which we now discuss.

The influence of a variable relative to a Boolean function for which it is one
among several Boolean variables is defined via the partial derivative of a Boolean
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Y

S

Y

S

Y

S

To achieve network autonomy, both
of these strengths of connections

should be high.

The sensitivity of Y from
the outside should be

small.

Figure 7.7. In order to maintain the self-autonomy of subnetwork S, the collective strength of the genes
in S on gene Y—a candidate for inclusion in the subnetwork—should be high. The strength of Y on S
should be high as well, thus maintaining high interdependency between the genes in the subnetwork.
At the same time, the strength of genes outside the subnetwork on gene Y should be low.

function. One can define the partial derivative of a Boolean function in several
equivalent ways; however, for our purposes here, we simply note that the partial
derivative of f with respect to the variable xj is 0 if toggling the value of variable xj
does not change the value of the function, and it is 1 otherwise. The influence of xj
on f is the expectation of the partial derivative with respect to the distribution of
the variables. In the context of a probabilistic Boolean network, there are a number
of predictor functions associated with each gene, and each of these functions has
associated with it a selection probability (Shmulevich et al. [1]). The influence of
gene xk on gene xj is the sum of the influences of gene xk on xj relative to the
family of predictor functions for xj , weighted by the selection probabilities for
these xj-predicting functions.

Examples of subnetworks with IGFBP2 or VEGF as seeds are shown in Figure
7.8. In both glioma subnetworks, we used the influence as the strength of connec-
tion. The numbers over the arrows represent influences.

The subnetworks generated thus far have been constructed using the “seed
growing” algorithm, starting from a large inferred network. All predictor func-
tions in the starting network, consisting of almost 600 genes, were inferred using
the CoD. A useful research aim is to repeat the inference using the best-fit ex-
tension method and reconstruct the subnetworks again. It is quite possible that
the resultant subnetworks may exhibit some differences from those that have al-
ready been constructed. This possibility would furnish one with two opportuni-
ties. Firstly, it may reveal other genetic interactions that were not made apparent
from the CoD-based inference method, in turn providing new hypotheses to be
experimentally tested. Secondly, relationships consistent in both inference meth-
ods would strengthen one’s confidence in the model-based results.

7.6.2. Interpretation and validation of subnetworks with prior biological
knowledge and experimental results

Having constructed subnetworks in Figure 7.8 from expression via the seed-based
growing algorithm, we would like to interpret and validate (in so far as that is
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Figure 7.8. Two subnetworks generated from PBN modeling applied to a set of human glioma tran-
scriptome data generated in our laboratory. (a) The subnetwork has been “grown” from the IGFBP2
(insulin-like growth factor binding protein 2) “seed.” (b) The subnetwork has been grown from the
VEGF (vascular endothelial growth factor) seed.
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Figure 7.9. The seven-gene WNT5A network.

possible) the constructions using prior knowledge and independent experimen-
tal results. IGFBP2 and VEGF are genes that have been extensively studied and
well characterized in the literature. It is known that IGFBP2 and VEGF are over-
expressed in high-grade gliomas, glioblastoma multiforme (GBM)—the most ad-
vanced stage of tumor (Kleihues and Cavenee, WHO [99])—as compared to other
types of glioma (Fuller et al. [100]). This finding was confirmed by two indepen-
dent studies (Sallinen et al. [101], Elmlinger et al. [102]). Ongoing functional stud-
ies in the Cancer Genomics Laboratory (MD Anderson Cancer Center) using cell
lines showed that when IGFBP2 is overexpressed, the cells become more invasive.

Studies that were completely independent of the PBN modeling work showed
that NFκB activity is activated in cells stably overexpressing IGFBP2. This was done
by using a luciferase reporter gene linked to a promoter element that contains an
NFκB binding site. An analysis of the IGFBP2 promoter sequence showed that
there are several NFκB binding sites, suggesting that NFκB transcriptionally reg-
ulates IGFBP2. A review of the literature revealed that Cazals et al. [103] indeed
demonstrated that NFκB activated the IGFBP2-promoter in lung alveolar epithe-
lial cells. Interestingly, in the IGFBP2 network (Figure 7.8a), we see an arrow link-
ing NFκB3 to IGFBP2, and we see a two-step link from IGFBP2 to NFκB through
TNF receptor 2 (TNFR2) and integrin-linked kinase (ILK). This parallels what was
observed in the Cancer Genomics Laboratory. The presence of NFκB binding sites
on the IGFBP2 promoter implies a direct influence of NFκB on IGFBP2. Although
higher NFκB activity in IGFBP2 overexpressing cells was found, a transient trans-
fection of IGFBP2 expressing vector together with NFκB promoter reporter gene
construct did not lead to increased NFκB activity, suggesting an indirect effect of
IGFBP2 on NFκB that will require time to take place. In fact, because of this indi-
rect effect, this observation was not pursued for a year until the PBN-based sub-
network was linked to the laboratory experiments. IGFBP2 also contains an RGD
domain, implying its interaction with integrin molecules. Integrin-linked kinase is
in the integrin signal transduction pathway. The second subnetwork starting with
VEGF (Figure 7.8b) offers even more compelling insight and supporting evidence.
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Gliomas, like other cancers, are highly angiogenic, reflecting the need of can-
cer tissues for nutrients. To satisfy this need, expression of VEGF or vascular en-
dothelial growth factor gene is often elevated. VEGF protein is secreted outside
the cells and then binds to its receptor on the endothelial cells to promote their
growth (Folkman [104]). Blockage of the VEGF pathway has been an intensive
research area for cancer therapeutics (Bikfalvi and Bicknell [105]). A scrutiny of
the VEGF network (Figure 7.8b) revealed some very interesting insight, which is
highly consistent with prior biological knowledge derived from biochemical and
molecular biology experiments. Let us elaborate. From the graph, VEGF, FGF7,
FSHR, and PTK7 all influence Grb2. FGF7 is a member of fibroblast growth fac-
tor family (Rubin et al. [106]). FSHR is a follicle-stimulating hormone receptor.
PTK7 is another tyrosine kinase receptor (Banga et al. [107]). The protein prod-
ucts of all four genes are part of signal transduction pathways that involve surface
tyrosine kinase receptors. Those receptors, when activated, recruit a number of
adaptor proteins to relay the signal to downstream molecules. Grb2 is one of the
most crucial adaptors that have been identified (Stoletov et al. [108]). We should
note that Grb2 is a target for cancer intervention (Wei et al. [109]) because of its
link to multiple growth factor signal transduction pathways including VEGF, EGF,
FGF, PDGF. Thus, the gene transcript relationships among the above five genes in
the VEGF subnetwork appear to reflect their known or likely functional and phys-
ical relationship in cells. Molecular studies reported in the literature have further
demonstrated that activation of protein tyrosine kinase receptor-Grb-2 complex
in turn activates ras-MAP kinase- NFκB pathway to complete the signal relay from
outside the cells to the nucleus of the cells (Bancroft et al. [110]). Although ras
is not present on our VEGF network, a ras family member, GNB2, or transduc-
ing beta 2, is directly influenced by Grb2; GNB2 then influences MAP kinase 1 or
ERK2, which in turn influences NFκB component c-rel (Pearson et al. [111]).

In the VEGF subnetwork shown in Figure 7.8, we also observe some potential
feedback loop relationships. For example, c-rel influences FSHR, which influences
Grb2-GNB2-MAPK1, and then influences c-rel itself. This may be a feedback regu-
lation, a crucial feature of biological regulatory system in cells to maintain home-
ostasis. Other feedback regulation may also exist. RAI, or rel-A (another NFκB
component) associated inhibitor (Yang et al. [112]), influences GNB2, which is
two steps away from c-rel. RAI is further linked to PTK7 through GDF1, reflecting
potentially another feedback regulatory mechanism. Whether those relationships
are true negative feedback control mechanisms will need to be validated experi-
mentally in the future. In this regard, the networks built from these models pro-
vide valuable theoretical guidance to experiments.

7.7. Perturbation and intervention

A major goal in gene network modeling is the ability to predict downstream ef-
fects on the gene network when a node is perturbed. This is very important for
therapeutics. If we can predict the effect of such a perturbation, we can evaluate
the virtue of a potential target when the effect on the entire system is considered.
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The mathematical framework for performing this type of analysis has been devel-
oped by Shmulevich et al. [2]. Although this methodology has already been used
for steady-state prediction, we have not attempted the prediction of downstream
effects of specific perturbations. This, along with laboratory-based experimental
verification, constitutes a valuable research goal.

A property of real gene regulatory networks is the existence of spontaneous
emergence of ordered collective behavior of gene activity—that is, the evolution
of networks into attractors. There is experimental evidence for the existence of
attractors in real regulatory networks (Huang and Ingber [37]). As previously dis-
cussed, Boolean networks and PBNs also exhibit this behavior, the former with
fixed-point and limit-cycle attractors (Kauffman [31]), the latter with absorbing
states and irreducible sets of states (Shmulevich et al. [1, 53]). There is abundant
justification in the assertion that in real cells, functional states, such as growth or
quiescence, correspond to these attractors (Huang [30], Huang and Ingber [37]).
Cancer is characterized by an imbalance between cellular states (attractors), such
as proliferation and apoptosis (programmed cell death) resulting in loss of home-
ostasis.

As supported by Boolean network simulations, attractors are quite stable un-
der most gene perturbations (Kauffman [31]). The same is true for real cellular
states. However, a characteristic property of dynamical systems such as PBNs (and
Boolean networks) is that the activity of some genes may have a profound effect
on the global behavior of the entire system. That is to say, a change of value of cer-
tain genes at certain states of the network may drastically affect the values of many
other genes in the long run and lead to different attractors. We should emphasize
that the dependence on the current network state is crucial—a particular gene may
exert a significant impact on the network behavior at one time, but that same gene
may be totally ineffectual in altering the network behavior at a later time.

A detailed perturbation analysis, including the long-range effect of pertur-
bations, has been carried out by Shmulevich et al. [2]. It was demonstrated that
states of the network that are more “easily reachable” from other states (in terms
of mean first-passage times) are more stable in the presence of gene perturbations.
Consequently, these sets of states are those that correspond to cellular functional
states and represent the probabilistic version of homeostatic stability of attractors
in the PBN model.

Suppose, on the other hand, that we wish to elicit certain long-run behavior
from the network. What genes would make the best candidates for intervention so
as to increase the likelihood of this behavior? That is, suppose that the network is
operating in a certain “undesirable” set of states and we wish to “persuade” it to
transition into a “desirable” set of states by perturbing some gene. For practical
reasons, we may wish to be able to intervene with as few genes as possible in order
to achieve our goals. Such an approach can expedite the systematic search and
identification of potential drug targets in cancer therapy.

This question was taken up by Shmulevich et al. in [2], where several methods
for finding the best candidate genes for intervention, based on first-passage times,
were developed. The first-passage times provide a natural way to capture the goals

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


I. Shmulevich and E. R. Dougherty 267

of intervention in the sense that we wish to transition to certain states (or avoid
certain states, if that is our goal) “as quickly as possible,” or, alternatively, by max-
imizing the probability of reaching such states before a certain time. Suppose, for
example, that we wish to persuade the network to flow into a set of states (irre-
ducible subchain—the counterpart of an attractor) representing apoptosis (pro-
grammed cell death). This could be very useful, for example, in the case of cancer
cells, which may keep proliferating. We may be able to achieve this action via the
perturbation (intervention) of several different genes, but some of them may be
better in the sense that the mean first-passage time to enter apoptosis is shorter.

The type of intervention described above—one that allows us to intervene
with a gene—can be useful for modulating the dynamics of the network, but it is
not able to alter the underlying structure of the network. Accordingly, the steady-
state distribution remains unchanged. However, a lack of balance between cer-
tain sets of states, which is characteristic of neoplasia in view of gene regulatory
networks, can be caused by mutations of the “wiring” of certain genes, thus per-
manently altering the state-transition structure and, consequently, the long-run
behavior of the network (Huang [30]).

Therefore, it is prudent to develop a methodology for altering the steady-state
probabilities of certain states or sets of states with minimal modifications to the
rule-based structure. The motivation is that these states may represent different
phenotypes or cellular functional states, such as cell invasion and quiescence, and
we would like to decrease the probability that the whole network will end up in
an undesirable set of states and increase the probability that it will end up in a
desirable set of states. One mechanism by which we can accomplish this consists
of altering some Boolean functions (predictors) in the PBN. For practical reasons,
as above, we may wish to alter as few functions as possible. Such alterations to the
rules of regulation may be possible by the introduction of a factor or drug that
alters the extant behavior.

Shmulevich et al. [3] developed a methodology for altering the steady-state
probabilities of certain states or sets of states, with minimal modifications to the
underlying rule-based structure. This approach was framed as an optimization
problem that can be solved using genetic algorithms, which are well suited for
capturing the underlying structure of PBNs and are able to locate the optimal so-
lution in a highly efficient manner. For example, in some computer simulations
that were performed, the genetic algorithm was able to locate the optimal solu-
tion (structural alteration) in only 200 steps (evaluations of the fitness function),
out of a total of 21 billion possibilities, which is the number of steps a brute-force
approach would have to take. The reason for such high efficiency of the genetic
algorithm is due to the embedded structure in the PBN that can be exploited.

7.8. External control

The aforementioned intervention methods do not provide effective “knobs” that
could be used to externally guide the time evolution of the network towards more
desirable states. By considering possible external interventions as control inputs,
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and given a finite treatment horizon, ideas from optimal control theory can be
applied to develop a general optimal intervention theory for Markovian gene reg-
ulatory networks, in particular, for PBNs. This strategy makes use of dynamic pro-
gramming. The costs and benefits of using interventions are incorporated into a
single performance index, which also penalizes the state where the network ends
up following the intervention. The use of auxiliary variables makes sense from a
biological perspective. For instance, in the case of diseases like cancer, auxiliary
treatment inputs such as radiation, chemo-therapy, and so forth may be employed
to move the state probability distribution vector away from one which is associated
with uncontrolled cell proliferation or markedly reduced apoptosis. The auxiliary
variables can include genes which serve as external master-regulators for all the
genes in the network. To be consistent with the binary nature of the expression
status of individual genes in the PBN, we will assume that the auxiliary variables
(control inputs) can take on only the binary values zero or one. The values of the
individual control inputs can be changed from one time step to the other in an
effort to make the network behave in a desirable fashion. Interventions using full
information (Datta et al. [7]) and partial information (Datta et al. [8]) have been
considered for instantaneously random PBNs, for which the states of the Markov
chain are the states of the PBN. Following Datta et al. [7], we summarize the full-
information case here.

7.8.1. The optimal control problem

To develop the control strategy, let x(k) = [x1(k), x2(k), . . . , xn(k)] denote the state
vector (gene activity profile) at step k for the n genes in the network. The state vec-
tor x(k) at any time step k is essentially an n-digit binary number whose decimal
equivalent is given by

z(k) = 1 +
n∑
j=1

2n−1xj(k). (7.12)

As x(k) ranges from 000 · · · 0 to 111 · · · 1, z(k) takes on all values from 1 to 2n.
The map from x(k) to z(k) is one-to-one, onto, and hence invertible. Instead of
the binary representation x(k) for the state vector, we can equivalently work with
the decimal representation z(k).

Suppose that the PBN has m control inputs, u1, u2, . . . ,um. Then at any given
time step k, the row vector u(k) = [u1(k),u2(k), . . . ,um(k)] describes the complete
status of all the control inputs. Clearly, u(k) can take on all binary values from
000 · · · 0 to 111 · · · 1. An equivalent decimal representation of the control input
is given by

v(k) = 1 +
m∑
i=1

2m−1ui(k). (7.13)
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As u(k) takes on binary values from 000 · · · 0 to 111 · · · 1, v(k) takes on all values
from 1 to 2m. We can equivalently use v(k) as an indicator of the complete control
input status of the PBN at time step k.

As shown by Datta et al. [7], the one-step evolution of the probability distri-
bution vector in the case of such a PBN with control inputs takes place according
to the equation

w(k + 1) = w(k)A
(
v(k)

)
, (7.14)

where w(k) is the 2n-dimensional state probability distribution vector and A(v(k))
is the 2n × 2n matrix of control-dependent transition probabilities. Since the tran-
sition probability matrix is a function of the control inputs, the evolution of the
probability distribution vector of the PBN with control depends not only on the
initial distribution vector but also on the values of the control inputs at different
time steps.

In the control literature, (7.14) is referred to as a controlled Markov chain
(Bertsekas [113]). Given a controlled Markov chain, the objective is to come up
with a sequence of control inputs, usually referred to as a control strategy, such that
an appropriate cost function is minimized over the entire class of allowable control
strategies. To arrive at a meaningful solution, the cost function must capture the
costs and benefits of using any control. The design of a good cost function is appli-
cation dependent and likely to require considerable expert knowledge. In the case
of diseases like cancer, treatment is typically applied over a finite time horizon.
For instance, in the case of radiation treatment, the patient may be treated with
radiation over a fixed interval of time, following which the treatment is suspended
for some time as the effects are evaluated. After that, the treatment may be applied
again but the important point to note is that the treatment window at each stage
is usually finite. Thus we will be interested in a finite horizon problem where the
control is applied only over a finite number of steps.

Suppose that the number of steps over which the control input is to be applied
is M and we are interested in controlling the behavior of the PBN over the interval
k = 0, 1, 2, . . . ,M − 1. We can define a cost Ck(z(k), v(k)) as being the cost of
applying the control input v(k) when the state is z(k). The expected cost of control
over the entire treatment horizon is

E

[M−1∑
k=0

Ck
(
z(k), v(k)

)|z(0)

]
. (7.15)

Even if the network starts from a given (deterministic) initial state z(0), the sub-
sequent states will be random because of the stochastic nature of the evolution in
(7.14). Consequently, the cost in (7.15) must be defined using an expectation. Ex-
pression (7.15) gives us one component of the finite horizon cost, namely the cost
of control.
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Regarding the second component of the cost, the net result of the control
actions v(0), v(1), . . . , v(M−1) is that the state of the PBN will transition according
to (7.14) and will end up in some state z(M). Owing to the stochastic nature of the
evolution, the terminal state z(M) is a random variable that can potentially take
on any of the values 1, 2, . . . , 2n. We assign a penalty, or terminal cost, CM(z(M)) to
each possible state. To do this, divide the states into different categories depending
on their desirability and assign higher terminal costs to the undesirable states. For
instance, a state associated with rapid cell proliferation leading to cancer should
be associated with a high terminal penalty while a state associated with normal
behavior should be assigned a low terminal penalty. For our purposes here, we
will assume that the assignment of terminal penalties has been carried out and we
have a terminal penalty CM(z(M)) which is a function of the terminal state. This is
the second component of our cost function. CM(z(M)) is a random variable and
so we must take its expectation while defining the cost function to be minimized.
In view of (7.15), the finite horizon cost to be minimized is given by

E

[M−1∑
k=0

Ck
(
z(k), v(k)

)
+ CM

(
z(M)

)∣∣z(0)

]
. (7.16)

To proceed further, let us assume that at time k, the control input v(k) is
a function of the current state z(k), namely, v(k) = µk(z(k)). The optimal con-
trol problem can now be stated: given an initial state z(0), find a control law π =
[µ0,µ1, . . . ,µM−1] that minimizes the cost functional

Jπ
(
z(0)

) = E

[M−1∑
k=0

Ck
(
z(k),µk

(
z(k)

))
+ CM

(
z(M)

)]
(7.17)

subject to the probability constraint

P
[
z(k + 1) = j | z(k) = i

] = ai j
(
v(k)

)
, (7.18)

where ai j(v(k)) is the ith row, jth column entry of the matrix A(v(k)). Optimal
control problems of the type described by the preceding two equations can be
solved by using dynamic programming, a technique pioneered by Bellman in the
1960s. We will not pursue the solution here, instead referring the reader to Datta
et al. [7] for the complete solution. We will, however, follow Datta et al. [7] in
providing an application.

7.8.2. Control of WNT5A in metastatic melanoma

In expression profiling studies concerning metastatic melanoma, the abundance
of mRNA for the gene WNT5A was found to be a highly discriminating difference
between cells with properties typically associated with high metastatic competence
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versus those with low metastatic competence (Bittner et al. [114]; Weeraratna et
al. [115]). In this study, experimentally increasing the levels of the WNT5A pro-
tein secreted by a melanoma cell line via genetic engineering methods directly al-
tered the metastatic competence of that cell as measured by the standard in vitro
assays for metastasis. A further finding of interest was that an intervention that
blocked the WNT5A protein from activating its receptor, the use of an antibody
that binds WNT5A protein, could substantially reduce WNT5A’s ability to induce
a metastatic phenotype. This suggests a study of control based on interventions
that alter the contribution of the WNT5A gene’s action to biological regulation,
since the available data suggests that disruption of this influence could reduce the
chance of a melanoma metastasizing, a desirable outcome.

The methods for choosing the 10 genes involved in a small local network that
includes the activity of the WNT5A gene and the rules of interaction have been
described by Kim et al. [9]. The expression status of each gene was quantized
to one of three possible levels: −1 (down-regulated), 0 (unchanged), and 1 (up-
regulated). Although the network is ternary valued instead of binary valued, the
PBN formulation extends directly, with the terminology “probabilistic gene regu-
latory network” being applied instead of probabilistic Boolean network (Zhou et
al. [10, 61]). The control theory also extends directly. Indeed, to apply the con-
trol algorithm of (Datta et al. [7]), it is not necessary to actually construct a PBN;
all that is required are the transition probabilities between the different states un-
der the different controls. For this study, the number of genes was reduced from
10 to 7 by using CoD analysis. The resulting genes along with their multivariate
relationships are shown in Figure 7.9.

The control objective for this seven-gene network is to externally down-
regulate the WNT5A gene. The reason is that it is biologically known that WNT5A
ceasing to be down-regulated is strongly predictive of the onset of metastasis. For
each gene in this network, its two best two-gene predictors were determined, along
with their corresponding CoDs. Using the procedure by Shmulevich et al. in [1],
the CoD information was used to determine the seven-by-seven matrix of transi-
tion probabilities for the Markov chain corresponding to the dynamic evolution
of the seven-gene network.

The optimal control problem can now be completely specified by choosing (i)
the treatment/intervention window, (ii) the terminal penalty, and (iii) the types of
controls and the costs associated with them. For the treatment window, a window
of length 5 was arbitrarily chosen, that is, control inputs would be applied only
at time steps 0, 1, 2, 3, and 4. The terminal penalty at time step 5 was chosen as
follows. Since the objective is to ensure that WNT5A is down regulated, a penalty
of zero was assigned to all states for which WNT5A equals −1, a penalty of 3 to all
states for which WNT5A equals 0, and a penalty of 6 to all states for which WNT5A
equals 1. Here the choice of the numbers 3 and 6 is arbitrary but they do reflect
our attempt to capture the intuitive notion that states where WNT5A equals 1 are
less desirable than those where WNT5A equals 0. Two types of possible controls
were considered by Datta et al. [7]; here only one of them was considered, where
WNT5A is controlled via pirin.
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The control objective is to keep WNT5A down-regulated. The control action
consists of either forcing pirin to −1 or letting it remain wherever it is. A control
cost of 1 is incurred if and only if pirin has to be forcibly reset to −1 at that time
step. Using the resulting optimal controls, the evolution of the state probability
distribution vectors has been studied with and without control. For every possible
initial state, the resulting simulations have indicated that, at the final state, the
probability of WNT5A being equal to −1 is higher with control than that without
control; however, the probability of WNT5A being equal to −1 at the final time
point is not, in general, equal to 1. This is not surprising given that one is trying
to control the expression status of WNT5A using another gene and the control
horizon of length 5 simply may not be adequate for achieving the desired objective
with such a high probability. Nevertheless, even in this case, if the network starts
from the state corresponding to STC2 = −1, HADHB = 0, MART-1 = 0, RET-1
= 0, S100P = −1, pirin = 1, WNT5A = 1 and evolves under optimal control, then
the probability of WNT5A = −1 at the final time point equals 0.673521. This is
quite good in view of the fact that the same probability would have been equal to
0 in the absence of any control action.
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8
Bayesian networks for genomic analysis

Paola Sebastiani, Maria M. Abad, and Marco F. Ramoni

Bayesian networks are emerging into the genomic arena as a general modeling
tool able to unravel the cellular mechanism, to identify genotypes that confer sus-
ceptibility to disease, and to lead to diagnostic models. This chapter reviews the
foundations of Bayesian networks and shows their application to the analysis of
various types of genomic data, from genomic markers to gene expression data.
The examples will highlight the potential of this methodology as well as the cur-
rent limitations and we will describe new research directions that hold the promise
to make Bayesian networks a fundamental tool for genome data analysis.

8.1. Introduction

One of the most striking characteristics of today’s biomedical research practice is
the availability of genomic-scale information. This situation has been created by
the simultaneous but not unrelated development of “genome-wide” technologies,
mostly rooted in the Human Genome Project: fast sequencing techniques, high-
density genotype maps, DNA, and protein microarrays. Sequencing and geno-
typing techniques have evolved into powerful tools to identify genetic variations
across individuals responsible for predispositions to some disease, response to
therapies, and other observable characters known as phenotypes. Single-nucleo-
tide polymorphisms (SNPs)—a single-base variation across the individuals of a
population—are considered the most promising natural device to uncover the ge-
netic basis of common diseases. By providing a high-resolution map of the
genome, they allow researchers to associate variations in a particular genomic re-
gion to observable traits [1, 2]. Commercially available technology, such as the
Affymetrix GeneChip Mapping 10 K Array and Assay Set (http://affymetrix.com),
is able to simultaneously genotype 10 000 SNPs in an individual. Other technolo-
gies are able to interrogate the genomic structure of a cell on a genome-wide scale:
CGH microarrays are able to provide genome-wide identification of chromosomal
imbalances—such as deletions and amplifications—that are common rearrange-
ments in most tumors [3]. These rearrangements identify different tumor types or
stages and this technology allows us to dive into the mutagenic structure of tumor
tissues.
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Despite their differences—large scale genotyping interrogates the normal
DNA of an individual, while CGH microarrays are specifically designed to study
mutagenic tissues like tumors—these two technologies focus on the identification
of structural genomic information, that is, information about the DNA sequence
of a cell. The functional counterparts of these genomic platforms, on the other
hand, are designed to quantify the expression of the genes encoded by the DNA of
a cell, as the amount of RNA produced by each single gene. cDNA and oligonu-
cleotide microarrays [4, 5, 6] enable investigators to simultaneously measure the
expression of thousands of genes and hold the promise to cast new light onto the
regulatory mechanisms of the genome [7]. The ability they offer to observe the
genome in action has opened the possibility of profiling gene behaviors, study-
ing interactions among genes, and discovering new classes of diseases on the basis
of their genomic profile alone. The rising field of proteomics takes this study one
step forward to proteins—the final product of gene expression [8]—and, using
mass spectrometry technology, investigators can now measure in parallel the en-
tire protein complement in a given cell, tissue, or organism [9].

All these technologies come to join today long-term cohort studies, like the
Nurses’ Health Study (http://www.channing.harvard.edu/nhs) and the Framing-
ham Heart Study (http://www.framingham.com/heart) that have been collecting
detailed “phenome-wide” information about hundreds of thousands individuals
over several decades. Although the individual contribution of each technology has
already been invaluable, the potential of their integration is even greater, but their
ability to deliver on their promise of understanding the fundamental rules of life
and diseases rests on our ability to integrate this genomic information with large-
scale phenotypic data [1]. The integration of information about genotypes, RNA
expression, proteins, and phenotypes into a coherent landscape will lead not only
to the discovery of clinical phenomena not observable at each individual level but
also to a better understanding of the coding and regulatory mechanisms under-
pinning the expression of genes [10].

The main challenge of this endeavor is the identification of a common formal-
ism able to model this massive amount of data. Bayesian networks (also known as
directed graphical models) are a knowledge representation formalism born at the
confluence of artificial intelligence and statistics that offer a powerful framework
to model these different data sources. Bayesian networks have already been ap-
plied, by us and others, to the analysis of different types of genomic data—from
gene expression microarrays [11, 12, 13, 14, 15] to protein-protein interactions
[16] and genotype data [17, 18]—and their modular nature makes them easily ex-
tensible to the task of modeling these different types of data. However, the applica-
tion of Bayesian networks to genomics requires the methodological development
of new statistical and computational capabilities able to capture the complexity of
genomic information.

This chapter will first describe the current state of the art about learning
Bayesian networks from data. We will show the potential benefit of Bayesian net-
works as a model and reasoning tool through several examples. The examples will
also highlight the limitations of the current methodology and we will describe new

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.channing.harvard.edu/nhs
http://www.framingham.com/heart
http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


Paola Sebastiani et al. 283

research directions that hold the promise to make Bayesian networks a fundamen-
tal tool for genomic data analysis.

8.2. Fundamentals of Bayesian networks

Bayesian networks are a representation formalism at the cutting edge of knowl-
edge discovery and data mining [19, 20, 21]. In this section, we will review the
formalism of Bayesian networks and the process of learning them from databases.

8.2.1. Representation and reasoning

A Bayesian network has two components: a directed acyclic graph and a probabil-
ity distribution. Nodes in the directed acyclic graph represent stochastic variables
and arrows represent directed dependencies among variables that are quantified
by conditional probability distributions.

As an example, consider the simple scenario in which a genetic marker to-
gether with an environmental condition create a phenotypic character. We de-
scribe the marker in the genetic code, the environmental condition, and the phe-
notypic character with three variables M, E, and P, each having two states “true”
and “false.” The Bayesian network in Figure 8.1 describes the dependency of the
three variables with a directed acyclic graph, in which the two arrows pointing to
the node P represent the joint action of the genetic marker and the environmen-
tal condition. Also, the absence of any directed arrow between the genetic marker
and the environmental condition describes the marginal independence of the two
variables that become dependent when we condition on the phenotype. Following
the direction of the arrows, we call the node P a child of M and E, which become
its parents. The Bayesian network in Figure 8.1 allows us to decompose the overall
joint probability distribution of the three variables that would consist of 23−1 = 7
parameters into three probability distributions, one conditional distribution for
the variable P given the parents and two marginal distributions for the two parent
variables M and E. These probabilities are specified by 1 + 1 + 4 = 6 parameters.
The decomposition is one of the key factors to provide both a verbal and a hu-
man understandable description of the system and to efficiently store and handle
this distribution, which grows exponentially with the number of variables in the
domain. The second key factor is the use of conditional independence between the
network variables to break down their overall distribution into connected mod-
ules.

Suppose we have three random variables Y1, Y2, Y3. Then Y1 and Y2 are inde-
pendent given Y3 if the conditional distribution of Y1, given Y2 and Y3, is only a
function of Y3. Formally,

p
(
y1|y2, y3

) = p
(
y1|y3

)
, (8.1)

where p(y|x) denotes the conditional probability/density of Y , given X = x. We
use capital letters to denote random variables and small letters to denote their
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Figure 8.1. A network describing the impact of a genetic marker (node M) and an environmental
factor (node E) on a phenotypic character (node P). Each node in the network is associated with a
probability table that describes the conditional distribution of the node, given its parents.

values. We also use the notation Y1⊥Y2|Y3 to denote the conditional independence
of Y1 and Y2 given Y3.

Conditional and marginal independence are substantially different concepts.
For example, two variables can be marginally independent, but they may be depen-
dent when we condition on a third variable. The directed acyclic graph in Figure
8.1 shows this property: the two parent variables are marginally independent, but
they become dependent when we condition on their common child. A well-known
consequence of this fact is the Simpson’s paradox [22] and a typical application in
genetics is the dependency structure of genotypes among members of the same
family: the genotypes of two parents are independent, assuming random mating,
but they become dependent once the genotype of their common child is known.

Conversely, two variables that are marginally dependent may be made condi-
tionally independent by introducing a third variable. This situation is represented
by the directed acyclic graph in Figure 8.2, which shows two children nodes (Y1

and Y2) with a common parent Y3. In this case, the two children nodes are in-
dependent, given the common parent, but they may become dependent when we
marginalize the common parent out. Suppose, for example, the three variables
represent the presence/absence of an X-linked genetic marker in the mother geno-
type (Y3) and the children genotype (Y1 and Y2). The marginal distribution of
Y3 represents the prevalence of the marker in the population, and the conditional
probabilities associated with the nodes Y1 and Y2 represent the probability that
each child has the marker, given the maternal genotype. Then it is easy to com-
pute the conditional probability that one of the two children has the marker, given
that only the genotype of the other child is known. Because the probability of Y2

changes according to the value of Y1, the two variables are dependent. The seminal
papers by Dawid [23, 24] summarize many important properties and alternative
definitions of conditional independence.

The overall list of marginal and conditional independencies represented by
the directed acyclic graph is summarized by the local and global Markov properties
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Figure 8.2. A network encoding the conditional independence of Y1, Y2 given the common parent Y3.
The panel in the middle shows that the distribution of Y2 changes with Y1 and hence the two variables
are conditionally dependent.

Local Markov property:
Y⊥ND(Y)|Pa(Y)

Y5⊥Y1, Y2|Y3

Y6⊥Y1, Y2|Y3, Y4

Y7⊥Y1, Y2, Y3, Y4|Y5, Y6

ND(Y): nondescendants of Y
are all nodes from which Y can
be reached along a direct path
Pa(Y) denotes the parents of Y .

Y1 Y2

Y3 Y4

Y5 Y6

Y7

Global Markov property:
Y⊥Y\MB|MB(Y)

Y1⊥Y4, Y5, Y6, Y7|Y2, Y3,
Y2⊥Y4, Y5, Y6, Y7|Y1, Y3,
Y3⊥Y7|Y1Y2, Y4, Y5Y6

MB(Y): the Markov blanket
of Y is given by the parents
of Y , the children of Y , and

the parents of the children Y .

Figure 8.3. A Bayesian network with seven variables and some of the Markov properties represented
by its directed acyclic graph. The panel on the left describes the local Markov property encoded by
a directed acyclic graph and lists the three Markov properties that are represented by the graph in
the middle. The panel on the right describes the global Markov property and lists three of the seven
global Markov properties represented by the graph in the middle. The vector in bold denotes the set of
variables represented by the nodes in the graph.

[25] that are exemplified in Figure 8.3 using a network of seven variables. The local
Markov property states that each node is independent of its nondescendant given
the parent nodes and leads to a direct factorization of the joint distribution of the
network variables into the product of the conditional distribution of each variable
Yi given its parents Pa(yi). Therefore, the joint probability (or density) of the v
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network variables can be written as:

p
(
y1, . . . , yv

) =∏
i

p
(
yi|pa

(
yi
))
. (8.2)

In this equation, pa(yi) denotes a set of values of Pa(Yi). This property is the core
of many search algorithms for learning Bayesian networks from data. With this de-
composition, the overall distribution is broken into modules that can be interre-
lated, and the network summarizes all significant dependencies without informa-
tion disintegration. Suppose, for example, the variables in the network in Figure
8.3 are all categorical. Then the joint probability p(y1, . . . , y7) can be written as the
product of seven conditional distributions:

p
(
y1
)
p
(
y2
)
p
(
y3|y1, y2

)
p
(
y4
)
p
(
y5|y3

)
p
(
y6|y3, y4

)
p
(
y7|y5, y6

)
. (8.3)

The global Markov property, on the other hand, summarizes all conditional in-
dependencies embedded in the directed acyclic graph by identifying the Markov
blanket of each node. This property is the foundation of many algorithms for
probabilistic reasoning with Bayesian networks that allow the investigation of un-
directed relationships between the variables, and their use for making prediction
and explanation. In the network in Figure 8.3, for example, we can compute the
probability distribution of the variable Y7, given that the variable Y1 is observed to
take a particular value (prediction) or, vice versa, we can compute the conditional
distribution of Y1 given the values of some other variables in the network (expla-
nation). In this way, a Bayesian network becomes a complete simulation system
able to forecast the value of unobserved variables under hypothetical conditions
and, conversely, able to find the most probable set of initial conditions leading to
the observed situation. Exact algorithms exist to perform this inference when the
network variables are all discrete, all continuous, and modeled with Gaussian dis-
tributions, or when the network topology is constrained to particular structures
[26, 27, 28].

For general network topologies and nonstandard distributions, we need to re-
sort to stochastic simulation [29]. Among the several stochastic simulation meth-
ods currently available, Gibbs sampling [30, 31] is particularly appropriate for
Bayesian network reasoning because of its ability to leverage on the graphical
decomposition of joint multivariate distributions to improve computational ef-
ficiency. Gibbs sampling is also useful for probabilistic reasoning in Gaussian net-
works, as it avoids computations with joint multivariate distributions. Gibbs sam-
pling is a Markov chain Monte Carlo method that generates a sample from the
joint distribution of the nodes in the network. The procedure works by generating
an ergodic Markov chain



y10

...
yv0


 �→



y11

...
yv1


 �→



y12

...
yv2


 �→ ·· · (8.4)
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that, under regularity conditions, converges to a stationary distribution. At each
step of the chain, the algorithm generates yik from the conditional distribution of
Yi given all current values of the other nodes. To derive the marginal distribution
of each node, the initial burn-in is removed, and the values simulated for each
node are a sample generated from the marginal distribution. When one or more
nodes in the network are observed, they are fixed in the simulation so that the
sample for each node is from the conditional distribution of the node given the
observed nodes in the network.

Gibbs sampling in directed graphical models exploits the Global Markov
property, so that to simulate from the conditional distribution of one node Yi

given the current values of the other nodes, the algorithm needs to simulate from
the conditional probability/density

p
(
yi|y\yi

)∝ p
(
yi|pa

(
yi
))∏

h

p
(
c
(
yi
)
h|pa

(
c
(
yi
)
h

))
, (8.5)

where y denotes a set of values of all network variables, pa(yi) and c(yi) are values
of the parents and children of Yi, pa(c(yi)h) are values of the parents of the hth
child of Yi, and the symbol “\” denotes the set difference.

8.2.2. Learning Bayesian networks from data

Learning a Bayesian network from data consists of the induction of its two different
components: (1) the graphical structure of conditional dependencies (model selec-
tion); (2) the conditional distributions quantifying the dependency structure (pa-
rameter estimation). While the process of parameter estimation follows quite stan-
dard statistical techniques (see [32]), the automatic identification of the graphical
model best fitting the data is a more challenging task. This automatic identification
process requires two components: a scoring metric to select the best model and
a search strategy to explore the space of possible, alternative models. This section
will describe these two components—model selection and model search—and will
also outline some methods to validate a graphical model once it has been induced
from a data set.

8.2.2.1. Scoring metrics

We describe the traditional Bayesian approach to model selection that solves the
problem as hypothesis testing. Other approaches based on independence tests or
variants of the Bayesian metric like the minimum description length (MDL) score
or the Bayesian information criterion (BIC) are described in [22, 25, 33]. We
suppose to have a set M = {M0,M1, . . . ,Mg} of Bayesian networks, each net-
work describing a hypothesis on the dependency structure of the random vari-
ables Y1, . . . ,Yv. Our task is to choose one network after observing a sample of
data D = {y1k, . . . , yvk}, for k = 1, . . . ,n. By Bayes’ theorem, the data D are used
to revise the prior probability p(Mh) of each model into the posterior probability,
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which is calculated as

p
(
Mh|D

)∝ p
(
Mh
)
p
(
D|Mh

)
, (8.6)

and the Bayesian solution consists of choosing the network with maximum pos-
terior probability. The quantity p(D|Mh) is called the marginal likelihood and is
computed by averaging out θh from the likelihood function p(D|θh), where Θh is
the vector parameterizing the distribution of Y1, . . . ,Yv, conditional on Mh. Note
that, in a Bayesian setting, Θh is regarded as a random vector, with a prior den-
sity p(θh) that encodes any prior knowledge about the parameters of the model
Mh. The likelihood function, on the other hand, encodes the knowledge about the
mechanism underlying the data generation. In our framework, the data genera-
tion mechanism is represented by a network of dependencies and the parameters
are usually a measure of the strength of these dependencies. By averaging out the
parameters, the marginal likelihood provides an overall measure of the data gen-
eration mechanism that is independent of the values of the parameters. Formally,
the marginal likelihood is the solution of the integral

p
(
D|Mh

) =
∫
p
(
D|θh

)
p
(
θh
)
dθh. (8.7)

The computation of the marginal likelihood requires the specification of a pa-
rameterization of each model Mh that is used to compute the likelihood function
p(D|θh), and the elicitation of a prior distribution for Θh. The local Markov prop-
erties encoded by the network Mh imply that the joint density/probability of a case
k in the data set can be written as

p
(
y1k, . . . , yvk|θh

) =∏
i

p
(
yik|pa

(
yi
)
k, θh

)
. (8.8)

Here, y1k, . . . , yvk is the set of values (configuration) of the variables for the kth
case, and pa(yi)k is the configuration of the parents of Yi in case k. By assuming
exchangeability of the data, that is, cases are independent given the model param-
eters, the overall likelihood is then given by the product

p
(
D|θh

) =∏
ik

p
(
yik|pa

(
yi
)
k, θh

)
. (8.9)

Computational efficiency is gained by using priors for Θh that obey the directed
hyper-Markov law [34, 35]. Under this assumption, the prior density p(θh) ad-
mits the same factorization of the likelihood function, namely, p(θh) =∏i p(θhi),
where θhi is the subset of parameters used to describe the dependency of Yi on its
parents. This parallel factorization of the likelihood function and the prior density
allows us to write

p
(
D|Mh

) =∏
ik

∫
p
(
yik|pa

(
yi
)
k, θhi

)
p
(
θhi
)
dθhi =

∏
i

p
(
D|Mhi

)
, (8.10)
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where p(D|Mhi) =
∏

k

∫
p(yik|pa(yi)k, θhi)p(θhi)dθhi. By further assuming de-

composable network prior probabilities that factorize as p(Mh) =∏i p(Mhi) [36],
the posterior probability of a model Mh is the product

p
(
Mh|D

) =∏
i

p
(
Mhi|D

)
. (8.11)

Here p(Mhi|D) is the posterior probability weighting the dependency of Yi on the
set of parents specified by the model Mh. Decomposable network prior probabili-
ties are encoded by exploiting the modularity of a Bayesian network, and are based
on the assumption that the prior probability of a local structure Mhi is indepen-
dent of the other local dependencies Mhj for j �= i. By setting p(Mhi) = (g + 1)−1/v,
where g + 1 is the cardinality of the model space and v is the cardinality of the set
of variables, there follows that uniform priors are also decomposable.

An important consequence of the likelihood modularity is that, in the com-
parison of models that differ for the parent structure of a variable Yi, only the
local marginal likelihood matters. Therefore, the comparison of two local network
structures that specify different parents for the variable Yi can be done by simply
evaluating the product of the local Bayes factor BFhk = p(D|Mhi)/p(D|Mki), and
the prior odds p(Mh)/p(Mk), to compute the posterior odds of one model versus
the other:

p
(
Mhi|D

)
p
(
Mki|D

) . (8.12)

The posterior odds provide an intuitive and widespread measure of fitness. An-
other important consequence of the likelihood modularity is that, when the mod-
els are a priori equally likely, we can learn a model locally by maximizing the mar-
ginal likelihood node by node.

When there are no missing data, the marginal likelihood p(D|Mh) can be
calculated in closed form under the assumptions that all variables are discrete, or
all variables follow Gaussian distributions and the dependencies between children
and parents are linear. These two cases are described in the next examples. We
conclude by noting that the calculation of the marginal likelihood of the data is the
essential component for the calculation of the Bayesian estimate of the parameter
θh, which is given by the expected value of the posterior distribution

p = (θh|D) = p
(
D|θh

)
p
(
θh
)

p
(
D|Mh

) =
∏
i

p
(
D|θhi

)
p
(
θhi
)

p
(
D|Mhi

) . (8.13)

Example 1 (discrete variable networks). Suppose the variables Y1, . . . ,Yv are
all discrete, and denote by ci the number of categories of Yi. The dependency of
each variable Yi on its parents is represented by a set of multinomial distributions
that describe the conditional distribution of Yi on the configuration j of the parent
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Figure 8.4. A simple Bayesian network describing the dependency of Y3 on Y1 and Y2 that are
marginally independent. The table on the left describes the parameters θ3 jk ( j = 1, . . . , 4 and k = 1, 2)
used to define the conditional distributions of Y3 = y3k|pa(y3) j , assuming that all variables are binary.
The two tables on the right describe a simple database of seven cases, and the frequencies n3 jk . The full
joint distribution is defined by the parameters θ3 jk and the parameters θ1k and θ2k that specify the
marginal distributions of Y1 and Y2.

variables Pa(Yi). This representation leads to writing the likelihood function as

p
(
D|θh

) =∏
i jk

θ
ni jk
i jk , (8.14)

where the parameter θi jk denotes the conditional probability p(yik|pa(yi) j), ni jk is
the sample frequency of (yik, pa(yi) j), and ni j =

∑
k ni jk is the marginal frequency

of pa(yi) j . Figure 8.4 shows an example of the notation for a network with three
variables. With the data in this example, the likelihood function is written as

{
θ4

11θ
3
12

}{
θ3

21θ
4
22

}{
θ1

311θ
1
312 × θ1

321θ
0
322 × θ2

331θ
0
332 × θ1

341θ
1
342

}
. (8.15)

The first two terms in the products are the contributions of nodes Y1 and Y2 to the
likelihood, while the last product is the contribution of the node Y3, with terms
corresponding to the four conditional distributions of Y3 given each of the four
parent configurations.

The hyper Dirichlet distribution with parameters αi jk is the conjugate hyper
Markov law [34, 35] and it is defined by a density function proportional to the

product
∏

i jk θ
αi jk−1
i jk . This distribution encodes the assumption that the parameters

θi j and θi′ j′ are independent for i′ �= i and j �= j′. These assumptions are known as
global and local parameter independence [37], and are valid only under the assump-
tion that the hyper-parameters αi jk satisfy the consistency rule

∑
j αi j = α for all i
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[38, 39]. Symmetric Dirichlet distributions satisfy easily this constraint by setting
αi jk = α/(ciqi), where qi is the number of states of the parents of Yi. One advantage
of adopting symmetric hyper Dirichlet priors in model selection is that, if we fix α
constant for all models, then the comparison of posterior probabilities of different
models is done conditionally on the same quantity α. With these parameterization
and choice of prior distributions, the marginal likelihood is given by the equation

∏
i

p
(
D|Mhi

) =∏
i j

Γ
(
αi j
)

Γ
(
αi j + ni j

) ∏
k

Γ
(
αi jk + ni jk

)
Γ
(
αi jk

) , (8.16)

where Γ(·) denotes the Gamma function, and the Bayesian estimate of the param-
eter θi jk is the posterior mean

E
(
θi jk|D

) = αi jk + ni jk
αi j + ni j

. (8.17)

More details are in [32].

Example 2 (linear gaussian networks). Suppose now that the variables Y1,
. . . ,Yv are all continuous, and the conditional distribution of each variableYi given
its parents Pa(yi) ≡ {Yi1, . . . ,Yip(i)} follows a Gaussian distribution with a mean
that is a linear function of the parent variables, and conditional variance σ2

i = 1/τi.
The parameter τi is called the precision. The dependency of each variable on its
parents is represented by the linear regression equation

µi = βi0 +
∑
j

βi j yi j (8.18)

that models the conditional mean of Yi given the parent values yi j . Note that the
regression equation is additive (there are no interactions between the parent vari-
ables) to ensure that the model is graphical [25]. In this way, the dependency of Yi

on a parent Yij is equivalent to having the regression coefficient βi j �= 0. Given a
set of exchangeable observations D , the likelihood function is

p
(
D|θh

) =∏
i

(
τi
2π

)n/2∏
k

exp

[
− τi

(
yik − µik

)2

2

]
, (8.19)

where µik denotes the value of the conditional mean of Yi, in case k, and the vector
θh denotes the set of parameters τi, βi j . It is usually more convenient to use a ma-
trix notation. We use the n×(p(i)+1) matrix Xi to denote the matrix of regression
coefficients, with the kth row given by (1, yi1k, yi2k, . . . , yip(i)k), βi to denote the vec-
tor of parameters (βi0,βi1, . . . ,βip(i))T associated with Yi, and, in this example, yi to
denote the vector of observations (yi1, . . . , yin)T . With this notation, the likelihood
can be written in a more compact form:

p
(
D|θh

) =∏
i

(
τi
2π

)n/2
exp

[
− τi

(
yi − Xiβi

)T(
yi − Xiβi

)
2

]
. (8.20)
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There are several choices to model the prior distribution on the parameters τi and
βi. For example, the conditional variance can be further parameterized as

σ2
i = V

(
Yi
)− cov

(
Yi, Pa

(
yi
))
V
(

Pa
(
yi
))−1

cov
(

Pa
(
yi
)
,Yi
)
, (8.21)

where V(Yi) is the marginal variance of Yi, V(Pa(yi)) is the variance-covariance
matrix of the parent variables, and cov(Yi, Pa(yi)) (cov(Pa(yi),Yi)) is the row (col-
umn) vector of covariances between Yi and each parent Yij . With this param-
eterization, the prior on τi is usually a hyper-Wishart distribution for the joint
variance-covariance matrix of Yi, Pa(yi) [40]. The Wishart distribution is the mul-
tivariate generalization of a Gamma distribution. An alternative approach is to
work directly with the conditional variance of Yi. In this case, we estimate the
conditional variances of each set of parents-child dependency and then the joint
multivariate distribution that is needed for the reasoning algorithms is derived by
multiplication. More details are described for example in [22, 41].

We focus on this second approach and again use the global parameter inde-
pendence [37] to assign independent prior distributions to each set of parame-
ters τi, βi that quantify the dependency of the variable Yi on its parents. In each
set, we use the standard hierarchical prior distribution that consists of a marginal
distribution for the precision parameter τi and a conditional distribution for the
parameter vector βi, given τi. The standard conjugate prior for τi is a Gamma dis-
tribution

τi ∼ Gamma
(
αi1,αi2

)
, p

(
τi
) = 1

ααi1i2 Γ
(
αi1
)ταi1−1

i e−τi/αi2 , (8.22)

where

αi1 = νio
2

, αi2 = 2
νioσ

2
io

. (8.23)

This is the traditional Gamma prior for τi with hyper-parameters νio and σ2
io that

can be given the following interpretation. The marginal expectation of τi is E(τi) =
αi1αi2 = 1/σ2

io and

E
(

1
τi

)
= 1(

αi1 − 1
)
αi2

= νioσ
2
io

νio − 2
(8.24)

is the prior expectation of the population variance. Because the ratio νioσ
2
io/(νio−2)

is similar to the estimate of the variance in a sample of size νio, σ2
io is the prior

population variance, based on νio cases seen in the past. Conditionally on τi, the
prior density of the parameter vector βi is supposed to be multivariate Gaussian:

βi|τi ∼ N
(
βio,

(
τiRio

)−1
)

, (8.25)
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where βio = E(βi|τi). The matrix (τiRio)−1 is the prior variance-covariance matrix
of βi|τi and Rio is the identity matrix so that the regression coefficients are a priori
independent, conditionally on τi. The density function of βi is

p
(
βi|τi

) = τ
(p(i)+1)/2
i det

(
Rio
)1/2

(2π)(p(i)+1)/2 e−τi/2(βi−βio)TRio(βi−βio). (8.26)

With this prior specifications, it can be shown that the marginal likelihood
p(D|Mh) can be written in product form

∏
i p(D|Mhi), where each factor is given

by the quantity

p
(
D|Mhi

) = 1
(2π)n/2

detR1/2
io

detR1/2
in

Γ
(
νin/2

)
Γ
(
νio/2

)
(
νioσ

2
io/2
)νio/2

(
νinσ

2
in/2

)νin/2 (8.27)

and the parameters are specified by the next updating rules:

αi1n = νio
2

+
n

2
,

1
αi2n

= −βTinRinβin + yTi yi + βTioRioβio
2

+
1
αi2

,

νin = νio + n,

σin = 2
νinαi2n

,

Rin = Rio + XT
i Xi,

βin = R−1
in

(
Rioβio + XT

i yi
)
.

(8.28)

The Bayesian estimates of the parameters are given by the posterior expectations

E
(
τi|yi

) = αi1nαi2n = 1
σ2
in

, E
(
βi|yi

) = βin, (8.29)

and the estimate of σ2
i is νinσ2

in/(νin− 2). More controversial is the use of improper
prior distributions that describe lack of prior knowledge about the network pa-
rameters by uniform distributions [42]. In this case, we set p(βi, τi) ∝ τ−ci , so that
νio = 2(1− c) and βio = 0. The updated hyper-parameters are

νin = νio + n,

Rin = XT
i Xi,

βin =
(
XT
i Xi

)−1
XT
i yi (least squares estimate of β),

σin = RSSi
νin

,

RSSi = yTi yi − yTi Xi
(
XT
i Xi

)−1
XT
i yi (residual sum of squares),

(8.30)
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and the marginal likelihood of each local dependency is

p
(
D|Mhi

)

= 1
(2π)(n−p(i)−1)/2 Γ

(
n− p(i)− 2c + 1

2

)(
RSSi

2

)−(n−p(i)−2c+1)/2 1

det
(
XT
i Xi

)1/2 .

(8.31)

A very special case is c = 1 that corresponds to νio = 0. In this case, the local
marginal likelihood simplifies to

p
(
D|Mhi

)

= 1
(2π)(n−p(i)−1)/2 Γ

(
n− p(i)− 1

2

)(
RSSi

2

)−(n−p(i)−1)/2 1

det
(
XT
i Xi

)1/2 .
(8.32)

The estimates of the parameters σi and βi become the traditional least squares esti-
mates RSSi/(νin−2) and βin. This approach can be extended to model an unknown
variance-covariance structure of the regression parameters, using normal Wishart
priors [41].

8.2.2.2. Model search

The likelihood modularity allows local model selection and simplifies the com-
plexity of model search. Still, the space of the possible sets of parents for each
variable grows exponentially with the number of candidate parents and success-
ful heuristic search procedures (both deterministic and stochastic) have been pro-
posed to render the task feasible [43, 44, 45, 46]. The aim of these heuristic search
procedures is to impose some restrictions on the search space to capitalize on the
decomposability of the posterior probability of each Bayesian network Mh. One
suggestion, put forward in [43], is to restrict the model search to a subset of all
possible networks that are consistent with an ordering relation � on the variables
{Y1, . . . ,Yv}. This ordering relation � is defined by Yj � Yi if Yi cannot be parent
of Yj . In other words, rather than exploring networks with arrows having all possi-
ble directions, this order limits the search to a subset of networks in which there is
only a subset of directed associations. At first glance, the requirement for an order
among the variables could appear to be a serious restriction on the applicability of
this search strategy, and indeed this approach has been criticized in the artificial
intelligence community because it limits the automation of model search. From
a modeling point of view, specifying this order is equivalent to specifying the hy-
potheses that need to be tested, and some careful screening of the variables in the
data set may avoid the effort to explore a set of nonsensible models. For example,
we have successfully applied this approach to model survey data [47, 48] and more
recently genotype data [18]. Recent results have shown that restricting the search
space by imposing an order among the variables yields a more regular space over
the network structures [49].
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In functional genomics, the determination of this order can be aided by the
available information about gene control interactions embedded into known path-
ways. When the variables represent gene products, such as gene expression data,
the order relationship can describe known regulatory mechanisms and it has been
exploited for example in [14] to restrict the set of possible dependency structures
between genes. This ordering operation can be largely automated by using some
available programs, such as MAPPFinder [50] or GenMAPP [51], able to auto-
matically map gene expression data to known pathways. For genes with unknown
function, one can use different orders with random restarts. Other search strategies
based on genetic algorithms [44], “ad hoc” stochastic methods [45], or Markov
chain Monte Carlo methods [49] can also be used. An alternative approach to limit
the search space is to define classes of equivalent directed graphical models [52].

The order imposed on the variables defines a set of candidate parents for each
variable Yi. One way to proceed is to implement an independent model selection
for each variable Yi and then link together the local models selected for each vari-
able Yi. A further reduction is obtained using the greedy search strategy deployed
by the K2 algorithm [43]. The K2 algorithm is a bottom-up strategy that starts
by evaluating the marginal likelihood of the model in which Yi has no parents.
The next step is to evaluate the marginal likelihood of each model with one par-
ent only and if the maximum marginal likelihood of these models is larger than
the marginal likelihood of the independence model, the parent that increases the
likelihood most is accepted and the algorithm proceeds to evaluate models with
two parents. If none of the models has marginal likelihood that exceeds that of
the independence model, the search stops. The K2 algorithm is implemented in
Bayesware Discoverer (http://www.bayesware.com) and the R-package deal [53].
Greedy search can be trapped in local maxima and it induces spurious depen-
dency. A variant of this search to limit spurious dependency is stepwise regression
[54]. However, there is evidence that the K2 algorithm performs as well as other
search algorithms [55].

8.2.2.3. Validation

The automation of model selection is not without problems and both diagnos-
tic and predictive tools are necessary to validate a multivariate dependency model
extracted from data. There are two main approaches to model validation: one ad-
dresses the goodness of fit of the network selected from data and the other assesses
the predictive accuracy of the network in some predictive/diagnostic tests.

The intuition underlying goodness-of-fit measures is to check the accuracy
of the fitted model versus the data. In regression models in which there is only
one dependent variable, the goodness of fit is typically based on some summary
of the residuals that are defined by the difference between the observed data and
the data reproduced by the fitted model. Because a Bayesian network describes a
multivariate dependency model in which all nodes represent random variables,
we developed blanket residuals [56] as follows. Given the network induced from
data, for each case k in the database we compute the values fitted for each node Yi,
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given all the other values. Denote this fitted value by ŷik and note that, by the global
Markov property, only the configuration in the Markov blanket of the node Yi is
used to compute the fitted value. For categorical variables, the fitted value ŷik is
the most likely category of Yi given the configuration of its Markov blanket, while
for numerical variables the fitted value ŷik can be either the expected value of Yi,
given the Markov blanket, or the modal value. In both cases, the fitted values are
computed by using one of the algorithms for probabilistic reasoning described in
Section 8.2. By repeating this procedure for each case in the database, we compute
fitted values for each variable Yi, and then define the blanket residuals by

rik = yik − ŷik (8.33)

for numerical variables, and by

cik = δ
(
yik, ŷik

)
(8.34)

for categorical variables, where the function δ(a, b) takes value δ = 0 when a = b
and δ = 1 when a �= b. Lack of significant patterns in the residuals rik and approxi-
mate symmetry about 0 will provide evidence in favor of a good fit for the variable
Yi, while anomalies in the blanket residuals can help to identify weaknesses in the
dependency structure that may be due to outliers or leverage points. Significance
testing of the goodness of fit can be based on the standardized residuals

Rik = rik√
V
(
yi
) , (8.35)

where the variance V(yi) is computed from the fitted values. Under the hypothesis
that the network fits the data well, we would expect to have approximately 95%
of the standardized residuals within the limits [−2, 2]. When the variable Yi is
categorical, the residuals cik identify the error in reproducing the data and can be
summarized to compute the error rate for fit.

Because these residuals measure the difference between the observed and fit-
ted values, anomalies in the residuals can identify inadequate dependencies in the
networks. However, residuals that are on average not significantly different from 0
do not necessarily prove that the model is good. A better validation of the network
should be done on an independent test set to show that the model induced from
one particular data set is reproducible and gives good predictions. Measures of the
predictive accuracy can be the monitors based on the logarithmic scoring function
[57]. The basic intuition is to measure the degree of surprise in predicting that
the variable Yi will take a value yih in the hth case of an independent test set. The
measure of surprise is defined by the score

sih = − log p
(
yih|MB

(
yi
)
h

)
, (8.36)
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where MB(yi)h is the configuration of the Markov blanket of Yi in the test case
h, p(yih|MB(yi)h) is the predictive probability computed with the model induced
from data, and yih is the value of Yi in the hth case of the test set. The score sih will
be 0 when the model predicts yih with certainty, and increases as the probability
of yih decreases. The scores can be summarized to derive local and global monitors
and to define tests for predictive accuracy [40].

In the absence of an independent test set, standard cross-validation techniques
are typically used to assess the predictive accuracy of one or more nodes [58]. In
K-fold cross validation, the data are divided into K nonoverlapping sets of ap-
proximately the same size. Then K − 1 sets are used for retraining (or induc-
ing) the network from data that is then tested on the remaining set using mon-
itors or other measures of the predictive accuracy [59]. By repeating this process
K times, we derive independent measures of the predictive accuracy of the net-
work induced from data as well as measures of the robustness of the network to
sampling variability. Note that the predictive accuracy based on cross validation is
usually an overoptimistic measure, and several authors have recently argued that
cross validation should be used with caution [60], particularly with small sample
sizes.

8.3. Genomic applications of Bayesian networks

Bayesian networks have been applied to the analysis of several gene products, in-
cluding gene expression measured with microarrays [11, 61] and proteins [16].
This section describes some applications of Bayesian networks in genomics. In
the first two sections we use Bayesian networks to model the complex structure
of gene-gene interactions in complex traits, using genetic markers and gene ex-
pression data measured with microarrays. The last section shows an application of
Bayesian networks to proteomics. In all applications, the study design was a case
control [62] with subjects selected according to their disease status: cases are sub-
jects affected with the particular disease of interest, while controls are unaffected
with the disease.

8.3.1. Networks of genetic markers

Many complex diseases are likely to be determined by the joint action of particular
genotypes and their interaction with environmental factors. Alzheimer’s disease is
an example of a complex trait related to multiple genes and there is evidence that
several genes and the environment influence the risk of this disease [62]. Another
example is diabetes, for which several studies have identified different genotypes
that are associated with the disease [63]. In both examples, polymorphic loci of
several genes have been found to be associated with the disease.

It is well known that the majority of the DNA sequence is equal across all
individuals except for a small proportion of positions that have more than one
form (allele). A piece of DNA that has more than one form, each occurring with at
least 1% frequency in the population, is called polymorphic, and when the piece is a
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single base of the DNA, it is called a single nucleotide polymorphism (SNP). SNPs
work as flags on a high-density map of the human genome and allow us to identify
those genes whose polymorphisms may be causative of the disease [2]. In case-
control studies, the data available for this discovery process are typically genotypes
of case and control subjects at polymorphic loci, together with information about
several clinical covariates and environmental factors. The genotype can be coded
either as the presence/absence of the minor allele (the allele with smaller frequency
in the population) in the two loci of the chromosome pair or as the complete allele
pair that can be homozygous for the major allele, homozygous for the minor allele,
or heterozygous when the two alleles are different.

The discovery of complex gene-environment interactions that confer suscep-
tibility to disease requires advanced multivariate modeling tools. A typical solution
is to resort to logistic regression models to describe the odds for the disease given a
particular genotype. The advantages of logistic regression models are that they can
be used to assess whether the association between the risk for disease and a particu-
lar genotype is confounded by some external factor (such as population admixture
[64]) and they can be used to test whether an external factor or a particular geno-
type is an effect modifier of an association [65]. However, logistic regression models
pose three serious limitations: when the susceptibility to disease is caused by the
interaction among several genes, the number of parameters required to fit a logis-
tic regression model increases at an exponential rate; the genotypes are treated as
covariates rather than random variables; logistic regression is limited to examin-
ing the association between one phenotypic character at a time. To simultaneously
overcome these three limitations, we have recently proposed to use Bayesian net-
works to discover the genetic makeup that confers susceptibility to overt stroke in
patients with sickle cell anemia.

The complications of sickle cell anemia are likely to be determined by the
actions of genes that modify the pathophysiology initiated by sickle hemoglobin.
Overt stroke (CVA) occurs in about 10% of patients with sickle cell anemia. To
define the genetic basis of CVA in sickle cell anemia, we examined the association
of SNPs in several candidate genes of different functional classes with the likeli-
hood of CVA. In our study, we considered 92 patients with a confirmed history of
or incident complete nonhemorrhagic CVA, documented by imaging studies and
453 controls (patients who did not have a stroke in five years follow up). We mod-
eled the genetic markers and their association with the CVA phenotype by Bayesian
networks using the structural learning approach described in Section 8.2.2. We val-
idated the network of association induced from data using cross validation, which
showed that the network of gene-gene-phenotype interaction can predict the like-
lihood of CVA in patients with sickle cell anemia with 99.7% accuracy. We also
validated the model using an independent set of 114 individuals with an accuracy
of 98%. In both tests, the accuracy was measured by the frequency of individuals
for whom the Bayesian network model predicted the correct phenotype with prob-
ability above 0.5 [66]. With this approach, we discovered a network of interacting
genes that may confer susceptibility to CVA in patients with sickle cell anemia.
Part of the network is displayed in Figure 8.5 and identifies polymorphisms of the
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Figure 8.5. A Bayesian network representing a complex trait given by the interaction of several genes
and clinical covariates.

genes MET and BMP6 as directly associated with CVA. The Markov blanket of the
node representing the phenotype (stroke) identifies the gene-gene-environment
interaction that confers susceptibility to the disease. It consists of polymorphisms
of the genes MET and BMP6, the age of the patient, and whether or not the pa-
tient is affected by α-thalassemia (node HB-SS). Dependencies between polymor-
phisms of other genes may be interpreted as an effect of population admixture,
while dependencies between polymorphism of the same gene denote linkage dise-
quilibrium [64].

8.3.2. Gene expression networks

The coherent probabilistic framework of Bayesian networks can be used not only
to model genotype data but also gene expression data. Compared to standard ex-
pression profiling methods, Bayesian networks are able to represent the direction-
ality of the influence among gene expression and they have already been deployed
to understand both gene expression [12] and protein-protein interactions [16].

Another area of application of Bayesian networks in functional genomics is
modeling differential expression in comparative experiments. Typical statistical
techniques used to identify genes that have differential expression in two or more
conditions work assuming that genes act independently [6]. Bayesian networks
can be used to identify genes with differential expression by simultaneously mod-
eling the structure of gene-gene interaction. Figure 8.6 provides an example that
describes a network of gene expression interaction learned from a case-control
study of prostate cancer. We used a data set of expression profiles derived from
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Figure 8.6. A Bayesian network associating genes that are differentially expressed between normal and
tumor specimens (node condition). Genes are labelled by the Affymetrix probe ID.

102 prostatectomy specimens. Cases were 52 cancer specimens of patients under-
going surgery between 1996 and 1997, and controls were 50 normal specimens.
The expression profiles were derived with the U95Av2 Affymetrix microarray and
are described in [67]. We first analyzed the data with BADGE [68], a program for
differential analysis that uses Bayesian model averaging to compute the posterior
probability of differential expression. We selected about 200 genes with very large
probability of differential expression and then modeled the network of interaction
of gene expression. We used information about known functions of some genes to
limit the search space and, for example, imposed the restriction that genes known
as transcription factors could only be tested as parents of all other nodes. In the
absence of an independent set, the final network was tested with 5-fold cross val-
idation and had 93% accuracy in predicting the clinical status, and an average
accuracy of about 80% in predicting the expression of each gene given the others.

Besides the identification of a molecular profile based on those genes that are
directly related to the clinical status, the network displays some interesting associa-
tions. For example, changes in expression of TRCγ (41468 AT: a known enhancer
of transcriptional activity specific for prostatic adenocarcinoma cell line) are as-
sociated with changes of expression of several genes including SIM2 (39608 AT:
a transcription repression), PSMA (1740 G AT: a gene associated with prostate
cancer), and MRP (36174 AT: a gene known as potential predictor of chemother-
apy response). The probability of changes in expression of Hepsin (37639 AT: a
gene with cell growth function) depends on both the clinical status and changes
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in expression of MRP. The differential expression of the Hepsin gene influences
changes in expression of AMACR (41706 AT: a marker of tumor differentiation
known to be essential for growth of prostate cancer [69, 70].) These directed asso-
ciations suggest a mechanism by which changes in the transcription factor TRCγ
influence changes in genes involved in tumor growth. Another interesting fact is
the directed association between Adipsin (40282 S AT: a gene supposed to have
a role in immune system biology) and CRBP1 (38634 AT: a gene known to con-
tribute to cancer by disrupting the vitamin A metabolism). One theory is that
cancer arises from the accumulation of genetic changes that induce unlimited, self-
sufficient growth and resistance to normal regulatory mechanisms, and these two
sets of dependencies are consistent with this conjecture.

Of course, the nature of the data collected in a case-control study limits the
dependency structure to represent associations rather than causal effects. This lim-
itation is due to the data rather than the modeling approach, and data produced
by controlled experiments have been used to induce causal networks [61, 71]. We
will discuss this issue further in Section 8.4.3.

8.3.3. In silico integrative genomics

The predictive capabilities of Bayesian networks can be deployed for in silico iden-
tification of unobserved characteristics of the genome. Genetic studies are de-
signed to identify regions of the genome associated with a disease phenotype. The
success rate of these studies could be improved if we were able to predict in ad-
vance, before conducting the study, the likelihood of an SNP or a mutation in
a particular region to be indeed pathogenic. To do so, we need to integrate the
available information about SNPs and mutations with the available information
about proteins, and predict that a particular change in the DNA will actually lead
to a change in the encoded protein. Using Bayesian networks, we have developed a
novel algorithm to predict pathogenic single amino acid changes, either nonsyn-
onymous SNPs (nsSNPs)—SNPs causing a change in the encoded amino acid—or
missense mutations, in conserved protein domains [17]. We found that the prob-
ability of a microbial missense mutation causing a change in phenotype depended
on how much difference it made in several phylogenetic, biochemical, and struc-
tural features related to the single amino acid substitution. We tested our model
on pathogenic allelic variants (missense mutations or nsSNPs) included in OMIM
(www.ncbi.nlm.nih.gov/omim) and on the other nsSNPs in the same genes from
dbSNP (www.ncbi.nlm.nih.gov/SNP) as the nonpathogenic variants. Our results
show that our model was able to predict pathogenic variants with a 10% false-
positive rate.

8.4. Advanced topics

This section describes some extensions of Bayesian networks to classification and
for modeling nonlinear and temporal dependencies.
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Figure 8.7. The structure of the naı̈ve Bayes classifier.

8.4.1. Bayesian networks and classification

The goal of many studies in genomics medicine is the discovery of a molecular
profile for disease diagnosis or prognosis. The molecular profile is typically based
on gene expression [72, 73, 74]. Bayesian networks have been used in the past few
years as supervised classification models able to discover and represent molecu-
lar profiles that characterize a disease [75, 76]. This section describes particular
classification models that are simple Bayesian networks.

8.4.1.1. Classification

The term “supervised classification” covers two complementary tasks: the first is
to identify a function mapping a set of attributes onto a class, and the other is to
assign a class label to a set of unclassified cases described by attribute values. We
denote by C the variable whose states represent the class labels ci, and by Yi the
attributes. In our context, the class variable may represent a clinical status, and the
attributes can be gene products such as gene expression data or genotypes.

Classification is typically performed by first training a classifier on a set of la-
belled cases (training set) and then using it to label unclassified cases (test set). The
supervisory component of this classifier resides in the training signal, which pro-
vides the classifier with a way to assess a dependency measure between attributes
and classes. The classification of a case with attribute values y1k, . . . , yvk is then
performed by computing the probability distribution p(C|y1k, . . . , yvk) of the class
variable, given the attribute values, and by labelling the case with the most prob-
able label. Most of the algorithms for learning classifiers described as Bayesian
networks impose a restriction on the network structure, namely, that there cannot
be arrows pointing to the class variable. In this case, by the local Markov prop-
erty, the joint probability p(y1k, . . . , yvk, ck) of class and attributes is factorized
as p(ck)p(y1k, . . . , yvk|ck). The simplest example is known as a naı̈ve Bayes (NB)
classifier [77, 78] and makes the further simplification that the attributes Yi are
conditionally independent given the class C so that

p
(
y1k, . . . , yvk|ck

) =∏
i

p
(
yik|ck

)
. (8.37)

Figure 8.7 depicts the directed acyclic graph of an NB classifier. Because of the re-
striction on the network topology, the training step for an NB classifier consists
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Figure 8.8. The structure of a TAN classifier.

of estimating the conditional probability distributions of each attribute, given the
class, from a training data set. When the attributes are discrete or continuous vari-
ables and follow Gaussian distributions, the parameters are learned by using the
procedure described in Section 8.2.2. Once trained, the NB classifies a case by com-
puting the posterior probability distribution over the classes via Bayes’ theorem
and assigns the case to the class with the highest posterior probability.

Other classifiers have been proposed to relax the assumption that attributes
are conditionally independent given the class. Perhaps the most competitive one
is the tree augmented naı̈ve Bayes (TAN) classifier [79] in which all the attributes
have the class variable as a parent as well as another attribute. To avoid cycles, the
attributes have to be ordered and the first attribute does not have other parents
beside the class variable. Figure 8.8 shows an example of a TAN classifier with five
attributes. An algorithm to infer a TAN classifier needs to choose both the depen-
dency structure between attributes and the parameters that quantify this depen-
dency. Due to the simplicity of its structure, the identification of a TAN classifier
does not require any search but rather the construction of a tree among the at-
tributes. An “ad hoc” algorithm called construct-TAN (CTAN) was proposed in
[79]. One limitation of the CTAN algorithm to build TAN classifiers is that it ap-
plies only to discrete attributes, and continuous attributes need to be discretized.

Other extensions of the NB try to relax some of the assumptions made by the
NB or the TAN classifiers. Some examples are the l-limited dependence Bayesian
classifier (l-LDB) in which the maximum number of parents that an attribute can
have is l [80]. Another example is the unrestricted augmented naı̈ve Bayes classifier
(ANB) in which the number of parents is unlimited but the scoring metric used
for learning, the minimum description length criterion, biases the search toward
models with small number of parents per attribute [79]. Due to the high dimen-
sionality of the space of different ANB networks, algorithms that build this type of
classifiers must rely on heuristic searches. More examples are reported in [79].

8.4.1.2. Molecular classification

Many learning algorithms show a high sensitivity to correlated features. In the
case of data sets of gene expression profiles measured with microarrays, the large
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Table 8.1. Test accuracies for some classifiers without and with feature selection.

Algorithm All attributes Feature selection

NB 75.4902 87.2549

sCTAN 73.5294 80.3922

Condition

36725 AT

31666 F AT

38291 AT

32598 AT

38259 G AT

37639 AT

39315 AT

37624 AT

39417 AT

Figure 8.9. The structure of the TAN classifier with feature selection in the gene expression dataset.

number of genes must be drastically reduced in order to improve the diagnostic
accuracy. Many learning algorithms that build classifiers and perform feature se-
lection have been used in this context [81, 82, 83]. As an example, we used the
NB and TAN classifiers to build a molecular classification model using the data set
of gene expression measured in prostatectomy specimens (see Figure 8.6). Table
8.1, column 2, shows the test accuracy of the classifiers learned by different algo-
rithms that was measured with 5-fold cross validation. The first classifier is an NB
and the second classifier is a TAN. In both cases the parameters were learned with
the Bayesian approach discussed in Section 8.2.2. Due the large number of input
attributes, we used a filtered version of the wrapped feature selection algorithm
described in [84] to increase the predictive accuracy.

Column 3 shows the accuracy of the same classifiers that were built by se-
lecting a subset of the genes and shows that accuracy sensibly increases when fea-
ture selection is performed. The genes selected by the feature selection algorithm
are 32598 AT, 38291 AT, 39315 AT, 37624 AT, 38059 G AT, 36725 AT, 31666 F
AT, 39417 AT, 37639 AT and represent a molecular profile for classifying prosta-
tectomy specimens into normal or tumor. Figure 8.9 shows the TAN structure
chosen by the CTAN algorithm with feature selection. It is interesting to note that
the selection of genes by the wrapped feature selection differs from that induced
by the standard Bayesian algorithm described in Section 8.2.2. Particularly, neither
of the classifiers reaches the classification accuracy of the Bayesian network model
in Figure 8.6.

8.4.2. Generalized Gamma networks

Most of the work on learning Bayesian networks from data has focused on learn-
ing networks of categorical variables, or networks of continuous variables that are
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Figure 8.10. Distribution of expression data of the HSYUBG1 Homo sapiens ubiquitin gene in a data
set of 50 prostatectomy samples measured with the U95Av2 Affymetrix microarray. (a) The histogram
of the original expression data. (b) The histogram of the log-transformed gene expression data.

modelled by Gaussian distributions with linear dependencies. However, linearity
of the parent-child dependencies and normality of the data are limitations. This
section describes a new class of Bayesian networks that addresses these issues.

8.4.2.1. Learning and representation

A feature of gene expression data measured with microarray is the apparent lack
of symmetry and there is evidence that they do not follow Gaussian distributions,
even after a logarithmic transformation [85]. Figure 8.10 shows an example. The
histogram in (a) shows the density of a sample of 50 expression levels of the Homo
sapiens ubiquitin gene in the U95Av2 Affymetrix microarray. The distribution has
an exponential decay, with a long right tail. The histogram in (b) displays the
distribution of the log-transformed data and shows the phenomenon that log-
transforming the original data removes the right tail but introduces a long left
tail. This phenomenon is typically observed when log-transforming data that fol-
low a Gamma distribution, with consequent bias induced to estimate the mean
[86, Chapter 8]. We recently introduced a new class of Bayesian networks called
generalized Gamma networks (GGN) able to describe possibly nonlinear depen-
dencies between variables with nonnormal distributions [56]. Compared to other
Bayesian network formalisms that have been proposed for representing gene-gene
interactions [11], GGNs do not require to discretize gene expression data, or to
enforce normality or log-normality assumptions.

In a GGN the conditional distribution of each variable Yi given the parents
Pa(yi) = {Yi1, . . . ,Yip(i)} follows a Gamma distribution Yi|pa(yi), θi ∼
Gamma(αi,µi(pa(yi),βi)), where µi(pa(yi),βi) is the conditional mean of Yi and
µi(pa(yi),βi)2/αi is the conditional variance. We use the standard parameterization
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Table 8.2. Link functions and parameterizations of the linear predictor.

Link g(·) Linear predictor η

Identity µ = η ηi = βi0 +
∑

j βi j yi j
Inverse µ = η−1 ηi = βi0 +

∑
j βi j y

−1
i j

Log µ = eη ηi = βi0 +
∑

j βi j log(yi j)

of generalized linear models [86], in which the mean µi(pa(yi),βi) is not restricted
to be a linear function of the parameters βi j , but the linearity in the parameters is
enforced in the linear predictor ηi, which is itself related to the mean function by
the link function µi = g(ηi). Therefore, we model the conditional density function
as

p
(
yi|pa

(
yi
)
, θi
) = ααii

Γ
(
αi
)
µαii

yαi−1
i e−αi yi/µi , yi ≥ 0, (8.38)

where µi = g(ηi) and the linear predictor ηi is parameterized as

ηi = βi0 +
∑
j

βi j f j
(

pa(yi)
)

(8.39)

and f j(pa(yi)) are possibly nonlinear functions. The linear predictor ηi is a func-
tion linear in the parameters β, but it is not restricted to be a linear function of
the parent values, so that the generality of Gamma networks is in the ability to en-
code general nonlinear stochastic dependency between the node variables. Table
8.2 shows example of nonlinear mean functions. Figure 8.11 shows some exam-
ples of Gamma density functions, for different shape parameters α = 1, 1.5, 5 and
mean µ = 400. Note that approximately symmetrical distributions are obtained
for particular values of the shape parameter α.

Unfortunately, there is no closed form solution to learn the parameters of a
GGN and we have therefore to resort to Markov chain Monte Carlo methods to
compute stochastic estimates [20], or to maximum likelihood to compute numer-
ical approximation of the posterior modes [87]. A well-known property of gener-
alized linear models is that the parameters βi j can be estimated independently of
αi, which is then estimated conditionally on βi j [86].

To compute the maximum likelihood estimates of the parameters βi j within
each family (Yi, Pa(yi)), we need to solve the system of equations ∂ log p(D|θi)/
∂βi j = 0. The Fisher scoring method is the most efficient algorithm to find the
solution of the system of equations. This iterative procedure is a generalization
of the Newton-Raphson procedure in which the Hessian matrix is replaced by its
expected value. This modification speeds up the convergence rate of the iterative
procedure that is known for being usually very efficient—it usually converges in 5
steps for appropriate initial values. Details can be found for example in [86].

Once the ML estimates of βi j are known, say β̂i, we compute the fitted means

µ̂ik = g(β̂i0 +
∑

j β̂i j f j(pa(yi))) and use these quantities to estimate the shape
parameter αi. Estimation of the shape parameter in Gamma distributions is an

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


Paola Sebastiani et al. 307

α = 1
α = 1.5
α = 5

0 500 1000 1500 2000

x

0

0.005

0.0010

0.0015

0.0020

0.0025

Figure 8.11. Example of Gamma density functions for shape parameters α = 1 (continuous line),
α = 1.5 (dashed line), and α = 5 (dotted line), and mean µ = 400. For fixed mean, the parameter α
determines the shape of the distribution that is skewed to the left for small α and approaches symmetry
as α increases.

open issue, and authors have suggested several estimators (see, e.g., [86]). Popular
choices are the deviance-based estimator that is defined as

α̃i = n− q∑
k

(
yik − µ̂ik

)2
/µ̂2

ik

, (8.40)

where q is the number of parameters βi j that appear in the linear predictor. The
maximum likelihood estimate α̂i of the shape parameter αi would need the solu-
tion of the equation

n + n log
(
αi
)

+ n
Γ
(
αi
)′

Γ
(
αi
) +−

∑
k

log
(
µ̂ik
)

+
∑
k

log
(
yik
)−∑

i

yik
µ̂ik

= 0 (8.41)

with respect to αi. We have an approximate closed form solution to this equation
based on a Taylor expansion that is discussed in [68].

Also the model selection process requires the use of approximation methods.
In this case, we use the Bayesian information criterion (BIC) [87] to approximate
the marginal likelihood by 2 log p(D|θ̂)−np log(n), where θ̂ is the maximum like-
lihood estimate of θ and np is the overall number of parameters in the network.
BIC is independent of the prior specification on the model space and trades off

goodness of fit—measured by the term 2 log p(D|θ̂)—and model complexity—
measured by the term np log(n). We note that BIC factorizes into a product of
terms for each variable Yi and makes it possible to conduct local structural learn-
ing.
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Table 8.3. The nine genes used in the GGN and their known functions.

Affy-entry Gene name Gene function

41706 At alpha-methylacyl-CoA racemase Cellular component

37639 At Hepsin Cell growth

37605 At COL2A1 Collagen

41468 At TCRγ Cellular defense

914 G At ERG Transcription regulation

40282 S At Adipsin Role in immune system biology

1831 At TGFβ Transforming grown factor

38291 At Human enkephalin gene Signal transduction

32598 A Nel-like 2 Cell growth regulation and differentiation

While the general type of dependencies in Gamma networks makes it pos-
sible to model a variety of dependencies within the variables, exact probabilistic
reasoning with the network becomes impossible and we need to resort to Gibbs
sampling (see Section 8.2). Our simulation approach uses the adaptative rejection
metropolis sampling (ARMS) of [88] when the conditional density p(yi|Y\yi, θ̂)
is log-concave, and adaptive rejection with metropolis sampling in the other cases.
See [56] for more details.

8.4.2.2. An example

We use a subset of nine of the gene expression data measured from the 102 prosta-
tectomy specimens to show the representation advantages of GGNs. The nine
genes are listed in Table 8.3. We modeled the dependency structure among the nine
genes in the normal and tumor specimens, with an initial order that was chosen
by using information about their roles in pathways, when known, and by ranking
the remaining genes on the basis of the evidence for differential expression. For ex-
ample, the gene 914 G AT (ERG) has a transcription regulation function that has
been observed in several tumors, so we left this gene high in the order and tested
it as a parent of all the other nodes. Figure 8.12 depicts the dependency structures
in the two groups. In both cases, we limited the search to dependency models in
which the link function was either the identity µ = η or the inverse link µ = 1/η.
The two network structures were validated by examining the blanket residuals to
assess the goodness of fit for each local dependency structure. In both networks we
tested whether the standardized blanket residuals had means significantly differ-
ent from 0 using standard t-tests, and we checked for departures from normality.
These tests confirmed the validity of the network structures induced from data,
and the correctness of the distributional assumptions.

Evidence of the biological meaning of the dependency structures encoded by
the two GGNs gives further support that this technology can help to model com-
plex gene-gene interactions in biological systems. For example, in the network
learned from the normal specimens, the gene COL2A1 (37605 AT: a collagene)
is independent of all other genes, whereas in the network learned from the tumor
specimens, this gene is a child of ERG (914 AT: an oncogene with transcription
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1831 AT 38291 AT

41468 AT 40282 AT 32598 AT

41706 AT 37639 AT 914 G AT 37605 AT

(a)

1831 AT 38291 AT

41468 AT 40282 AT 32598 AT

41706 AT 37639 AT 914 G AT 37605 AT

(b)

Figure 8.12. Gamma networks induced from (a) the 50 normal specimens and (b) the 52 tumor spec-
imens (right).

regulation functions). Independent studies have associated changes of expression
in TGFβ (1831 AT: a gene with role in signalling pathways), with changes of ex-
pression in COL2A1, and our models suggest a possible mechanism in which this
occurs. In the network induced from tumor specimens, TGFβ is directly influ-
encing AMACR (41706 AT: a gene known as a marker of tumor differentiation).
In both networks, the dependency structure of Adipsin (40282 S AT: a gene sup-
posed to have a role in immune system biology) is essentially the same, besides
the fact that Epsin (37639 AT: a gene with putative function in cell growth) is
independent of Adipsin given TCRγ (41468 AT: a gene with role in cell defense)
in the network learned from normal specimens. However, even for those genes
with the same dependency structure, the probability distributions that quantify
these dependencies suggest different gene-gene interactions. Figure 8.13 shows
the smooth, nonlinear dependency between Adipsin and Nel-like 2 (32598 A)
in the two GGNs induced from (a) the 50 normal specimens and (b) the 52 tu-
mor specimens. The two nonlinear dependencies show that changes of expres-
sion of Adipsin in the network learned from tumor specimens have a much re-
duced effect on changes of expression of Nel-like 2. As mentioned earlier, one
theory is that cancer arises from the accumulation of genetic changes that in-
duce unlimited, self-sufficient growth and resistance to normal regulatory mecha-
nisms. Our different dependency structures suggest that, in the cancer specimens,
the gene Adipsin has a weaker control on the gene Nel-like 2 that regulates cell
growth and differentiation. The reasonable biological explanation also points out
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Figure 8.13. Scatter plot of the dependency between 40282 S AT and 32598 A in the two GGNs in-
duced from (a) the 50 normal specimens and (b) the 52 tumor specimens. The lines are the dependency
fitted by the GGNs. Both plots are in log-scales.

an important feature of GGNs: by modeling gene-gene interaction via nonlinear
dependency, GGNs can easily describe the biological effect of gene expression sat-
uration, in which gene expression control changes according to changes of expres-
sion levels.

Alternative dependency structures can suggest new hypothetical pathways as
well as experiments to test putative functions of genes. For example, the propa-
gation of particular expression levels for some genes can identify their impact on
the expression level of other genes and provide a platform for in silico experiments
based on the learned network.

8.4.3. Bayesian networks and temporal dependency

One of the limitations of Bayesian networks is the inability to represent forward
loops: by definition, the directed graph that encodes the marginal and conditional
independencies between the network variables cannot have cycles. This limitation
makes traditional Bayesian networks unsuitable for the representation of many bi-
ological systems in which feedback controls are a critical aspect of gene regulation.
Dynamic Bayesian networks provide a general framework to integrate multivari-
ate time series of gene products and to represent feed-forward loops and feedback
mechanisms [11] that are alternative to other network models of gene regulation
[89].

A dynamic Bayesian network is defined by a directed acyclic graph in which
nodes continue to represent stochastic variables and arrows represent temporal
dependencies that are quantified by probability distributions. The crucial assump-
tion is that the probability distributions of the temporal dependencies are time
invariant, so that the directed acyclic graph of a dynamic Bayesian network repre-
sents only the necessary and sufficient time transitions to reconstruct the overall
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Figure 8.14. A directed acyclic graph that represents the temporal dependency of three categorical
variables describing up (+) and down (−) regulations of three genes.

temporal process. Figure 8.14 shows the directed acyclic graph of a dynamic
Bayesian network with three variables. The subscript of each node denotes the
time lag, so that the arrows from the nodes Y2(t−1) and Y1(t−1) to the node Y1(t)

describe the dependency of the probability distribution of the variable Y1 at time t
on the value of Y1 and Y2 at time t − 1. Similarly, the directed acyclic graph shows
that the probability distribution of the variable Y2 at time t is a function of the
value of Y1 and Y2 at time t − 1. This symmetrical dependency allows us to repre-
sent feedback loops and we used it to describe the regulatory control of glucose in
diabetic patients [90]. A dynamic Bayesian network is not restricted to represent
temporal dependency of order 1. For example the probability distribution of the
variable Y3 at time t depends on the value of the variable at time t−1 as well as the
value of the variable Y2 at time t − 2. The conditional probability table in Figure
8.14 shows an example when the variables Y2, Y3 are categorical.

By using the local Markov property, the joint probability distribution of the
three variables at time t, given the past history y1(t−1), . . . , y1(t−l), y2(t−1), . . . , y2(t−l),
y3(t−1), . . . , y3(t−l) is given by the product of the three factors:

p
(
y1(t)|y1(t−1), . . . , y1(t−l), y2(t−1), . . . , y2(t−l), y3(t−1), . . . , y3(t−l)

)
= p

(
y1(t)|y1(t−1), y2(t−1)

)
,

p
(
y2(t)|y1(t−1), . . . , y1(t−l), y2(t−1), . . . , y2(t−l), y3(t−1), . . . , y3(t−l)

)
= p

(
y2(t)|y1(t−1), y2(t−1)

)
,

p
(
y3(t)|y1(t−1), . . . , y1(t−l), y2(t−1), . . . , y2(t−l), y3(t−1), . . . , y3(t−l)

)
= p

(
y3(t)|y3(t−1), y2(t−2)

)

(8.42)

that represents the probability of transition over time. By assuming that these
probability distributions are time invariant, they are sufficient to compute the
probability that a process that starts from known values y1(1), y2(1), y3(0), y3(1)

evolves into y1(T), y2(T), y3(T) by using one of the algorithms for probabilistic rea-
soning described in Section 8.2. The same algorithms can be used to compute the
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Figure 8.15. Modular learning of the dynamic Bayesian network in Figure 8.14. First a regressive model
is learned for each of the three variables at time t, and then the three models are joined by their common
ancestors Y1(t−1) and Y2(t−2) to produce the directed acyclic graph in Figure 8.14.

probability that a process with values y1(T), y2(T), y3(T) at time T started from the
initial states y1(1), y2(1), y3(0), y3(1).

Learning dynamic Bayesian networks when all the variables are observable is a
straightforward parallel application of the structural learning described in Section
8.2.2. To build the network, we proceed by selecting the set of parents for each
variable Yi at time t, and then the models are joined by the common ancestors. An
example is in Figure 8.15. The search of each local dependency structure is simpli-
fied by the natural ordering imposed on the variables by the temporal frame [91]
that constrains the model space of each variable Yi at time t: the set of candidate
parents consists of the variables Yi(t−1), . . . ,Yi(t−p) as well as the variables Yh(t− j)

for all h �= i and j = 1, . . . , p. The K2 algorithm [43] discussed in Section 8.2.2
appears to be particularly suitable for exploring the space of dependency for each
variable Yi(t). The only critical issue is that the selection of the largest temporal
order to explore depends on the sample size, because each temporal lag of order p
leads to the loss of the first p temporal observations in the data set [55].

Dynamic Bayesian networks are an alternative approach to represent gene reg-
ulatory mechanisms by approximating rates of change described by a system of dif-
ferential equations with autoregressive models. When the gene products are mea-
sured at regularly spaced time points, there is a simple way to approximate the rate
of change dyi(t)/dt = f (ygt) by a first order linear approximation. This approach
has been used to model the rate of change by linear Gaussian networks [92]. How-
ever, the development of similar approximations for nonregularly spaced time
points and for general, nonlinear, kinetic equations with feedback loops [93] is
an open issue. The further advantage of dynamic Bayesian network is to offer an
environment for causal inference with well-designed temporal experiments.

8.5. Research directions

This chapter has discussed the potential usefulness of Bayesian networks to analyze
genomic data. However, there are some limitations of the current representation
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and learning approaches that need further investigation. A main assumption un-
derlying all learning algorithms is that the data are complete, so there are no miss-
ing entries and both gene expression data measured with cDNA microarrays and
genotype data have missing values. Furthermore, often some of the variables in
the data set are continuous and some are discrete and to use standard algorithms
for learning a Bayesian network from data, the continuous variables are usually
discretized with potential loss of information.

Mixed variable networks. The process of learning Bayesian networks requires two
components: a search procedure to scan through a set of possible models and a
scoring metric, such as BIC or the marginal likelihood, to select one of the mod-
els. We have shown in Section 8.2.2 that when the variables in the network are all
continuous, a closed-form solution for the calculation of the marginal likelihood
exists under the assumption that each variable is normally distributed around a
mean, which linearly depends on its parent variables [36, 94]. The drawback is that
they are heavily limited in their representation power, as they can only capture lin-
ear dependencies among continuous variables. To increase their scope, Gaussian
linear networks have been extended into a mixture of Gaussian networks, which
model a conditional distribution as a weighted mixture of linear Gaussian distri-
butions and can, in principle, represent a wider variety of interactions. Unfortu-
nately, no closed-form solution exists to compute the marginal likelihood of these
distributions, and we have to resort to computationally demanding approximation
methods [95]. The normality assumption on the variables can be relaxed to the
more general case that the variables have distributions in the exponential family,
and we have introduced the family of GGNs to describe dependency structures of
nonnormal variables with possibly nonlinear dependencies. The crucial assump-
tion in GGNs is that all variables in the network have probability distributions
in the same family. An important and yet unsolved issue is the learning of mixed
networks, in which some variables are continuous and some are discrete. Impos-
ing the assumption that discrete variables can only be parent nodes in the network
but cannot be children of any continuous Gaussian node leads to a closed form so-
lution for the computation of the marginal likelihood [96]. This property has been
applied, for example, to model-based clustering in [97], and it is commonly used
in classification problems [98]. However, this restriction can quickly become un-
realistic and greatly limits the set of models to explore. As a consequence, common
practice is still to discretize continuous variables with possible loss of information,
particularly when the continuous variables are highly skewed.

Missing data. The received view of the effect of missing data on statistical infer-
ence is based on the approach described by Rubin in [99]. This approach classifies
the missing data mechanism as ignorable or not, according to whether the data are
missing completely at random (MCAR), missing at random (MAR), or informa-
tively missing (IM). According to this approach, data are MCAR if the probability
that an entry is missing is independent of both observed and unobserved values.
They are MAR if this probability is at most a function of the observed values in the
database and, in all other cases, data are IM. The received view is that, when data
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Figure 8.16. An example of partially ignorable missing data mechanism. (a) The variable Y4 in the
Bayesian network is only partially observed, while the parents Y1, Y2, Y3 are fully observed. (b) The
variable R encodes whether Y is observed (R = 1) or not (R = 0). Because the variable R is a child of
Y1, which is fully observed, data are MAR. (c) Removing the variable Y1 from the dependency model
for Y4 induces a link between Y and R so that the missing data mechanism becomes informative.

are either MCAR or MAR, the missing data mechanism is ignorable for parameter
estimation, but it is not when data are IM.

An important but overlooked issue is whether the missing data mechanism
generating data that are MAR is ignorable for model selection [100, 101]. We have
shown that this is not the case for the class of graphical models exemplified in
Figure 8.16 [101]. We assume that there is only one variable with missing data
(the variable Y4 in the DAG) and that its possible parents are all fully observed. To
model the missing data mechanism, we introduce the dummy variable R that takes
on one of the two values: R = 1 whenY4 is observed, and R = 0 whenY4 is missing.
The missing data mechanism can be described by the graphical structure relating
R, Y4 and Y1, Y2, Y3: when R is not linked to any of the variables, data are MCAR;
when R is linked to any subset of Y1, Y2, Y3 but not Y4, data are MAR; when R
is linked to Y4, data are IM. If the graphical structure is known, the missing data
mechanism is ignorable for parameter estimation in the first two cases. However,
when the task is to learn the graphical structure from data, only a mechanism
generating data that are MCAR is ignorable. This fact is shown in Figure 8.16c:
when we assess the dependency of Y4 on Y2, Y3 but not Y1, the variable R is linked
to Y4 so that the missing data mechanism is informative for this model structure.
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We defined this mechanism only partially ignorable for model selection and
we showed how to discriminate between ignorable and partially ignorable missing
data mechanisms [101]. We also introduced two approaches to model selection
with partially ignorable missing data mechanisms: ignorable imputation and model
folding. Contrary to standard imputation schemes [102, 103, 104, 105], ignorable
imputation accounts for the missing-data mechanism and produces, asymptot-
ically, a proper imputation model as defined by Rubin [99, 106]. However, the
computation effort can be very demanding and model folding is a deterministic
method to approximate the exact marginal likelihood that reaches high accuracy
at a low computational cost, because the complexity of the model search is not af-
fected by the presence of incomplete cases. Both ignorable imputation and model
folding reconstruct a completion of the incomplete data by taking into account
the variables responsible for the missing data. This property is in agreement with
the suggestion put forward in [103, 107, 108] that the variables responsible for the
missing data should be kept in the model. However, our approach allows us to also
evaluate the likelihoods of models that do not depend explicitly on these variables.

Although this work provides the analytical foundations for a proper treatment
of missing data when the inference task is model selection, it is limited to the very
special situation in which only one variable is partially observed, data are supposed
to be only MCAR or MAR, and the set of Bayesian networks is limited to those in
which the partially observed variable is a child of the other variables. Research is
needed to extend these results to the more general graphical structures, in which
several variables can be partially observed and data can be MCAR, MAR, or IM.
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9
Statistical inference of transcriptional
regulatory networks

Xiaodong Wang, Dimitris Anastassiou, and Dong Guo

We give a general overview of modeling of gene regulatory networks and discuss
various statistical inference problems related to these models. First various gene
function modeling techniques are described, including qualitative models such
as directed and undirected graphs, Boolean networks, and logic networks, and
quantitative models, including differential equations, linear and nonlinear func-
tion models, and radial basis functions. Then parameter estimation methods are
discussed for known network structures, including equation-based methods and
Bayesian methods. Finally, Bayesian techniques for inferring network structures
are discussed.

9.1. Introduction

A central theme of molecular biology is to understand the regulatory mechanism
that governs gene expressions in cells. The gene expression is controlled at differ-
ent levels by many mechanisms, among which a key mechanism is mRNA tran-
scription regulated by various proteins, known as transcription factors, which are
bound to specific sites in the promoter region of a gene that activate or inhibit
transcription. Using advanced molecular biology techniques, it has become pos-
sible to measure the gene expression levels (mRNA levels) of most genes in an
organism simultaneously, hence making it possible to understand gene regulation
and interactions.

In general, inference of a gene regulatory network is composed of three prin-
cipal components: function modeling of the effect of a group of genes on a specific
target gene, parameter estimation for function modeling of a specific network,
and topology inference of regulatory network. As most genetic regulatory systems
of interest involve many genes connected through interlocking positive and neg-
ative feedback loops, function modelings of interactions are important to unam-
biguously describe the structure of regulatory systems while predictions of their
behavior can be made in a systematic way. Formal methods for the function mod-
eling can be roughly categorized into qualitative models (such as graph models
[1], Boolean function models [2, 3], and extended logical function models [4, 5]),
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and quantitative models (such as the differential equations [6, 7], linear models
[8, 9], nonlinear models [10, 11, 12], and radial basis function models [13]).

Typically, a specific network with a specific function model involves many pa-
rameters of biological interest and importance. In many cases these parameters
are tuned in an ad hoc manner in an attempt to match experimental data [12].
Recent developments in simulation-based Bayesian inference techniques in prin-
ciple allow direct inference of these parameters for any specified model from the
data [14, 15]. For example, the Markov chain Monte Carlo (MCMC) method has
been applied to obtain model parameters that are consistent with experimental
data [13, 16].

Furthermore, revealing the structure of transcriptional regulation processes is
a hard problem because of noisy data and incomplete information of regulation
carried by data. Most analysis tools currently employed are based on clustering al-
gorithms, which attempt to locate groups of genes that have similar expression pat-
terns over a set of experiments. Unfortunately, such analysis is only useful in dis-
covering genes that are coregulated. Recent effort on model system development
has focused on Bayesian networks and Boolean networks, originally introduced in
[14, 17], respectively. There are a number of works applying Boolean networks to
genomic analysis, such as [2, 3, 17]. On the other hand, Bayesian learning tech-
niques provide useful tools for inferring network structure based on experimental
data while incorporating existing biological knowledge about gene interactions
[14, 15].

This chapter gives a general overview of modeling of gene regulatory networks
and discusses various statistical inference problems related to these models. Several
review articles on modeling and simulation of gene regulatory systems exist in
literature [18, 19, 20, 21]. This chapter differs from these articles in that it focuses
on mathematical modeling issues of network structure, rather than on biological
issues.

The remainder of this chapter is organized as follows. In Section 9.2 we review
some existing gene function models. In Section 9.3, we discuss parameter estima-
tion methods for various models. We then present network topology inference
techniques in Section 9.4. Section 9.5 contains the conclusions.

9.2. Gene function modeling

9.2.1. Qualitative models

9.2.1.1. Directed and undirected graphs

A simple way to model a genetic regulation is to view it as a directed graph [1].
The interaction between a gene, say i, and a group of regulating genes J can be
defined as 〈i, J , S〉, where S is a corresponding list of signs s indicating their regula-
tory influence, either activation (s = “+”) or inhibition (s = “−”). Many databases
contain such information about regulatory interactions. GeneNet [1], for exam-
ple, contains descriptions of genes with their regulatory features, proteins and
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protein complexes, regulatory interactions, and other chemical reactions for dif-
ferent types of cells. The databases and knowledge bases are usually supplemented
by application to compose and edit networks by selecting and manipulating indi-
vidual interactions. A number of operations on graphs can be carried out to make
biological predictions about regulatory system.

9.2.1.2. Boolean networks

In Boolean networks [2, 3], each gene is described by a Boolean variable expressing
that it is active or inactive and the dynamics describe how groups of genes act to
change one another’s states over time. Specifically, the state of a gene, say i, at time
instant t + ∆t is determined by means of a Boolean function from the state of a
group of genes, say k, at the previous time instant t. That is, xi(t + ∆t) = bi(xi(t)),
where bi is a Boolean function with k inputs and xi denotes the states of the k
genes that regulate gene i. Such models are easy to implement, simplifying the
examination of large sets of genes. A disadvantage of such a Boolean approach
is that the abstraction of gene states to on/off makes it difficult to include many
biological details of cellular mechanisms.

9.2.1.3. Generalized logical networks

We can also model the state of a gene by more than two values and allow transitions
between states to occur asynchronously, then the Boolean network is generalized
to a general discrete network [4, 5]. More precisely, the discrete variable Xi for gene
i is an indication of the real concentration level. The value of Xi is defined by com-
paring the real concentration level of gene i with some thresholds. For example,
gene i may have p possible values xi = m, m ∈ {1, . . . , p} if it influences p other

elements of the regulatory system and its value m is defined as δ(m)
i < xi ≤ δ(m+1)

i ,

where δ(m)
i and δ(m+1)

i are the threshold values. As a result, the logical function is
a generalization of Boolean function since the logical values can now have more
than two possible values. The choice of the logical function is made by biological
considerations or a guess reflecting uncertainty about the structure of the system
being studied.

9.2.2. Quantitative models

9.2.2.1. Differential equations

Ordinary differential equations have been widely used to analyze genetic relations
between the concentration variables [6, 7]. More precisely, gene regulation is mod-
eled by rate equations expressing the rate of production of a component of the
system as a function of the concentrations of other components. Rate equations
have the mathematical form

dxi
dt

= g(x)− γxi, (9.1)
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where xi denotes the cellular concentration of gene i and x is the vector of con-
centrations of proteins, mRNA, or small molecules; g(·) is a linear or nonlinear
function and γ > 0 is the degradation rate of xi. On the other hand, regulation of
degradation could be modelled by replacing γ with a function similar to g. Dis-
crete time delays, τi,1, . . . , τi,n > 0, arising from the time required to complete tran-
scription, translation, and diffusion to the place of action of a protein, can also be
included in (9.1) to obtain

dxi
dt

= g
(
x1
(
t − τi,1

)
, . . . , xn

(
t − τi,n

))− γxi, 1 ≤ i ≤ n. (9.2)

Such rate equations have been developed in the past century, in particular in the
context of metabolic processes. Using these methods, kinetic models of genetic
regulation processes can be constructed by specifying the function g.

A regular function often found in the literature is the so-called Hill curve
given by

g+(xj , θj ,m) = xmj
xmj + θmj

, (9.3)

where θj is the threshold for the regulatory influence of xj on a target gene, and
m > 0 is a steepness parameter. The function takes values from 0 to 1 and increases
with xj , so that an increase in xj will tend to increase the expression rate of the
gene. In order to express that an increase in xj decreases the expression rate, the
regulation function can be replaced by g−(xj , θj ,m) = 1− g+(xj , θj ,m).

Due to the nonlinearity of g in (9.3), analytical solution of the rate equation
is normally not possible. Therefore, a piecewise-linear differential equation model
is often considered. In its most general form, the function g are replaced by

gi(x) =
∑
l∈L

κi,l
∏
j=1

s+(xl( j), θl( j))bi,l( j)[1− s+(xl( j), θl( j))]1−bi,l( j) , (9.4)

where κi,l > 0 is a rate parameter; L is the possible sets of indices; l( j) is the jth
element in lth set of L; bi,l( j) takes values from {0, 1}; and s+ is step function given
by

s+(xj , θj) =

1, xj > θj ,

0, xj < θj .
(9.5)

9.2.2.2. Linear function models

In linear models [8, 9], the regulatory interactions take the form of linear func-
tions. Let xi(t) denote the expression level of gene i at time t. Then the expression
level of gene i at time t + ∆t is modelled by a basic linear model

xi(t + ∆t) =
∑
j

wi, jx j(t) +
∑
k

vi,kµk(t) + bi, (9.6)
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where wi, j and vi,k indicate how much the level of gene j and the kth input µk(t)
influence gene i; and bi is the basal expression level of gene i. That is, the influence
of all genes are summarized in a linear gene-to-gene relationship. These weights
provide information about the relationships between genes, that is, zero weights
indicate the absence of interaction and a positive or negative weight corresponds
to stimulation or repression. The absolute value of a weight corresponds to the
strength of the interaction. Of course, a linear model can never be much more
than a caricature of the real system. Nevertheless, the linear model often performs
surprisingly well compared with other complex models.

9.2.2.3. Nonlinear function models

The nonlinear function models directly characterize effects that result from the
combination of the gene expression levels [10, 11, 12]. The influence of all genes
are also summarized in the linear gene-to-gene relationship whereas these weights
provide information about the relationships between genes. The absolute value
of a weight corresponds to the strength of the interaction. Then the influence of
groups of genes on one gene can be represented by the following generalized dif-
ferential equation

dxi(t)
dt

= rig

(∑
j

wi, jx j(t) +
∑
k

vi,kµk(t) + bi

)
− λixi(t), (9.7)

or difference equation of the similar form

xi(t + ∆t) = rig

(∑
j

wi, jx j(t) +
∑
k

vi,kµk(t) + bi

)
− λixi(t), (9.8)

where xi(t) is gene expression of gene i at time instant t; wi, j and vi,k indicate how
much the level of gene j and the kth input µk(t) influence gene i; bi is the basal
expression level of gene i; and λi is the degradation constant of the ith gene expres-
sion product; g is the monotonic regulation expression function, and often takes
the form of

g(x) = 1
1 + exp

(− αix − βi
) , (9.9)

where αi and βi are two specific constants that define the shape of the dose-
response curve of gene i. This assumes that each gene has a static dose-dependent
response activating and repressing regulatory influences. The constant αi can be
any positive real number and defines the slope of the curve at its inflection point.
Whereas the constant βi defines the curve’s vertical intercept, where the positive
and negative regulatory inputs are equal. This point corresponds conceptually to
the gene basal transcription. Positive βi represents genes with high basal levels of
transcription where negative βi represents genes with low basal levels of transcrip-
tion. Note that if g(x) = x, then the nonlinear model is simplified to a linear
model.
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9.2.2.4. Radial basis function

The radial basis function can be employed to characterize any multiple-input-
single-output relationships between genes [13]:

xi(t + ∆t) =
∑
j

a jφ
(∥∥x(t)− µ j

∥∥) + b + βTx(t), (9.10)

where x(t) = [x1(t), . . . , xn(t)]T ; φ is a radial basis function (RBF); ‖ · ‖ denotes a
distance metric (usually Euclidean or Mahalanobis); µ j denotes the jth RBF cen-
ter; aj is the jth RBF coefficient; b is the basal level; and β is the linear regression
parameter vector. Depending on the a priori knowledge about the smoothness of
mapping, we can choose different types of basis functions, for example, the Gauss-
ian basis function φ(ρ) = exp(−ρ2). Since the RBF can approximate any function,
it can be used to characterize gene function modeling without much prior biolog-
ical knowledge. This is especially true for the function modeling between clustered
genes.

9.3. Parameter estimation with known network structure

One goal of regulation network modeling is to predict the genetic pathways that
underlie observed gene expression data. Given a certain function model for gene
interactions, the first step is to estimate the parameters within the model, based
on experimental data. In this case, we assume that the parameter values are con-
stant across time. Then given only input/output data sets, we want to identify pa-
rameter values that define the regulatory network. The hope is that if our mod-
eling scheme is a reasonable approximation of the true regulatory network, we
may use it to predict genetic pathways from experimentally derived expression
data.

9.3.1. Equation-based methods

Equation-based algorithms relate the expression of each gene to the expression
level of all other genes in the form of equations [7, 12]. These equations can be
linear, nonlinear, and/or differential equations. Putative regulators are identified
by solving the set of equations for the parameters which relate each gene to the
other genes. These parameters represent the regulatory influence of each gene on
the others. Specifically, the algorithms employed to infer model parameters from
measured mRNA levels often require solving a least-square system of linear equa-
tions, or implementing a nonlinear optimization procedure for nonlinear model-
ing.

Here, we consider a special case (without degradation, i.e., λi = 0) of non-
linear model (9.7) or (9.8) to show how to perform linear regression to estimate
parameters based on the experimental data. For simplicity, we also omit the input
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influence, that is,

xi(t + ∆t) = rig

(∑
j

wi, jx j(t)

)
, (9.11)

where g(·) takes the form of (9.9). We can rewrite the above formulation as

si(t + ∆t) =
∑
j

Wi, jx j(t) + βi, (9.12)

xi(t + ∆t) = 1
1 + exp

(− si(t + ∆t)
) , (9.13)

where Wi, j = αiwi, j with αi and βi defined in (9.9). After “desquashing” the relative
expression by si(t) = − ln(1/xi(t)− 1), we rewrite the model (9.12) in vector form
as




si(∆t)

si(2∆t)
...

si(T∆t)




︸ ︷︷ ︸
b

=




x1(0) x2(0) · · · xJ(0) 1

x1(∆t) x2(∆t) · · · xJ(∆t) 1
...

...
...

...
...

x1(T∆t − ∆t) x2(T∆t − ∆t) · · · xJ(T∆t − ∆t) 1




︸ ︷︷ ︸
M




Wi,1

Wi,2

...

Wi,J

βi




︸ ︷︷ ︸
a

.

(9.14)

Therefore, given the measurement data, we can then construct the matrix M and
the vector b corresponding to the desquashing relative expression level of the gene
of interest, and estimate the unknown vector a corresponding to the gene of in-
terest. If the linear system equation is overdetermined, that is, there are more ob-
servations than the number of genes, then we can use the least-square solution for
a. However, if there are a fewer observations than the number of genes, the esti-
mation problem is “underdetermined” and there are many equally good solutions
to a. We resort to some prior knowledge about the network, to choose an optimal
solution.

On the other hand, if we need to consider the degradation, that is, λi �= 0, in
the nonlinear model (9.7) or (9.8), more complex optimization algorithms, such
as the simulated annealing algorithm [22] or the genetic algorithm [23] can be
employed to obtained the parameters for the nonlinear model. The basic idea of
these algorithms is as follows. We first need to define a suitable objective function,
for example, the fitness error [22, 23]

f = 1

1 +
(
1/(T − 1)

)∑
t

(
xi(t)− xdi (t)

)2 , (9.15)

where xi(t) and xdi (t) indicate the observed expression level for gene i at time t
and the corresponding expression level obtained from the model (9.7) or (9.8)
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with given parameters. Then the values of these model parameters are tuned using
either the simulated annealing algorithm or the generic algorithm to attain the
global extremum of the goal function.

The essential problem with using the equation-based methods is that the
number of connection and strength parameters grows quadratically in the number
of genes. Some form of dimensionality reduction is needed. Fortunately dimen-
sionality reduction is available in the present practice of clustering the large-scale
time course expression data by genes, into gene clusters [9, 24, 25]. In this way one
can derive a small number of cluster-mean time courses for the “aggregated genes.”
Then the equation-based methods can be employed on the aggregated genes to
characterize the regulatory network.

9.3.2. Bayesian methods

One of the most commonly used Bayesian inference algorithms is the junction tree
algorithm [26] which infers Bayesian networks with discrete and continuous vari-
ables, and provides efficient techniques for handling networks with many observed
nodes. However, exact inference in densely connected Bayesian networks is often
computationally intractable, so we must resort to approximates [27]. We illustrate
the Bayesian method, for example, by a gene selection method for the multiclass
cancer classification using multinomial probit regression model [13].

Assume there are K classes of cancers. Let w = [w1, . . . ,wm]T denote the class
labels, where wi = k indicates the sample i being cancer k, where k = 1, . . . ,K .
Assume there are n genes. Let xi j be the measurement of the expression level of
the jth gene for the ith sample where j = 1, 2, . . . ,n. Let X = (xi j)m,n denote the
expression levels of all genes, that is,

X =




gene 1 gene 2 · · · gene n
x11 x12 · · · x1n

x11 x12 · · · x1n

...
...

. . .
...

xm1 xm2 · · · xmn



. (9.16)

Let Xi denote the ith row of matrix X. In the binomial probit regression, that
is, K = 2, the relationship between wi and the gene expression levels Xi is modeled
by using a probit regression model [28], a special linear model (9.6), which yields

P
(
wi = 1 | Xi

) = Φ
(

Xiβ
)
, i = 1, . . . ,m, (9.17)

where β = (β1,β2, . . . ,βn)T is the vector of regression parameters and Φ is the
standard normal cumulative distribution function. Introduce m-independent la-
tent variable z = [z1, . . . , zm]T , where zi ∼ N (Xiβ, 1), that is,

zi = Xiβ + ei, i = 1, . . . ,m, (9.18)
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and ei ∼ N (0, 1). Define γ as the n × 1 indicator vector with the jth element γj
such that γj = 0 if βj = 0 (the variable is not selected) and γj = 1 if βj �= 0
(the variable is selected). The Bayesian variable selection is to estimate γ from the
posterior distribution p(γ | z).

However, when K > 2, the situation is different from the binomial case be-
cause we have to construct K − 1 regression equations similar to (9.18). Intro-
duce K − 1 latent variables y1, . . . , yK−1 and K − 1 regression equations such that
yk = Xβk + ek, k = 1, . . . ,K − 1, where ek ∼ N (0, 1). Let yk take m values
{yk,1, . . . , yk,m} for each equation. In matrix form,

y1,i = Xiβ1 + e1,i,
...

...
...

yK−1,i = XiβK−1 + eK−1,i,

i = 1, . . . ,m. (9.19)

Denote yk � [yk,1, . . . , yk,m]T and ek � [ek,1, . . . , ek,m]T . Then (9.19) can be rewrit-
ten as

yk = Xβk + ek, k = 1, . . . ,K − 1. (9.20)

This model is called multinomial probit model, which is a special form of linear
model. For background on multinomial probit models, see [29]. Note that we do
not have the observations of {yk}K−1

k=1 , which makes it difficult to estimate the pa-
rameters in (9.20).

We consider gene selection scheme to select the different strongest genes for
each equation in (9.20). Given γk, let βγk consist of all nonzero elements of β and
let Xγk be the columns of X corresponding to those of γ that are equal to 1 for
equation k. Then (9.20) is rewritten as

yk = Xγkβγk + ek, k = 1, . . . ,K − 1. (9.21)

Now the problem is how to estimate γk and the corresponding βk and yk for each
equation in (9.21).

A Gibbs sampler [30, 31] is employed to estimate all the parameters. Given
γk for equation k, the prior distribution of βγk is βγk ∼ N (0, c(XT

γk
Xγk )

−1) [32],
where c is a constant. The detailed derivation of the posterior distributions of the
parameters are same as that in [32, 33]. Here we summarize the procedure for
Bayesian variable selection. Denote

S
(
γk, yk

) = yT
k yk − c

c + 1
yT
k Xγk

(
XT
γk

Xγk

)−1
XT
γk

yk, k = 1, . . . ,K − 1. (9.22)

Then the Gibbs sampling algorithm for estimating {γk,βk, yk} is as follows.

(i) Draw γk from p(γk | yk), where

p
(
γk | yk

)∝ (1 + c)−nγk /2 exp
[
− 1

2
S
(
γk, yk

)] n∏
j=1

π
γk, j

j

(
1− πj

)1−γk, j , (9.23)
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where nγk =
∑n

j=1 γk, j and πj = P(γk, j = 1) is the prior probability to
select the jth gene. We sample each γk, j independently from

p
(
γk, j | yk, γk,i�= j

)
∝ (1 + c)−nγk /2 exp

[
− 1

2
S
(
γk, yk

)]
π
γk, j

j

(
1− πj

)1−γk, j , j = 1, . . . ,n.
(9.24)

(ii) Draw βk from

p
(
βk | γk, yk

)∝ N
(

Vγk XT
γk

yk, Vγk

)
, where Vγk =

c

1 + c

(
XT
γk

X−1
γk

)
. (9.25)

(iii) Draw yk = [yk,1, . . . , yk,m], k = 1, . . . ,K from a truncated normal distri-
bution as follows [34].

For i = 1, 2, . . . ,m,
(a) if wi = k, then draw yk,i according to yk,i ∼ N (Xγkβk, 1)

truncated left by max j�=k y j,i, that is,

yk,i ∼ N
(

Xγkβk, 1
)
1{yk,i>max j�=k y j,i}; (9.26)

(b) else wi �= j and j �= k, then draw yj,i according to yj,i ∼
N (Xγjβ j , 1) truncated right by the newly generated yk,i, that
is,

yj,i ∼ N
(

Xγjβ j , 1
)
1{yj,i≤yk,i}. (9.27)

Endfor.

9.4. Inference for network topology

Inference of gene regulatory network structure has appeared in the past few years
as a method to deal with a large amount of gene expression data available from
measurements. Using expression level information from either multiple samples
of a system in different states or a time series of points, these algorithms calculate
which genes appear to be regulators of other genes, that is, which genes increase or
decrease the expression of other genes.

There are two major types of network topology inference algorithms: pairwise
and network-based. The pairwise methods consist of finding pairs of genes whose
expression levels are correlated, and suggesting one to be the putative regulator
of another. Because these methods have no actual model that describes exactly
how genes are activated by external inputs and other genes, no prediction of gene
expression can be made.

Network-based algorithms come in two basic types: Boolean and Bayesian.
Boolean networks assume genes have only two states, on and off and genes are
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connected to each other with logical relationships. Therefore, for Boolean net-
work, it is easy to figure out what logical rule each node is using, for example,
by exhaustively enumerating them and finding the one that fits data. However,
Bayesian networks represent probabilistic connections between genes. A regula-
tory link between two genes indicates that knowing the value of one helps predict
the value of the other. In principle, the methods outlined in Section 9.3 can be
extended to incorporate uncertainty regarding network topology. The full space of
possible topology can be explored using reverse-jump MCMC techniques. More
precisely, these procedures introduce an additional step into the MCMC algorithm
whereby small changes to the network topology are proposed. These changes are
accepted with a carefully constructed probability which ensures that the resulting
equilibrium distribution is the posterior distribution of interest.

9.4.1. Pairwise methods

Pairwise methods construct relationships between genes based solely on pairwise
comparisons [6, 35, 36, 37]. Therefore they do not take into account interactions
where the resulting expression level of one gene is governed by the combined ac-
tion of multiple other genes. Common methodologies include smoothing data,
extracting trends from data, labelling clustered data, categorizing data, and repre-
senting suitably analyzed data in suggestive visual forms [35]. Extensions to this
basic idea include identifying common cis-acting sequence motifs within clusters
[38] and correlating lagged data vectors from time series data [6]. This paradigm
was proven quite successful in identifying a number of striking patterns within
gene expression data. For example, various genes of similar function often cluster
together, especially when the topological clusters are optimally ordered, and vari-
ous genes that have been identified, seem to offer predictive power in categorizing
types of cancers.

For instance, it is proposed in [6] to express regulation based on whether
peaks in one signal precede peaks in another signal. After thresholding and clus-
tering, each prototype is represented as a series of peaks, resulting in a set of
prototype signals. For each pair of prototypes three scores are computed, repre-
senting a possible activating, inhibiting, or unmatching relationship. The regula-
tion matrix is inferred by taking for each pair of genes the highest of these three
scores.

Another well-known method is the correlation metric method, which first
computes the magnitude and position at which the maximal cross-correlation oc-
curs [35]. This provides measures of similarity and temporal ordering, respec-
tively. Then a distance matrix is constructed by comparing for each pair of genes,
their similarities to other genes. The significant eigenvalues of the constructed dis-
tance matrix provides an indication of the intrinsic dimensionality of the system.
Single-linkage hierarchical clustering is employed to find a singly linked tree that
connects associated genes. This tree is augmented with directional and time-lag
information, revealing temporal ordering.
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9.4.2. Bayesian methods

Very recently, a full Bayesian approach to infer the gene regulatory networks from
expression data was developed in [39]. In what follows, we briefly review this tech-
nique.

9.4.2.1. Bayesian score

Consider a finite set of X = {X1,X2, . . . ,Xn} of discrete random variables where
each variable Xi may take on values from a finite set. A Bayesian network is an
annotated directed acyclic graph that encodes a joint probability distribution over
X. More precisely, a Bayesian network for X is a pair B = 〈G, θ〉, where the first
component G is a directed acyclic graph whose vertices correspond to the genes,
X1,X2, . . . ,Xn and the second component θ represents probability distribution for
each node: θi = θui|pa(xi) for each possible value ui of xi conditioned on one in-
stance pa(xi) of the set of parents Pa(Xi). If more than one graph is discussed,
then we use PaG(Xi) to specify Xi’s parents in graph G. A Bayesian network B
specifies a unique joint probability distribution over X given by

p
(
x1, x2, . . . , xn

) = n∏
i=1

p
(
xi | PaG

(
xi
))
. (9.28)

The problem of learning a Bayesian gene regulatory network can be stated as
follows: given a set of gene expression measurements O = {x1, . . . , xm}, where
xi = [xi1, . . . , xin]T is the observation vector of node xi, find a network B that best
matches O. The common approach to learn Bayesian networks is to search for the
networks with the highest a posteriori probabilities

P(G | O) ∝ P(O | G)P(G), (9.29)

where P(G), the prior probability for the network G, is assumed to take a biological
knowledge about the network or a uniform distribution on all possible topologies
and P(O | G) is called Bayesian score. Note that

P(O | G) =
∫
p(O | G,Θ)p(Θ)dΘ. (9.30)

If the analytical form for the integration can be found, the Bayesian score can
be easily implemented. However, the computation in (9.30) is often prohibitive;
thus instead of integration, the Bayesian score is approximated with the value at
estimated parameters Θ̂, that is,

P(O | G) ≈ p(O | G, Θ̂)p(Θ̂). (9.31)
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We also impose a conditional independence assumption on p(O | G,Θ):

p(O | G,Θ) � p
(
x1, . . . , xn | G,Θ

) = n∏
i=1

p
(
xi | Pa

(
xi
)
,Θi

)
,

p(Θ) � p
(
Θ(1), . . . ,Θ(n)) = n∏

i=1

p
(
Θ(i)),

(9.32)

where p(Θ(i)) is a prior density for the parameters of gene function modeling and
pa(xi) denotes the observations corresponding to the parent nodes of xi in G. As-
suming node i has ν(i) parent nodes, pa(xi) = [xi1 , xi2 , . . . , xiν(i)

].
Specifically, we assume that the function modeling of gene i is modelled by

the RBF (9.10) with independent Gaussian noise. Let Ji and di be the number of
RBFs and regression parameters in (9.10) for gene i, respectively. Denote

αi =
[
bi,βi,1,βi,2, . . . ,βi,di , ai,1, . . . , ai,Ji

]
,

Di =




1 xi,1,1 · · · xi,1,di φ
(∥∥xi,1 − µi,1

∥∥) · · ·φ(∥∥xi,1 − µi,Ji
∥∥)

1 xi,2,1 · · · xi,2,di φ
(∥∥xi,2 − µi,1

∥∥) · · ·φ(∥∥xi,2 − µi,Ji
∥∥)

...
...

...
1 xi,ν(i),1 · · · xi,ν(i),di φ

(∥∥xi,ν(i) − µi,1
∥∥) · · ·φ(∥∥xi,ν(i) − µi,Ji

∥∥)


 ,

(9.33)

then we have the regulatory model for gene i in a vector-matrix form

xi = Diαi + ni, (9.34)

where ni is the vector of measurement noise at different time instants for gene i.
Therefore, the likelihood function p(xi | Pa(xi),Θ(i)) is easily written as

p
(
xi | Pa

(
xi
)
,Θ(i)) = (2πηi)−ν(i)/2

exp
(
− 1

2ηi

∥∥xi −Diαi
∥∥2
)
. (9.35)

Given {Ji,µi,1, . . . ,µi,Ji} and di, the least-squares estimate of α is given by

α̂i =
(

DT
i Di

)−1
DT

i xi, (9.36)

and the estimation of ηi is given by

η̂i = 1
ν(i)

(
xi −Diα̂i

)T(
xi −Diα̂i

) = 1
ν(i)

xTi P∗i xi, (9.37)

where

P∗i � Iν(i) −Di
(

DT
i Di

)−1
DT

i . (9.38)
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Based on the minimum description length (MDL) criterion, we can impose the
following a priori distribution on Ji and di [40]:

P
(
Ji,di

)∝ exp
[
−
(
Ji +

di + 1
2

)
log ν(i)

]
. (9.39)

Assuming the noise samples are i.i.d. Gaussian, it can then be shown that the joint
posterior distribution of (Ji,µi,1, . . . ,µi,Ji) is given by [40],

p
(
Ji,µi,1, . . . ,µi,Ji | O

)∝ [(
xTi P∗i xi

)−ν(i)/2
]
P
(
Ji,di

)
. (9.40)

Hence the maximum a posteriori (MAP) estimate of these parameters is obtained
by maximizing the right-hand side of (9.40) or by sampling algorithm such as
MCMC algorithm.

Based on estimated parameters Θ̂i, the Bayesian score P(O | G) is approxi-
mated by

P(O | G) ≈
n∏
i=1

p
(
xi | Pa

(
xi
)
, Θ̂i

)
p
(
Θ̂i
)

∝
n∏
i=1

(
xTi P∗Ji xi

)−ν̂(i)/2
exp

[
−
(
Ĵi +

d̂i + 1
2

)]
.

(9.41)

The computation of Bayesian score for other function modeling can be ob-
tained in a similar way. Once the Bayesian score is calculated, standard heuris-
tic search techniques, such as greedy hill-climbing and simulated annealing algo-
rithm, can be employed to find the network with the highest scores. Such search
procedures do not need any prior knowledge network structure. For example, the
greedy hill-climbing search starts with some seeds, say some three genes with two
high scoring edges. Then add or remove a gene at each step. Once it reaches a local
minimum, it repeats the procedure until all seeds are used. Finally the subnetworks
with highest scores are obtained.

9.4.2.2. Searching network via MCMC

Within the Bayesian framework, a fully Bayesian approach to constructing reg-
ulation network is introduced in [13] by searching over the space of all possible
network topologies and picking those with the highest Bayesian scores. Given a
network configuration G, we calculate the parameters Θ associated with it as well
as the corresponding Bayesian score P(O | G). We then set the network configura-
tion by implementing a reversible jump MCMC step. The process repeats a suffi-
cient number of iterations. Finally, the regulation network is formed by choosing
those networks with the highest Bayesian scores. More precisely, we generate an
initial directed graph G(0), say, by clustering, and compute P(O | G); and then,
for j = 1, 2, . . . , we compute the Bayesian score P(O | G), and pick G( j+1) via an
MCMC step.
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The space of all possible network topologies is huge. To find the networks
with highest scores, we resort to the MCMC strategy. Given the current network
topology G, define its neighborhood, ℵ(G), to be the set of graphs which differ
by one edge from G, that is, we can generate ℵ(G) by considering all single-edge
additions, deletions, and reversals [16]. Let q(G′ | G) = 1/|ℵ(G)|, for G′ ∈ ℵ(G),
and q(G′ | G) = 0 for G′ /∈ ℵ(G). Sample G′ from G by a random single-edge
addition, deletion, or reversal in G. Then the acceptance ratio is given by

R = q(G | G′)P(G′ | O)
q(G′ | G)P(G | O)

= P(O | G′)
P(O | G)

, (9.42)

where P(O | G) and P(O | G′) can be obtained from (9.41).
We pick the networks with the highest Bayesian scores (although this could

be modified by the prior knowledge). After selecting the K graphs {Nk}Kk=1 with
the highest scores out of a large number of networks generated by the MCMC
technique, we next estimate the probability P(x → y) from node x to node y using
Monte Carlo methods. For example, the Markov chain length is chosen as n1 after
the n2 burn-in period, then the probability p(x → y) is estimated by

P(x → y) ≈
n1+n2∑
j=n1

δ
(
x, y,Gj

)
, (9.43)

where δ(x, y,Gj) is 1 if Gj contains the link x → y and zero otherwise. Thus we
can compute the posterior probability of all possible edges, and then the following
method can be used to construct gene regulatory networks.

(i) Select a significant confidence α and then construct a graph over vari-
ables with an edge between x and y if this Markov pair is confident
P(x → y) > α.

(ii) Take each nontrivial component as a seed of a subnetwork.
(iii) Expand the seed by adding variables that are related to this seed by a

Markov pair with confidence level above another parameter α′ < α.
(iv) Repeat the procedure and finally obtain the gene regulatory network.

9.4.2.3. Structure EM algorithm

We next model the temporal processes by a dynamic Bayesian network and then
solve it using the structure EM algorithm [41]. In this case, we not only model
a probability distribution over a fixed number of genes, but also the joint distri-
bution over all possible trajectories of a process. For simplicity, we assume that
the process is Markovian and stationary. In other words, the dynamic Bayesian
network can be represented by

(i) a prior network B0 that specifies a distribution over initial state X[0];
(ii) a transition network B→ that is taken to specify the transition probability

P(Xt+1 | Xt).
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Here X[t] are the expression levels for genes at time t. Given a dynamic Bayesian
network, the distribution can be represented by

PB
(

x[0], . . . , x[T]
) = PB0

(
x[0]

) T∏
t=0

PB→
(

x[t] | x[t − 1]
)
. (9.44)

From (9.44), we can compute the Bayesian score P(B0,B→ | x[0], . . . , x[T]) us-
ing a decomposition method. Furthermore, a hill-climbing search procedure can
be employed to improve a candidate structure by applying the best arc addition,
deletion, or reversal [15, 41]. The structure EM algorithm can be efficiently used
to learn the temporal structure and parameters. It iteratively alternates between
evaluating the expected score of a model and changing the model structure, until
a local maximum is reached. More precisely, the procedure of the structure EM
algorithm for the inference of gene network can be described as follows [41].

(i) Choose (B0,B→) from a prior distribution.
(ii) Improve the parameters of (B0,B→) using EM.

(iii) Search the possible structure by a hill-climbing algorithm using the ex-
pected estimation computed with EM.

(iv) Set the best scoring structure as (Bn+1
0 ,Bn+1→ ).

(v) Stop the iteration if the new structure satisfies some stopping rules; oth-
erwise, repeat from the second step.

One way to scale the structure EM algorithm for large gene networks might be
to first perform a clustering of the time series of the observed variables and then to
associate a transition structure with these clusters. The result would be a Markov
model with a structured “backbone.”

9.5. Concluding remarks

In this chapter, we have briefly reviewed the mathematical modeling issues for
transcriptional regulatory networks. We summarized some existing qualitative and
quantitative models for regulatory networks. We also discussed parameter esti-
mation methods for these models, ranging from linear least-square methods to
Bayesian inference methods. Finally, we discussed some recent development on in-
ference of network topologies from experimental data. In particular, a full Bayesian
framework using reverse-jump MCMC method is discussed. In summary, we have
seen that advanced statistical inference techniques will play a vital role in future
quantitative generic research.
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10
Compressing genomic and
proteomic array images for
statistical analyses

Rebecka Jörnsten and Bin Yu

Information technology advancements are bringing about innovations for genom-
ic and proteomic research. One such innovation is the array imaging technology
based on which gene or protein expression levels are derived. These images have
a fundamentally different purpose to serve than the traditional still images: they
are for statistical information extraction, not for visual inspection or comparison.
Due to the huge quantity of such images and the limited bandwidth for their shar-
ing among different researchers, for both storage and transmission goals, these
images need to be compressed. Dictated by the statistical analyses to follow, in this
chapter we lay out a multilayer data structure as the principle for both lossless and
lossy compression of array images. We illustrate this principle in the example of
cDNA microarray image compression with results of an average of near 2 : 1 loss-
less compression ratio and an average of 8 : 1 lossy compression ratio. The lossless
ratio is comparable with the off-the-shelf lossless compression scheme LOCO, but
with the added benefit of a handy structure for statistical analysis; the lossy ra-
tio is obtained with a quantization noise level comparable to that of the imaging
technology or the variation between two replicate imaging experiments.

10.1. Introduction

We live in an exciting era of technology innovations with all their advantages (and
disadvantages). These innovations are fueling, if not driving, the progresses in ge-
nomic research (the study of genetic material such as DNA and RNA), and the
newer proteomics research (the study of proteins which are directly responsible
for actions in cells).

A revolutionary innovation has been the DNA microarray imaging technol-
ogy for genomic research and it takes different forms: cDNA (P. Brown, http://
www-genome.stanford.edu/), Affymetrics gene chips (http://www.affymetrix.com/
index.affx), and Inkjet (http://www.rii.com). It provides measurements of mRNA
(messenger RNA) material existing in cells to develop an understanding of gene
function, gene regulation, and gene interaction through a simultaneous study of
expression levels of thousands of genes. Microarrays are also used extensively in
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clinical research. The goal is to identify disease genes, develop treatments, and di-
agnostic tools. The purpose of a microarray image is not for visual inspection as
in still and video image signal processing, but for extraction of statistical informa-
tion regarding the gene expression levels. The statistical inference problems based
on extracted gene expression data are plentiful, and often nontrivial. Among these
problems are the identification of important genes, and groups of genes that may
be linked in terms of functionality.

We have recently seen the emergence of the new research field called Pro-
teomics, where the focus is shifted from mRNA measurements to proteins [1].
Even though mRNAs carry the genetic instructions to produce proteins, that is,
an indirect measurement of protein levels, the proteins themselves are the direct
agents to make cells function. Hence, direct measurements of proteins are believed
to lead to a better understanding of biologically related events in organisms. To
measure the protein amount, antibody materials are put in the spot wells on an
array for proteins to bind. This protein array technology is still in its infancy and is
more complicated than the DNA microarray technology due to the inherent prop-
erties of proteins. One major difficulty lies in the logistics and practical procedures
in generating thousands of high-quality probes which have been successfully pro-
duced for DNA microarrays. Despite the fact that DNAs (mRNAs) and proteins
are very different materials, the protein array images share similar characteristics
of DNA microarray images and the same statistical information extraction is the
purpose, not visual inspection. In Figure 10.1c we display a small portion of a
10 Mb protein array image, kindly provided to us by Dr. Claudio Caamano, Men-
tal Health Research Institute, University of Michigan.

Both DNA and protein array images contain expression spots laid out in a grid
(see Figure 10.1). At the onset of an array experiment the spots contain the known
mRNA or antibody materials from DNA or antibody libraries. At the conclusion
of the experiment, the corresponding materials from sample cells are added to the
spots and allowed to hybridize. Through this technique we can detect the amounts
of mRNA or protein in the sample cells. The finished arrays are then scanned to
produce array images usually in a 16 bits/per pixel format. All these array images,
DNA or protein, are very large (tens of Mb). We see an ever increasing demand
on using array technology for genomic or proteomic research in universities, re-
search institutions, and private companies. This increase results in a huge quantity
of raw array images that researchers store after a certain processing to extract sta-
tistical information. Storage is necessary since the images are expensive to obtain
and the processing techniques are still under development. It is safer to keep the
raw images for possible reprocessing and improved information extraction as and
when new processing techniques become available. Since the quantity of such im-
ages is huge, it is well worth the efforts to compress them before storage amid the
ever falling hard disk price. To best facilitate the statistical analyses downstream,
serious considerations are required to address the question of how to compress,
if lossless, and how much and what to take out, if lossy. This chapter proposes
principles to answer these questions and illustrates the principles in the example
of cDNA microarray image compression.
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Figure 10.1. (a) Microarray image: 4×4 grid setup, 19×21 spots/grid. (b) A subset of the same image.
(c) A subset of a protein array image.

The rest of the chapter is organized as follows. In Section 10.2, we put forward
the importance of a multilayer data structure to ease statistical analysis. Lossy and
lossless compression is dealt with in Section 10.3 which advocates a multilayer
progressive data structure for compressed images. We propose using a variation
measure between two replicated images as the desirable quantization noise level
in lossy compression, and a partially progressive scheme for lossless image recon-
struction. Our multilayer encoded data structure has also recently been adopted
by Hua et al. [2] in the context of wavelet-based microarray image compression.
In Section 10.4, all our proposals are implemented in the example of cDNA mi-
croarray image compression (see [3, 4]). For a set of microarray images kindly
provided by M. Callows via T. Speed’s group (see [5, 6, 7]), we obtained an av-
erage of 2 : 1 compression ratio for lossless compression and an average of 8 : 1
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compression ratio for a multilayer progressive lossy scheme with a quantization
error comparable to the average difference between two replicated images.

10.2. Lossy and Lossless compression through a multilayer
data structure

Images can be completely recovered through lossless compression. Therefore, no
one should argue that it is not needed in the face of the facts that the savings on
the cost of disks to store raw array images could easily run in millions of dollars.
Furthermore, transmission bandwidth is always limited if the images are to be
shared by different research groups through internet or a centralized array image
library. Even the off-the-shelf lossless compression tools such as LOCO [8] are
very useful. Usually it can cut down the cost to half for the current generation of
cDNA microarray images. There is not much hope for a lossless compression ratio
exceeding 2 : 1 due to the fact that the last 8 bits of each pixel value predominantly
contains noise [3].

This treatment of array images as if they are still images does not make the
uncompression of them easy for statistical analysis or partial reprocessing later.
The whole image has to be decoded for a researcher to get the gene expression
levels or later go back to look at even one gene or antibody spot to revise the
estimated gene expression level when necessary. As discussed in [3], one would
like to have the compressed image in a data structure that is easy for downstream
statistical analysis and possible partial reprocessing at a later time.

So, what is a desirable data structure for statistical analysis? First of all, any
statistical analysis based on array images needs expression levels of the mRNAs
or proteins. These levels are obtainable from the intensity readings of the im-
ages (which are related to the amount of dyed mRNA or protein materials) in
the mRNA or antibody spots. To get these expression levels, one has to decide
where the spots are, that is, a segmentation of the image is needed. Furthermore,
the nonspot regions of the images also contain important information. The back-
ground part is used for local estimation of intensity drifts which could influence
the expression level estimation in a systematic way.

A multilayer data structure for compression

(i) The most needed statistical information should be the first layer in the
data structure, that is, the estimated expression levels for each spot
(mRNA/protein). For quality control purposes, we also include spot
standard deviations in this layer. The standard deviations are measures
of spot variability or heterogeneity.

(ii) The second layer of the data structure should contain the segmentation
map identifying the spot regions.

(iii) The third layer contains the entropy coded intensities in the spot regions,
to a chosen level of precision (lossy compression).

(iv) The fourth layer contains the run length coded intensities in the back-
ground regions, to a chosen level precision (lossy compression).
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(v) The last layer contains the residual information, for adaptive refinement
of spot and background regions to any level of precision (progressive
lossy-to-lossless compression).

A statistician in possession of a compressed image in terms of the data struc-
ture as described above would have a quick access to the expression levels from the
first data layer and some rough variability measures. If she or he is curious about
how good the quality of the image is, the segmentation map at the second layer
would give some important clues (smooth spot boundaries indicate good quality
and ragged ones poor quality). If an expression level is unusual, it calls for the
inspection of the corresponding spot and this does not require the decoding of
the whole image, only the object corresponding to that spot. For a systematic drift
worry, she or he could zoom into the fourth layer directly and uncompress only
that part.

10.2.1. Lossless compression

For lossless reconstruction, the researcher can decode all layers. Moreover, the loss-
less compression ratio for each array is a measure of array data quality. Noisy arrays
have highly random least significant bits, which results in a higher lossless bit rate.
Therefore, the file sizes of the compressed images can be used to sort the images in
terms of data quality.

10.2.2. Lossy compression: what to take out, how, and how much

Since the multilayer coded data structure was dictated by the statistical analysis,
a useful lossy compression scheme should follow the same structure. Since the
first two layers contain only summary statistics for each gene, the encoding cost
of these layers is only marginal compared to the full image data. Since the infor-
mation contained in these two layers is crucial to the statistical analysis to follow,
they should be kept as they are. The next two layers are subject to quantization or
lossy compression. Acceptable loss is not readily defined for array images. Recall
that these images are not preserved for the purpose of visual comparison, but for
statistical information extraction and processing. We define acceptable loss as the
level of replicate experiment variation, that is, the level of noise (scanner noise and
otherwise) in the images.

In the following section, we illustrate our structured lossless and lossy com-
pression scheme on cDNA microarray images, but emphasize the fact that similar
approaches are also appropriate for other types of array experiments.

10.3. An example: cDNA microarray image compression

The cDNA microarray image technology is a tool geared at measuring the “activ-
ity” or expression of a gene. A gene is a segment of DNA that maps into a specific
protein. The expression of a gene is a two-stage process whereby the protein prod-
uct is created. The first stage is transcription where the DNA segment is translated
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into a messenger (m)RNA. The second stage is translation where mRNA is used as
a blueprint for a protein. Microarray experiments measure the level of activity of
a gene at the first stage. Thus, the abundance of mRNA in a cell is related to the
amount of the corresponding protein being produced. We measure the abundance
of mRNA in a specific sample, relative to another sample. DNA probes (each corre-
sponding to a gene, or DNA segment) are placed, or “spotted” onto a microscopic
glass slide by a robotic arrayer. A reference sample of mRNA is labeled with a green
fluorescent dye (Cy3). The sample of interest is labeled with a red dye (Cy5). The
two mRNA samples are mixed and allowed to hybridize onto the array. The rela-
tive mRNA abundance (for each probe) is measured through the competitive hy-
bridization of the two samples. A laser scan of the array produces two fluorescent
intensity images. The intensity ratio for each probe, or spot, is proportional to the
relative abundance of mRNA in the two samples. The raw microarray image data
thus consist of two high precision (16 bpp) scans. The images are structured, with
high intensity spots (corresponding to the probes) located on a grid (see Figure
10.1). The spots are submerged in a noisy and nonstationary background. The
spots have roughly circular shape. The background (nonspot regions) can be cor-
rupted by high intensity speckle noise from dust particles, or water droplets on
the glass slide. Spots may “bleed” into each other or be smeared due to impreci-
sion in the spotting procedure, or through “washing-out artifact,” as excess sample
material is removed from the array prior to scanning.

10.3.1. Genetic information extraction

Since relative mRNA abundance is measured in microarray experiments, the ge-
netic information quantity available is the differential gene expression between the
two samples. In order to accurately estimate this quantity, we have to identify the
high intensity regions in the images corresponding to each probe, and where hy-
bridization has occurred. Moreover, we have to estimate, and correct for, the local
background intensity or noise level. Various methods for image segmentation and
background correction are used in the processing of microarray images. These
methods have had variable success, depending on noise level, average spot sizes,
and distances, of the arrays (e.g., [7] and M. S. Eisen, http://rana.stanford.edu/
software).

Segmentation. Automatic registration of the image is used to determine the ap-
proximate centers, or the grid location, of the spots. The spots are somewhat
circular. The most simplistic approach to identify the regions where hybridiza-
tion has occurred is through a fixed circle segmentation (http://rana.stanford.edu/
software). A circle, with radius chosen from the estimated grid structure, is used
to define the spot regions. The apex of the circle is adjusted locally to maximize
the summed signal intensity within the circle. When spot sizes vary across the ar-
ray (see Figure 10.1), which can result from, for example, variations in print-tip
pressure, an adaptive circle segmentation is more appropriate [9]. This allows for
differences in spot radii, and can significantly improve the identification of spots.
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When spot shapes are highly noncircular, adaptive shape segmentation techniques,
such as seeded region growing, can improve spot regions identification further still
(e.g., [7]). Here, we use a seeded region growing algorithm for initial segmenta-
tion, followed by a two-component Gaussian mixture model fit, to further refine
the boundaries of the spots, or regions of interest (ROI). Seeds for background
and ROIs are available from the registration procedure.

Background correction. Obtaining estimates of the local background intensity level
can be a difficult task. When the arrays are noisy, and the spots are positioned close
together, the background estimates will often be highly variable. Background es-
timates are commonly obtained through sampling of the background regions, for
example, by looking at disk shaped regions near the identified ROIs (http://rana.
stanford.edu/software), or in the “valley-between-peaks” (regions that are the
most distant from the center of gravity of all surrounding ROIs) [9]. These meth-
ods work well if the spots are clearly separated, but may otherwise perform poorly.
A more robust background estimation scheme is presented in [7], and relies on
filtering operations (erosion and dilation). This method exhibits low variance, but
tends to underestimate the local background intensities.

Summary statistics. The summary statistic of main interest is the estimated differ-
ential gene expression, commonly measured on a log2-scale. Pixels in each image
are summed within each ROI. We denote by Ri the red (fluor tag) scan pixels, and
by Gi the green scan pixels. The differential expression level, log2(µR/µG), is then
calculated as the log-ratio of the mean ROI intensities:

log2

(
µR
µG

)
= log2

(
(1/S)

∑
Ri∈ROI Ri − σR

(1/S)
∑

Gi∈ROI Gi − σG

)
, (10.1)

where σ refers to the estimates of the local background and S is the number of
ROI pixels. The log-ratio, commonly referred to as M, M = log2(µR/µG) is used in
downstream statistical analyses, such as clustering and classification.

Other summary statistics of interest are measures of quality, such as spot vari-
ances, spot shapes, and product intensities A = log2

√
µRµG. The product inten-

sities, A, are often indicative of how reliable the measurements of the differential
gene expressions are.

Normalization. Normalization is necessary prior to downstream analysis, since
otherwise systematic variation in the data may dominate over chance variation.
The fluorescent dyes used to label the two samples have different labeling efficien-
cies, and there is a dye bias in scanning efficiency. Furthermore, there are spatial
systematic errors, for example, a print-tip in one part of the array may show a
significantly higher red intensity than in other parts of the array.

It is common to use the genes that show little differential variation between
samples for normalization. In some experiments, most genes are not differentially
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expressed, and all spots can be used for normalization. In other experiments, a set
of housekeeping genes are used. M and A are simply a coordinate transformation
of the background corrected spot intensities µR and µG. Dye-bias normalization is
usually conducted on M, with respect to A.

Normalization is still an active area of research. The challenge remains to re-
move systematic bias while keeping increased variance at bay. In addition, nor-
malization procedures can in some cases introduce bias for low-expression spots.
Here, we apply the normalization scheme of Yang et al. [5]. The normalization is
nonlinear, and print-tip specific. For each print-tip on the array (one of the 4× 4
subgrids of Figure 10.1), we estimate a locally linear fit of M on A. The residual
vector M̃ is computed, and used as the spatial and dye-bias corrected differential
gene expressions in subsequent analysis.

In the subsequent statistical analysis, for example, identification of important
genes, both M̃ and A may play a role. An overview of some methods for gene
identification based on M̃ only, or both M̃ and A, can be found in [5] (see also
[10, 11, 12]). Classification and clustering of gene expressions and samples uses
the information in M̃ only. Since image processing, background correction, nor-
malization, and analysis methods are still under development, an image compres-
sion scheme for microarray images evidently has to preserve information on both
M and A.

10.3.2. Lossy and lossless compression of cDNA microarray images

Lossless compression of microarray images is easier for experimentalists to accept.
However, for efficient transmission of image data for data sharing, we need to con-
sider the use of lossy reconstructions of the images for subsequent analysis. Not all
processing steps require lossless image reconstructions. In addition, the equiva-
lence of compression and denoising suggests that we can obtain improved genetic
information extraction from the images with lossy reconstructions (Section 10.4).
Segmentation is a relatively easy task and can be done on crude 8 bpp reconstruc-
tions (see [3]). Background correction and normalization are more sensitive to
information loss, especially in the region of low intensity spots. A successful com-
pression scheme thus has to keep more precision for low intensity spot regions, but
can use a coarse image reconstruction for high intensity spot regions. Note that the
commonly used criterion for lossy compression, mean squared error, does not re-
flect this requirement.

The variance introduced by compression is much more of a concern than
marginal bias in multistep processing (segmentation, background correction, and
normalization). Our aim is to keep both bias and variance under control, and
ensure that the effect of compression is smaller than the variability between repli-
cated experiments. We define this as acceptable loss for microarray image compres-
sion. For our sample image dataset this acceptable loss corresponds to a bit rate of
∼4 bpp (compared to 32 bpp with no compression) (Section 10.4).

Lossless and lossy compression of natural and medical images is a mature
field in the engineering sciences. However, the performance of state-of-the-art
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image compression schemes on microarray data is poor. Here we mention some
of the issues that make the compression of microarray images a particularly dif-
ficult problem. Microarray images are very noisy, more so than images in many
medical applications. We can compare the lossless compression rate of microarray
images to those reported for mammograms. Lossless compression ratios of mam-
mograms are∼3:1, with the very efficient SPIHT algorithm (see [13, 14]), whereas
only ∼1.6:1 for microarray images. In medical imaging, the final task is visual in-
spection. Lossy compression of medical images thus often takes the approach of
defining an ROI, within which high precision lossy reconstructions are used. Out-
side the ROI, a coarse image reconstruction is used, and this leads to considerable
savings in overall bit rate. For microarray images, the non-ROI regions cannot
easily be discarded as less informative, or be preserved at an arbitrary low bit rate.
These regions are used for background intensity estimation. In medical imaging,
the ROIs are usually large, few (1–2), and arbitrarily picked by the experimental-
ists (a square or circle centered at an ROI). ROIs in microarray images are the spot
regions. These are defined by the segmentation, and have distribution character-
istics that differ from the background. There are many ROIs (thousands) for each
microarray image. They are located close together, and can be of arbitrary shape.
They are small, with an approximate diameter of 8–16 pixels. The small ROIs pre-
cludes the use of off-the-shelf wavelet-based compression schemes, which tend
to use wavelets with relatively wide support intersecting with multiple spots. The
many and small high intensity regions create large wavelet coefficients over almost
all the image subbands. At low bit rates, algorithms such as SPIHT, or wavelet and
zero-tree coding [13], will be dominated by the edges around the high intensity
spots. In [2], an adaptive wavelet transform is used to alleviate this problem. Com-
pression schemes that are not wavelet based, but based on predictions in the spatial
domain, also have difficulty with the many high intensity spots. A rowscan-based
prediction scheme creates a “smearing” bias in the image reconstruction. Thus, it
is a nontrivial task to employ the principles of lossless ROI coding, or coding of
ROI and non-ROI at different precision, used in medical imaging, to microarray
images (see [14, 15]).

We here choose to take a spatial prediction approach. To avoid the “smearing”
bias we encode the spot regions and the background separately. We first transmit
an overhead defining the ROI and background, that is, a segmentation map. We
refer to this approach as segmented LOCO (SLOCO) (see [4]).

Segmented LOCO—SLOCO. Our scheme builds on the JPEG-LS lossless stan-
dard, LOCO (LOw COmplexity), see [8]. A low complexity scheme is preferable
for this application. The characteristics (size, shape of spots, level of noise, back-
ground drifts, and artifacts) of microarray images can be very different depending
on which lab produced the data. It is therefore near impossible to come up with an
advanced compression scheme that works on images from different labs. To ensure
that the compression scheme performs reasonably well for images from many labs,
simplicity is key. Below, we outline the components of LOCO and SLOCO (details
can be found in [3, 8]).
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a x

c b d

Figure 10.2. Causal context of pixel x (a, b, c,d).

Fixed and adaptive prediction, context modeling. The LOCO algorithm uses a ro-
bust pixel domain prediction scheme, for example, the causal context (Figure 10.2)
of pixel x is used to predict its value. The initial fixed predictor is

x̂fix = median(a, b, a + b− c). (10.2)

It works on the same principle as a simple edge detector. Note that a, b, and c are
lossy reconstructions of the corresponding pixel values. We have briefly studied the
use of more complex predictors for microarray images, but have seen no gain with
the use of a more complex predictor. The different noise level and array character-
istics of arrays from various labs make the building of robust predictors with more
structure (e.g., gradient, surface fitting component) extremely difficult.

To further improve on the fixed prediction scheme, LOCO also uses a context-
based adaptive predictor. The contexts are defined by the vector of local gradients.
The local gradients, g1 = d−b, g2 = b− c, g3 = c−a, are quantized to, for exam-
ple, 16 levels. Each triplet of quantized gradients forms a context class. Based on
the past performance of the fixed predictor, within each context class, an estimate
of the prediction bias, R̂, is obtained. The bias is taken as integer valued and is es-
timated as follows. The bias estimate of the context is initially set to 0. We assume
the current context has been called N times during the coding of the image. Each
time we encounter this context the accumulated prediction error B (after adaptive
prediction) is compared to N . If B < −N , we set R̂ = R̂ − 1. If B > N , we set
R̂ = R̂ + 1. We do not allow an absolute R̂ value greater than a preset Rmax. The
adaptive predictor is

x̂ = x̂fix + R̂. (10.3)

Quantization and encoding of prediction errors. The standard LOCO algorithm has
been extended to near-lossless compression [8]. There, the prediction errors are
quantized with a uniform quantizer (UQ) with bin widths 2δ + 1, and reconstruc-
tion at the center of each bin. If δ is small, and the number of quantization bins is
large, the uniform quantizer is close to the MSE distortion optimal quantizer, for
an extensive family of distributions (see [8, 16]). The uniform quantizer also puts
a bound on the maximum pixelwise error, that is, δ. If δ is large, the UQ is far from
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optimal from MSE distortion point of view. The optimal quantizer, subject to an
entropy constraint, is indeed uniform for a large family of error distributions, but
the reconstruction levels are not at the center of the quantization bins. In SLOCO,
we use a UQ-adjust quantizer for large δ. Thus, the bins near the center of the
error distribution, where most of the probability mass is located, have adjusted
reconstruction levels closer to the MSE distortion optimal, as well as smaller bin
widths 2δ′ + 1, such that the maximum error for all pixels is still bounded by δ.
The outer bins have bin widths 2δ + 1, and center bin reconstruction levels, that
is, given a prediction error ε = x − x̂, the error is quantized using the UQ-adjust
quantizer. If the K center-most bins have bin width 2δ′ + 1 the quantized error is

Q
(
ε | |ε| ≤ (2K + 1)δ′ + K

)) = sign(ε)
⌊ |ε| + δ′

2δ′ + 1

⌋
(10.4)

and

Q
(
ε | |ε| > (2K + 1)δ′ + K

)) = sign(ε)
(
K +

⌊ |ε′| − 1
2δ + 1

⌋)
, (10.5)

where ε′ = sign(ε)(ε − (2K + 1)δ′ + K).
As in LOCO, we use Rice mapping to map the quantizer error distribution

into a smaller alphabet without loss of information. The distribution of the
mapped and reduced range quantized prediction errors is quite close to a one-
sided geometric distribution, and encoded with a Golomb code [8]. A quantizer
bin index y is thus encoded in two parts. Given a code parameter m = 2k, we first
encode in unary the most significant bits of y, �y/m�. The remainder y modm
is encoded in binary representation. The total code length for y is thus k + 1 +
�y/2k� bits. For optimum performance, we use many Golomb codes for the en-
coding of the errors. Each context class builds its own code. The Golomb pa-
rameter k that best matches the context distribution is estimated adaptively, by
k = arg mink′ {2k

′ ≥ Ā}. Here, Ā is the mean absolute quantized (and reduced
range) prediction error of the context class.

We need to update the context parameters for optimal Golomb coding. We
have already mentioned how the integer bias is updated each time a context is en-
countered. Other context variables we store are the accumulated prediction errors
after range reduction (but before Rice mapping). We also store the accumulated
absolute prediction errors, as well as a counter for each context. After a context
has been encountered T times, we reset all context variables to half their current
value. This keeps the context information current. We use T = 64.

Run length coding. LOCO encodes the smooth regions of an image efficiently by
means of a run length code. If the quantized local gradients indicate a smooth re-
gion (all(g1, g2, g3) ≤ δ), we predict the value a (i.e., the causal horizontal neigh-
bor of x) for x. Furthermore, we predict that l − 1 pixels following x also equal
a. Instead of encoding each pixel separately, we only have to encode the devia-
tion of the length of the “run” of values a ± δ, from the expected run length l.
The length of the observed run is encoded with a Golomb code with parameter g,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


352 Compressing genomic and proteomic array images for statistical analyses

where l = 2g . When we encounter a value different from a±δ, we encode the inter-
ruption pixel using similar techniques as for the encoding of regular pixel samples.
We use two contexts for the interruption pixels, context 1 is used if a = b, and
context 2 if a 	= b. The expected run length l is updated based on the recently ob-
served run lengths. For each run equal to l, a counter index is incremented. Once
the counter index exceeds a threshold, the expected run length is increased by one
unit. Similarly, the expected run length is decreased after a number of interruption
have been encountered.

Overhead. The overhead of the SLOCO algorithm contains the spot means and
standard deviations, as well as the local background intensity estimates and the
local background standard deviation. The overhead also contains the estimated
grid structure of the microarray images, and the segmentation map.

The spot and background means are encoded using adaptive Lempel-Ziv (LZ).
The cost of the spot mean overhead amounts to approximately 11–15 bits/spot on
the images we have examined. The background means have a much smaller range
and are easily encoded using only 3–5 bits/spot. The spot variance is approximately
proportional to the spot mean. Conditioning on the spot mean, we can encode
spot and background standard deviations with 5–7 and 4–5 bits/spot, respectively.
The segmentation map is efficiently encoded using the chain code of Lu and Dun-
ham [17]. Using a seeded region growing algorithm, the shapes of the spots can
be quite arbitrary, and cost between 1.2–1.6 bits times the circumference of the
spot to encode. The average cost of the overhead for the images we examined is
0.376 bpp.

If no reprocessing of the images is needed, the overhead contains all relevant
information for downstream analysis. In addition, it contains spot quality mea-
surements such as spot shapes, variances, and the local background variance.

Coding the spot regions. Given the overhead, we can compute the signal-to-noise
ratio of each spot. We use the following signal-to-noise ratio measure:

SNR = m2
spot

m2
bg + s2

bg
, (10.6)

where mspot,mbg denote the mean spot and background intensities, and s2
bg the

estimated background variance.
Based on the SNR, we can pick a bound on the maximum pixelwise error δ for

each spot (see below). The size of each spot is too small to allow for any adaptive
prediction step, or for adaptive estimation of the Golomb parameter. We therefore
use a fixed Golomb code, and only the fixed predictor x̂fix within each spot. The
spot Golomb parameter could be estimated on the encoder side, after applying the
fixed predictor, and transmitted as overhead to the decoder. However, we can do
nearly as well by using an approximate estimate of the optimal Golomb parameter
k obtained as follows.

The overhead contains the spot standard deviation. The expected value of the
absolute prediction error is well approximated by sspot/(

√
2 × 1.3), where sspot is

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


R. Jörnsten and B. Yu 353

the estimated spot standard deviation. The factor 1.3 has been estimated from the
microarray image data. The fixed predictor is local and gives smaller prediction er-
rors than using the spot mean as a global predictor. Given the bound on maximum
pixel error δ, we thus estimate k as

k̂ = max
(

0,
⌈

log2

(⌊
Ā/1.3 + δ

2δ + 1

⌋)⌉)
, (10.7)

where Ā is the MAD estimate of sspot, divided by
√

2. We encode the spots in a
row scan manner. When the fixed predictor is applied, missing context pixels are
imputed with the spot mean value from the overhead.

Coding the background. The background is encoded in a row scan fashion for sub-
blocks of the images. Larger blocks are more efficient to encode, but we find that
encoding 4 × 4 blocks for the background for each print-tip configuration gives
approximately the same bit rate as encoding the background as one solid block.
This allows image subset reconstruction.

To use the fixed predictor, we impute the missing context pixels (the spot pix-
els) with a value equal to 3 times the local background intensity estimates (from
the overhead). The factor 3 provides a gradient near the spots. Imputing the miss-
ing context pixels with the background intensities gives a lower bit rate, but in-
cluding a factor of 3 reduces the prediction variance.

Given the spot SNR values near a specific background region and the local es-
timate of the background intensity, we pick a bound on the maximum error δ (see
below). The background region of a spot consists of pixels closer to this spot than
any other. The context Golomb parameter k is estimated as in standard LOCO. Be-
cause in SLOCO the maximum error bound varies from region to region, we need
to store the reconstructed prediction errors, not the quantization bin indices as in

LOCO. The context parameter is estimated as k̂ = max(0, 
log2(Au(Q)/N(Q))�),
where Au(Q) = �A(Q)/(2δ′′ + 1)�, N(Q) is the context counter and δ′′ = δ for
the K centermost quantization bins, and δ otherwise. A(Q) is the context variable
containing the accumulated absolute prediction errors, after reconstruction. If the
context of pixel x indicates a smooth region, we apply the following run length
coding strategy.

The run length coding of SLOCO differs from that of LOCO. We do not al-
low runs to cross from a region with higher maximum error bound δ into one
with smaller δ. If a spot is encountered during a run, we skip ahead to the next
background pixel. However, we do not necessarily continue the run. We denote
the current pixel by x. If x is on the boundary of a spot, we skip ahead to the next
background pixel in the same row as x and denote this pixel by y. If δ(x) ≤ δ(y),
we compute the vector of local gradients of x and y; g̃(x) and g̃(y). If max |g̃(x)−
g̃(y)| ≤ δ(y), we continue the run. Note that in this case the gradients are com-
puted with imputed context values equal to the local background estimates, not
with a factor 3. Runs interrupted by a decrease in δ, or by max |g̃(x)−g̃(y)| > δ(y),
are encoded as “expected interruptions” by appending a 1 to the bitstream. Other
interruptions are encoded in the same manner as in standard LOCO. The criteria
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for continuing or interrupting a run are available at the decoder from causal in-
formation, or from the overhead.

Maximum error bounds. We choose different δ for the background regions be-
cause we recognize the need for higher precision near low intensity spots. We use
thresholds on the SNR values to pick the maximum error bounds. For the spot
regions, we use δ = {511, 255, 127, 63}. The log2 SNR thresholds corresponding
to each δ level are chosen as the quantiles (90, 50, 10%) of the SNR distribution of
the array images.

The near lossless LOCO design scheme assumes that δ is small and that the
number of quantization bins is large, such that the quantization errors are approxi-
mately uniformly distributed within each quantization bin. For the 16 bpp images,
using a large δ = 255 still corresponds to a considerable number of quantization
bins. However, the error distribution is very “peaked” in the innermost quantiza-
tion bins. Depending on the δ used, as discussed above we let the K(δ) innermost
quantization bins have width 2δ′+1, where δ′ < δ. The corresponding reconstruc-
tion levels are adjusted such that the maximum error is still bounded by δ. We pick
K and δ′ such that the increase in the number of quantization bins is small com-
pared to the UQ quantizer used by standard LOCO. For δ = {511, 255, 127}, we
use δ′ = {444, 224, 115} and K(δ) = {6, 10, 20}. For smaller δ, the UQ is used.
With this setup, the additional number of quantizer bins for the 16 bpp images is
between 3 and 5.

Flowchart of SLOCO

Coding the spot regions

(0) Initialize: given the spot SNR, set the maximum error bound to equal
δ(SNR). Estimate the Golomb parameter k by

k̂ = max
(

0,
⌈

log2

(⌊
Ā/1.3 + δ

2δ + 1

⌋)⌉)
, (10.8)

where Ā is the mean absolute value of (spot pixels−spot mean) �
sspot/

√
2.

(1) For current pixel x, apply the fixed predictor, replacing missing pixel
values with the spot mean. Compute the prediction error ε.

(2) Quantize ε using the UQ-adjust quantizer. Reduce the range of the
quantized residuals and apply the Rice mapping→ ε̂.

(3) Encode ε̂ with Golomb(k̂).

Coding the background

(0) Initialize: set context variables R,B,N = 0 and A = 4. Using the over-
head, pick δ(x) and δ′(x) for all background pixels x. R is the integer
bias, B the accumulated prediction error, A the accumulated absolute
prediction error, and N the context counter. Pick the UQ-adjust param-
eter K .
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(1) For current pixel x, impute nonbackground pixels with 3 times local
spot background estimate. Compute gradients g1, g2, g3 and quantize
each to 16 levels. Denote the context index by Q.

(2) if all(g1, g2, g3) ≤ δ(x) go to run length coding mode, otherwise goes
to 3.

(3) Apply the fixed and adaptive predictor to x. Compute the prediction
residual ε = x − x̂fix − R̂(Q).

(4) Quantize ε using the UQ-adjust quantizer. Reduce the range of the
quantized residuals and apply the Rice mapping→ ε̂.

(5) Estimate the context Golomb parameter k by

k̂ = max(0, 
log2(Au(Q)/N(Q))�), (10.9)

where Au(Q) = �A(Q)/(2δ′′ + 1), δ′′ = δ if |ε̂| > K , and δ′ otherwise.
(6) Encode ε̂ with Golomb(k̂).
(7) Update all context variables. B(Q) < −B(Q) + ρ(ε̂), A(Q) < −A(Q) +

|ρ(ε̂)|, where ρ is the reconstruction levels of the UQ-adjust quantizer.

Run length coding

(0) Initialize: set run count ct = 0. Set the run error variable δr = δ(x). Set
the run value r = a, where a is the left neighbor of pixel x.

(1) While |x− r| ≤ δr and the class index of x is “background,” add 1 to the
run count ct and go to the next pixel.

(2) If ct = l, where l is the expected run length, add a “1” to the output
bitstream and reset ct to 0.

(3) If the class index of x is “ROI,” skip ahead to the next background pixel
y. If δ(y) ≥ δr and the gradients of y are within δ(y) of the gradients of
x, continue the run. Otherwise, interrupt the run by appending a “1” to
the bitstream.

(4) If “end-of-line” is encountered, interrupt the run and append a “1” to
the bitstream.

(5) If |x − r| > δr , interrupt the run, append a “0” to the bitstream, and
encode the length of the interrupted run (< l).

(6) If the run was interrupted in 5, encode the run-interrupt sample x with
the two special contexts depending on whether a = b or a 	= b, where b
is the top neighbor of pixel x.

(7) Update the expected run length parameter l based on the number of
runs encoded. Go back to standard coding of the next background pixel.

To summarize the section, SLOCO differs from standard LOCO mainly in
these four aspects: (i) the spots and backgrounds are encoded separately to avoid
bias by smearing, (ii) a UQ-adjust quantizer is used instead of the UQ quantizer,
(iii) we allow for different maximum error bounds δ in the background regions,
and (iv) we use a run length code that takes the segmentation map and the varying
δ into account.
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The varying δ presents us with some difficulties. Ideally, we should use dif-
ferent contexts for each δ. However, we cannot hope to gain enough information
to “train” the context-based predictors if we use separate contexts. We limit our-
selves to use one set of context variables. Therefore, we need to store the quantizer
reconstructions, rather than the bin indices as is done in standard LOCO.

Lossless compression and progressive transmission. As we will see in the next section,
lossy reconstruction at bit rate ∼4 bpp may be sufficient for genetic information
extraction with a variety of existing methods for information extraction. However,
methods are still under development, and there is no guarantee that using 4 bpp
image reconstructions will suffice when applying new methods. Therefore, our
compression scheme can be extended to a fully lossless reconstruction of the mi-
croarray images. Given the initial lossy reconstruction, the image reconstruction
can be refined, spot by spot, background region by background region, or even
pixel by pixel, to any bit rate above the minimum decodable bit rate. Our scheme
is thus partially progressive.

The overhead provides us with the maximum error δ in each region of the
lossy reconstruction of the images. We use a simple and flexible way of encoding
the residual image. After prediction and quantization, the quantization errors are
close to uniformly distributed in the range [−δ, δ]. We cannot reduce the first
order entropy (∼ log2(2δ + 1)) much via predictive coding. We therefore encode
bit planes of the residual image. We choose this simple coding scheme since it gives
us total freedom to encode any part of the residual image at any rate we desire,
independently of what we choose to do in other regions of the image. Despite this
apparently inefficient code, we get comparable lossless compression results using
the SLOCO and bit plane coding, as we get with standard LOCO. However, we
stress that standard LOCO is not progressive so as to obtain that bit rate the whole
image has to be encoded and decoded in full. We considerably improve over the
SPIHT algorithm lossless bit rate with our scheme.

10.4. Results and comparison of methods

10.4.1. Image datasets

Our image compression scheme has been tried out on microarray images from
three sources. Here, we will discuss the results obtained from a replicate exper-
iment, courtesy of Matthew Callows, Genome Sciences, Lawrence Berkeley Na-
tional Lab. The replicate experiment allows us to more convincingly evaluate the
effects of compression on the statistical analysis of extracted genetic information.
A discussion on the statistical analysis of this dataset can be found in [6]. Results
on images from P. Brown’s lab, Department of Biochemistry, Stanford University,
and the Lawrence Livermore National Lab are not shown here in order to conserve
space. However, bit rate results were similar to those obtained on the image dataset
from the replicate experiment.

The replicate dataset consists of 16 pairs of images; 8 pairs from 8 “control”
mice and 8 pairs from a “treatment” group. The experiment is referred to as Apo
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Table 10.1. Lossless bit rates.

Method Bit rate (cmp 32 bpp) Compression ratio

LZ (gzip) 21.62 1.48 : 1

SPIHT 19.44 1.65 : 1

WT + ZT + EC 18.64 1.72 : 1

LOCO 17.28 1.85 : 1

SLOCO 17.45 1.83 : 1

AI, and is described in greater detail in [5]. Apolipoprotein AI is related to lipid
metabolism in mice. The treatment group has a knocked-out AI gene. The refer-
ence sample used for both the control and the treatment group is a pooled sample
from all 8 control mice. Each image pair provides relative measurements of the
expression levels of 6384 probes, 200 of which are expected to be related to lipid
metabolism. With replicate experiments, we can evaluate the compression using
a number of test statistics. We compare the estimated gene expression levels (af-
ter normalization) M̃ using the full image data, and lossy reconstructions of the
images. We also look at the extracted product intensities A.

To conserve space, we present results using two different methods. We com-
pare seeded region growing and Gaussian mixture segmentation to adaptive circle
segmentation. We also compare the robust filtering background correction scheme
[7] to the valley-between-peaks method [9]. We find that the choice of back-
ground correction scheme has the largest impact on performance. Similar con-
clusions were drawn in [7]. Here, we therefore compare only two combinations;
seeded region growing + robust filtering (hereafter referred to as Method 1) and
adaptive circle segmentation + valley-between-peaks (Method 2). We can think of
the methods as two extremes. Method 1 has low variance but is possibly biased,
whereas Method 2 is variable and susceptible to noise in the data.

10.4.2. Bit rate results

For lossless compression we compare the results using our SLOCO + bit plane
coding scheme to standard LOCO, and to the SPIHT algorithm. As a baseline for
lossy + bit plane coding, we look at a wavelet lossy scheme with zero-tree coding
+ entropy coding of the residual image (WT + ZT + EC). This method is widely
recognized as one of the best in both lossy and lossless compression of natural
and medical images. The lossy rate of (WT + ZT + EC) used is the same as for
SLOCO. The reported lossless bit rate for this last scheme is optimistic, that is,
based on an entropy calculation of the (WT + ZT) residual image. In Table 10.1,
bit rates and compression ratios are shown. The results using LZ and SPIHT are
dismal. The compression ratios are 1.48 : 1 and 1.65 : 1, respectively. Note that in
medical imaging applications, compression ratios with LZ is commonly ∼2:1 and
3 : 1 with SPIHT. The (WT + ZT + EC) has lossless compression ratio 1.72 : 1.
The LOCO lossless compression ratio is 1.85 : 1. We get very close to this result
with our scheme, 1.83 : 1. This bit rate result includes the overhead (∼0.376 bpp).
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We can achieve a better compression ratio than LOCO (1.87 : 1) if we impute
missing context pixels with the background estimates, instead of 3 times the val-
ues used here. However, this introduces too much variance in the background re-
gion of the initial lossy reconstruction. Since we want the lossy reconstructions to
act as good substitutes for the full data for the purpose of reprocessing, we sacri-
fice a lower lossless bit rate for good progressive performance. We cannot hope to
achieve much better lossless compression ratios than this with any method. The
8 least significant bits are close to random for microarray images, that is, have
marginal entropy 8 bpp, and are unpredictable. This puts a ceiling of 2 : 1 on the
lossless compression ratio.

10.4.3. Lossy compression

We compare SPIHT, LOCO, and SLOCO in terms of how well the genetic infor-
mation is preserved in the lossy image reconstructions. We compare the extracted
information from lossy microarray images at a certain bit rate to the extracted
information from the full (lossless) image data. The results obtained with the
(WT + ZT + EC) compression scheme are very poor, and this method is dropped
from the comparison. The wavelet transform has a wide support, such that the
spots are blended with each other.

Figure 10.3a shows the spot product intensityA (on a log scale) extracted from
lossy reconstructed images plotted against the product instensitites based on the
full data. The solid red line corresponds to the full data (lossless), the blue markers
show the SPIHT reconstruction at 4.1 bpp, and the green markers LOCO recon-
struction at 4.4 bpp. The LOCO algorithm requires a fixed δ input, and 4.4 bpp
was the closest available bit rate to 4.1. Note that the variance of A is high using
the SPIHT algorithm, indicated by the wide spread of the blue markers around
the red solid line corresponding to the full data. LOCO shows significant positive
bias in A for low A values, indicated by the green markers off-center and above
the red solid line. This bias is a result of the smearing of coding spots and back-
grounds in one segment. In Figure 10.3b the same results are shown with SLOCO
(black markers) at bit rate 4.1 bpp results superimposed. Note that SLOCO con-
trols both the bias and variance better than LOCO and SPIHT, respectively, with
the black markers centered tightly around the red solid line corresponding to the
full data.

Figure 10.4 shows the normalized differential gene expression levels M̃ ob-
tained from lossy image reconstructions using SPIHT (blue markers), LOCO
(green markers) and SLOCO (black markers) at the above bit rates, compared
with differential gene expression levels obtained from the full data (red solid line).
Note that all schemes generate accurate results for large absolute differential gene
expression levels and are variable for M̃ near 0. We again see that the wavelet-
based SPIHT algorithm produce more variable results than LOCO and SLOCO.
The SLOCO scheme fairs slightly better than the standard LOCO.

Our scheme is partially progressive. We can opt to add more precision to the
regions of the images corresponding to small M̃, where the effect of compression
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Figure 10.3. (a) Extracted product intensities A from lossy image reconstructions using SPIHT (blue)
at rate 4.1 bpp and LOCO (green) at rate 4.4 bpp compared with lossless image reconstructions (red).
The blue markers indicate SPIHT is highly variable, whears the green markers show that LOCO is bi-
ased for low intensities. (b) Variance and Bias are better controlled with SLOCO at 4.1 bpp as indicated
by the superimposed black markers.
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Figure 10.4. Differential gene expression M̃ based on lossy reconstructions using SPIHT and SLOCO
at 4.1 bpp (blue, black) and LOCO (green) at 4.4 bpp compared to lossless reconstructions (red solid
line). The lossy methods deviate more from the lossless reconstructions for M̃ near 0, and generate
accurate results for large absolute M̃.
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Figure 10.5. “Standardized plot,” that is, z-statistic/2. The markers display differences in M from Array
2 using (i) Method 2 on full data (method-to-method variability—blue markers), (ii) Method 1 on
Array 3 (array-to-array variability—green markers), and (iii) Method 1 on 4.1 bpp reconstruction of
Array 2 (lossy-lossless variability—red markers). Note that the method-to-method variability domi-
nates. The lossy-lossless variability is below the array-to-array variability.

is more noticeable. However, we find that the variability introduced by the lossy
compression, in the extraction of the differential gene expression levels, is smaller
than the array-to-array variability. We can thus hypothesize that the informa-
tion “lost” due to compression is below the level of the noise in the data. We
also find that the difference in extracted gene expression levels between Method
1 and Method 2 is much greater than the difference between lossless and lossy
reconstructions of the images. In Figure 10.5, the baseline for comparison is the
gene expression levels extracted from Array 2 using Method 1. We compare the re-
sults we get using Method 2 on the same array (blue markers—method-to-method
variability), and Method 1 on Array 3 (green markers—array-to-array variability)
with the full data. We also compare the results we get using Method 1 on a 4.1 bpp
lossy reconstruction of Array 2 (red markers—effect of lossy compression). We
compute the SD from the 8 replicated arrays of the same type as Array 2. Since
the SD bands are hard to distinguish in a plot, we show a standardized plot of z-
statistics (divided by 2) in Figure 10.5. The method-to-method variability is much
greater than the array-to-array and lossy-lossless differences, as indicated by the
blue markers with large z-statistics. The lossy-lossless differences (red markers)
are smaller than both the method-to-method (blue markers) and array-to-array
(green markers) differences. The conclusions we can draw from this is that great
care has to be taken in which method is used for information extraction, and fur-
thermore that at bit rates close to 4 bpp the distortion introduced by the compres-
sion is below the replicate experiment variability. We obtain similar results for all
other arrays, and when the roles of Method 1 and Method 2 are reversed.
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Figure 10.6. Method 1. (a) Control group: risk (summed over all genes on array) versus bit rate.
(b) Treatment group: note that SPIHT risk exceeds the risk of LOCO and SLOCO for bit rates be-
low 12 bpp. For bit rates above 6 bpp, we see only moderate increases in risk using lossy reconstruction
via LOCO or SLOCO and a modest decrease in risk on the treatment array for 4 bpp.

10.4.4. Risk, denoising, and shrinkage

The replicated experiment allows us to construct a “ground truth” for the gene
expressions. We compute the mean gene expression vector from the 8 replicates
using Method 1, and denote this by M0. We construct a measure of risk for the
compressed data at various bit rates as follows. Let M̂ j the be vector of extracted

gene expressions from a lossy reconstruction or array j, and M̂
j
k the kth element

of this vector, that is, the differential gene expression of gene k on array j. If there
are p genes on each array, the risk R is computed as

R =
p∑

k=1

1
Narray

∣∣M̂ j
k −M0

k

∣∣. (10.10)

Here, we have 8 replicate experiments and thus Narray = 8. We use the L1 norm to
avoid having the large gene expressions dominate the calculated risk.

In Figures 10.6a and 10.6b the risk, using Method 1, is plotted as a function of
bit rate, using the SPIHT, LOCO, and SLOCO algorithms. The minimum decod-
able bit rate for the SLOCO is 4.1 bpp. The standard LOCO results are computed
using LOCO at each bit rate separately, since LOCO is not a progressive scheme.
SPIHT risk exceeds the risk of LOCO and SLOCO at all bit rates below 12 bpp, af-
ter which the three algorithms perform similarly. The SLOCO and standard LOCO
show comparable risk results. However, there is a caveat in this comparison. We
know that standard LOCO leads to a considerable bias in the estimate of A for low
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Figure 10.7. Method 2. (a) Control group: risk (summed over all genes on array) versus bit rate.
(b) Treatment group.

bit rates, which Figure 10.6 does not show. The overall risk for the control group is
smaller than the treatment groups (Figure 10.6a versus 10.6b), as the scale on the
y-axes in the two figures indicate. This is due to the larger (absolute) gene expres-
sions levels extracted from the treatment arrays compared to the control arrays.
Both standard LOCO and SLOCO improves on the risk of the full data (horizontal
line in figures) for bit rates ∼6–8 bpp, for the treatment arrays (b). We can think
of the compression at these bit rates as denoising of the microarray images. For
both groups of arrays, we see only a marginal increase in risk for rates greater than
4 bpp.

In Figures 10.7a and 10.7b, we plot the risk using Method 2. The overall risk
is much higher using Method 2 than using Method 1, as indicated by the scale of
the y-axes in the figures. Method 2 introduces a lot of variability in the extracted
information. We see again a denoising effect for part of the bit rate range in Figure
10.7a. For the entire bit rate range displayed, both standard LOCO and SLOCO
show only marginal increase in risk over the risk obtained using the full data.

The equivalence of compression and denoising has been previously discussed
in the literature (e.g., [18]). If the noise level is lower than the “signal,” that is,
the extracted gene expression, we can get a better estimate of the gene expressions
using compressed data, than that we get using the full data. This is what Figures
10.6 and 10.7 illustrate. Moreover, the effect is more apparent when the method
of extraction is susceptible to noise (Method 2). In Figure 10.8, the shrinkage, or
denoising, effects of the compression on the extracted gene expressions are shown.
The solid line is the mean gene expression vector M0. The black dots correspond
to the estimate of the gene expressions using a lossless reconstruction of Array 2.
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Figure 10.8. The equivalence of compression and densoising. The solid line depicts the mean M gene
expression level across the replicate arrays. The dots (·) represent M (Array 2, full data), that is, the
extracted gene expressions from one array only. The open circles (◦) represent M (Array 2, 4.1 bpp),
that is, the extracted gene expressions from a lossy reconstruction of Array 2. In figure (a), Method 1
is used. In figure (b), Method 2 is used. Note that for large absolute M values compression leads to
shrinkage of the single array estimates towards the mean M across the 8 arrays.

The open circles are obtained from a lossy reconstruction. We see that for large
absolute values of M0, the lossy reconstruction M̂ is closer to M0 than the lossless
reconstruction M. For the small and highly variable M0, compression, or denois-
ing, does neither good nor harm. If there is no significant signal present, we have
no chance of retrieving it, no matter which method we use.

10.5. Discussion

We have presented a lossless and progressive compression scheme for microar-
ray images. At bit rate 4.1 bpp, we find that the tasks of image segmentation, and
genetic information extraction with a variety of methods, are only marginally af-
fected by the compression. The effect is smaller than the array-to-array variability.
The effect of compression is also smaller than the difference between alternative
methods for information extraction.

Since our scheme is partially progressive, experimentalists can opt to refine the
precision of the images. The flexible structure of our scheme allows for lossless,
or refined, precision reconstruction for any subset of the images. Our scheme is
robust to specific microarray image characteristics, and has been tried on images
from three different labs.

We find that compression can in fact improve the estimation of gene expres-
sion levels. Using replicated arrays, we show that compression acts as a form of
shrinkage for large absolute gene expression, toward the mean over the replicated
arrays.
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For simplicity, we have opted to code the two pairs of microarray images sep-
arately. However, a joint coding scheme may improve not only the lossless bit rate,
but the lossy performance as well. Near low intensity spots, lossy reconstruction
of the background region can have huge impact on the extracted information.
We control this by using higher precision in these regions. A joint coding scheme
can control the variance introduced by the compression by ensuring that the joint
loss is smaller than a specific value. The worst case scenario in separate coding is
that maximum errors of opposite sign are obtained in the two scans. This can be
avoided with a joint coding scheme.

Even though we believe the multilayer data structure should work for emerg-
ing array technologies, such as the protein array, modifications specific to the
makeup of a particular array and the application of the array in clinical diagnostic
situations might be required to overcome challenges not seen in the cDNA mi-
croarray case. For example, from articles in [1], it is not hard to imagine that the
antibody array technology would be one day applied in physician’s offices, and
an online version of the multilayer data structure would be needed and statistical
analysis or expression level extraction should be based on compressed objects to
speed up the computation or the waiting time of the patient.

Array technology is only one of the many imaging or recording technologies
which provide challenges and new opportunities for the compression or signal
processing community. More and more, we will be seeing the need to integrate
compression and other signal processing tasks with data or statistical analysis to
follow.
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Cancer genomics, proteomics,
and clinic applications

X. Steve Fu, Chien-an A. Hu, Jie Chen,
Z. Jane Wang, and K. J. Ray Liu

Preface

Throughout the history of medicine, many advances are derived from important
innovations in technology. For example, the invention of the X-Ray machine has
revolutionized medicine and pioneered modern imaging. The invention of the
microscope essentially redefined the field of pathology and microbiology. In the
past few decades, “technology explosion” has created an immense impact on both
biomedical research and clinical medicine. Tremendous strides were made with the
aid of numerous new technologies such as recombinant DNA methods, DNA se-
quencing, magnetic resonance imaging (MRI), polymerase chain reaction (PCR),
monoclonal antibodies, and so forth. Despite these, major hurdles remain. In the
field of cancer medicine, limited successes are still overshadowed by the tremen-
dous morbidity and mortality incurred by this devastating disease. It has become
increasingly important to integrate new technologies into both cancer research
and clinical practice if we hope to win the battle against cancer.

In this chapter, we will briefly review the molecular basis of cancer and our
current understanding. We will focus our attention on genomics and proteomics
of cancer. We believe that a thorough understanding of the DNA and protein com-
pliments of cancers that dictate the subsequent disease phenotype would eventu-
ally lead to breakthroughs. The impact of modern technology on cancer diagnosis,
prognosis, and treatment will also be discussed. We placed our emphasis on two
of the cutting-edge technologies, microarray technology and nanotechnology, as
they are clearly among the leading frontiers that will rapidly reshape biomedical
sciences and clinical oncology. Finally, we will discuss our current active research
to facilitate our understanding and management of cancer.

11.1. Understanding cancer

11.1.1. Overview

The financial and societal burden of common diseases such as cardiovascular,
metabolic (e.g., diabetes), and neoplastic diseases (cancer) is very significant.
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Table 11.1. Number of people affected and annual cost of common diseases in US popula-
tion. (Data derived from Center of Disease Control (CDC); http://www.cdc.gov/nccdphp/major
accomplishments.htm).

Disease Number of people affected (million) Cost (billion)

Cardiovascular disease 58 $287

Arthritis 43 $65

Diabetes 16 $98

Cancer 8.4 $107

Alzheimer’s disease 4 $152

Schizophrenia 2 $30

Osteoporosis 1.5 fracture/year $14

Cancer is the fourth most common disease and the second leading cause of death
in the United States, accounting for nearly one quarter of total human mortality.
More than 500 000 people die from some forms of cancer each year in the US.
The costs are not only borne by the patients and health-care system for medical
expenses, but also caused by lost productivity and premature death. Examples of
the magnitude of the costs are shown in Table 11.1. Therefore, beneficial and effec-
tive interventions in screening, diagnosis, prognosis, and treatment are desperately
needed.

There have been significant discoveries over the past several years in our un-
derstanding of the genetic basis of human cancer. Colorectal cancer (CRC), for
example, affected approximately 135 000 people in the US in 2001, resulting in
approximately 57 000 deaths [1]. CRC develops as the result of the progressive ac-
cumulation of genetic and epigenetic alterations that lead to the transformation
of normal colonic epithelium to adenocarcinoma. The loss of genomic stability
is a key molecular and pathophysiological step in this process and serves to cre-
ate a permissive environment for the occurrence of alterations in cancer-related
genes (e.g., tumor-suppressor genes and oncogenes). Alterations in these genes
(e.g., APC, K-RAS, and p53, as shown in Figure 11.1) appear to promote colon tu-
morigenesis by perturbing the function of signaling pathways or by affecting genes
that regulate genomic stability [2]. Epigenetics is generally defined as a modifica-
tion of the genome, inheritable by cell progeny, that does not involve a change
in DNA sequence. For example, genomic imprinting, a form of epigenetic inheri-
tance, is a modification of a specific parental allele of a gene, or the chromosome
on which it resided, in the gamete or zygote leading to differential expression of
the two alleles of the gene in somatic cells of the offspring. One mechanism of ge-
nomic imprinting is altered methylation of CpG islands, differentially methylated
regions of a tumor-suppressor gene [3]. It is evident that environmental factors
(e.g., smoking, diet, and exercise) can certainly contribute to a person’s risk of
cancer.

Again, using CRC as an example, it develops as the result of the progressive ac-
cumulation of genetic and epigenetic alterations that lead to the transformation of
normal colonic epithelium to adenocarcinoma, as shown in Figure 11.1. The fact
that CRC develops over 10–15 years and progresses through parallel histological
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Figure 11.1. Genetic model of colon tumorigenesis.

and molecular changes has permitted the study of its molecular pathophysiology
in more detail than other cancer types. From the analysis of the development of
CRC, three key themes concerning the molecular pathogenesis of cancer have been
established. First, cancer emerges via a multistep progression at both the molecular
and the morphologic levels (refer to Figure 11.1). Second, loss of genomic stability
is a key molecular and pathophysiological step in cancer formation. Third, hered-
itary cancer syndromes frequently correspond to germ-line forms of key genetic
defects whose somatic occurrences drive the emergence of sporadic colon cancers
[3]. We elaborate on these themes.

(1) Sequential events of CRC tumorigenesis. The evolution of normal epithelial
cells to adenoma, and then to carcinoma usually follows a predictable progression
of histological changes and concurrent genetic and epigenetic changes. These al-
terations provide a growth advantage and lead to clonal expansion of the altered
cells. Subsequent alterations with waves of clonal expansion then occur as a con-
sequence of progressive events that provide other growth advantages to the cells
such as loss of cell contact inhibition. The earliest identifiable lesion in colon-
cancer formation is the aberrant crypt focus (ACF). The true neoplastic potential
of this lesion is still undetermined, but it does appear that some of these lesions
can progress to adenocarcinoma and harbor mutations in associated genes (e.g.,
APC). Subsequent alterations in other genes then play a role in tumor growth and
the eventual acquisition of other malignant characteristics such as tissue invasive-
ness and the ability to metastasize (refer to Figure 11.1).

(2) Genetic alterations. The p53 protein was initially identified as a protein that
formed a complex with the SV40 large T-antigen and was originally suspected
to be an oncogene [4]. Subsequent studies demonstrated that p53 is a transcrip-
tion factor with tumor-suppressor activity. Human p53 structural gene is located
at chromosome 17p13.1 and mutated in more than 50% of primary human tu-
mors, including tumors of the gastrointestinal tract. p53 maintains genomic sta-
bility through the control of cell cycle progression and apoptosis (programmed
cell death) in response to genotoxic stress (e.g., UV, toxic chemicals). In CRC, p53
mutations have not been observed in colon adenomas, but rather appear to be late
events in the colon adenoma-carcinoma sequence that may mediate the transition
from adenoma to carcinoma. Furthermore, mutation of p53 coupled with loss of
heterozygosity (LOH) of the wild-type allele was found to coincide with the ap-
pearance of carcinoma in an adenoma, thus providing further evidence of its role
in the transition to malignancy [2]. LOH, or allelic imbalance, is generally defined
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as inactivation of the wild-type copy of a tumor-suppressor gene by deletion, gene
conversion, mitotic recombination (rearrangement), or loss of an entire chromo-
some. p53 normally serves to regulate cell growth and division in the context of
genotoxic stress. It is expressed at very low levels in cells until it is activated via
incompletely understood mechanisms by DNA damage as a result of gamma irra-
diation, UV irradiation, or chemotherapeutic agents. Its activation results in the
transcription of genes that directly regulate cell cycle progression and apoptosis.
This function of p53 to recognize DNA damage and induce cell cycle arrest and
DNA repair or apoptosis has led to p53 being called the “guardian of the genome.”
Thus, p53 normally acts as a tumor-suppressor gene by inducing genes that can
cause cell cycle arrest or apoptosis and also by inhibiting angiogenesis (new blood
vessel formation) [2].

(3) Genomic instability. In addition to having effects on cell biology, some ge-
netic and epigenetic alterations do not directly affect the cell biology of the tumor,
but instead result in the loss of genomic stability, which contributes to the accu-
mulation of mutations in oncogenes (K-RAS) and tumor-suppressor genes (e.g.,
p53). The timing of the loss of genomic stability, either chromosomal instability or
microsatellite instability, appears to be after adenoma formation but before pro-
gression to malignancy. One key concept that has emerged is that these alterations
involve specific molecular pathways in colon cancer formation, and the alterations
in these pathways presumably result in specific biological effects that promote car-
cinogenesis.

In summary, CRC genetics has yielded new insights and paradigms that have
broadly informed the studies of most solid tumors. Key insights that have been
contributed include the multistep nature of tumorigenesis, the central role of
tumor-suppressor pathways, the key role in cancer of mutational inactivation of
p53, and the role of DNA repair genes and genomic stability in cancer preven-
tion. Nonetheless, many challenges remain. The genesis of the metastatic pheno-
type that directly accounts for cancer lethality still remains a new frontier awaiting
further exploration. A mechanistic understanding of the basis of chromosomal
instability of the cancer genome has yet to be achieved. Nor is there yet an un-
derstanding of the genetic basis within the general population of individual sus-
ceptibility to colon or other cancers. Lastly, the translation of molecular genetics
to new diagnostic, prognostic, and therapeutic interventions remains a challenge.
The identification of these alterations has provided targets for the development of
new strategies for the prevention and/or treatment of colon tumors throughout
their progression from normal epithelium to carcinoma. Indeed, pharmaceutical
and biological agents that target alterations such as mutant p53 and oncogenic
K-RAS are currently in clinical trials (refer to our later discussion).

11.1.2. Genomics, Human Genome Project, and postgenomic era

Over the past few years, life science-based research has witnessed revolutionary
progress driven by high-throughput measurement technologies for biological
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Figure 11.2. Schematic plot of what is included in system biology.

molecules, with a shift from an individual approach (genomics, proteomics, etc.)
towards an integrated approach. The new integrated approach naturally led to the
emerging field of systems biology focusing on achieving a system-level understand-
ing of a biological unit, as shown in Figure 11.2. Next, we will give a brief overview.

11.1.2.1. Genomics

Genome, a term coined by Winkler in 1920 as a conjunction between gene and
chromosome, symbolizes the haploid chromosome set together with its inclusive
genes [5]. The Human Genome Project (HGP) with its principal goals of com-
pletely mapping and sequencing the human genome was conceived in 1984 and
implemented in 1990. It was principally completed in 2003 [6, 7, 8]. The “final”
completion of HGP will be the sum total of a number of genomic studies; namely,
(a) the physical genome: the gene map, control motif map, and full DNA sequence;
(b) the functional and structural genome: an understanding of how genes are or-
ganized and what they do; (c) the population genome: the variation of genes in
the human population; (d) the comparative genome: the comparison of the human
genome with other genomes; and (e) the integrative genome: the functional inter-
action of genes within the genome, among others to be invented in the future.

In this postgenomic era, researchers will access, analyze, and mine vast vol-
umes and multiple types of data on a grand scale. New “computer-based approach-
es” or “algorithm-based approaches” have appeared to tackle postgenomic chal-
lenges such as functional genomics, comparative genomics, proteomics, metabo-
lomics, pathway analysis, and systems biology.

Functional genomics has emerged recently as a new discipline employing ma-
jor innovative technologies for genome-wide analysis supported by information
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technology. The widely used term “functional genomics” has many different in-
terpretations. In one possible definition, functional genomics refers to the devel-
opment and application of global (genome-wide or system-wide) experimental
approaches to assess gene function by making use of the information and reagents
provided by genome sequencing and mapping [9]. It is also defined as the branch
of genomics that determines the biological function of the genes and their prod-
ucts, where this function can be defined at several levels, including biochemical,
cell biology tissue, organ, and organismal. Due to the function at different levels,
we can identify a set of “vertical” areas such as DNA arrays for expression profiling,
proteomics, structural genomics, high-throughput description of cellular systems,
and so forth.

Functional genomics is characterized by large-scale, massively parallel experi-
mental methodologies (generating data on gene expression, protein structure, pro-
tein interactions, etc.) combined with statistical and computational analysis of the
results, and by mining the results for particularly valuable information. The fun-
damental strategy in a functional genomics approach is to expand the scope of bio-
logical investigation from studying single genes or proteins to studying all genes or
proteins at once in a systematic fashion. Functional genomics promises to rapidly
narrow the gap between sequence and function and to yield new insights into the
behavior of biological systems.

There are many limitations of gene-expression profiling using genomics ap-
proaches. Previously, systematic investigation of gene expression using different
genomic methodologies such as subtractive hybridization, differential display, se-
rial analysis of gene expression (SAGE), and expression microarray have generated
some interesting and useful datasets. Although a systematic analysis of mRNA ex-
pression can provide a profile of a cell/tissue transcriptome, there may be marked
discrepancies between mRNAs and protein abundances [10]. Many changes in
gene expression might not be reflected at the level of protein expression or func-
tion. Moreover, quantitative mRNA level is insufficient to predict actual protein
expression because of posttranscriptional regulation and internal ribosome initi-
ation of translation [11, 12]. Finally, proteins are subjected to posttranslational
modifications and their stability (turnover rate) is regulated under varying phys-
iological conditions. Therefore, proteomics is an emerging field to the discovery
and characterization of regulated proteins or biomarkers in different diseases in
the postgenomic era.

11.1.2.2. Proteomics

Proteomics is the study of the protein complement of a cell. It is the proteome
and the collective functions of proteins that directly dictates the phenotype of the
cell. Proteomics strives to profile and characterize the entire proteome or a spe-
cific component (subproteome) [13, 14, 15]. In recent years, protein separation
methods coupled with various mass spectrometry (MS) technologies have evolved
as the dominant tools in the field of proteomics [16]. Technically, this is not triv-
ial and requires a number of sophisticated techniques in combination that involve
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Figure 11.3. Schematic presentation of proteomic methodologies.

sample identification and isolation, protein separation, identification by MS, and
functional characterization, as shown in Figure 11.3. The brief description of each
step is as follows.

Sample identification and isolation. It can be as straightforward as obtaining a tis-
sue biopsy or body fluids (e.g., blood/serum, saliva, urine) from an individual,
or it may involve the precise isolation of a cell or cluster of cells from a biopsy
specimen by using different micromanipulation (e.g., fluorescence-activated cell
sorter (FACS), laser capture microdissection). To increase both specificity and sen-
sitivity, acquired samples can be labeled in advance with radio-isotope precursors.
Once the sample has been obtained, it is subjected to protein isolation by remov-
ing DNA, RNA, carbohydrates, and lipids. Typically, this step is accomplished by
organic solvent (e.g., methanol) extraction. After protein isolation, two different
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tracks (track (A) and track (B) as indicated in Figure 11.3) can be used to generate
peptides for MS analysis as follows.

(i) Track (A)—direct protein separation. Traditionally, the separation of ex-
tracted proteins is accomplished by 1-dimensional (1D) or 2D polyacrylamide gel
electrophoresis (PAGE). Using 2D PAGE as an example, in the first dimension,
proteins are separated according to their isoelectric point (or net charge) in a tube
gel; whereas in the second dimension, proteins are separated according to their
molecular masses in the orthogonal direction using electrophoresis in a slab gel
containing sodium dodecyl sulfate. After gel staining, interested protein spots that
show altered intensity compared to the control are cut out and subjected to pro-
tease (typically trypsin) digestion. When first developed, 2D PAGE was believed
to provide unique and unequivocal protein separation with each “spot” on the
gel corresponding to a single protein. Using this approach, several thousand pro-
tein spots can be resolved in a single slab gel. However, subsequent analysis using
highly sensitive MS techniques has shown that this view is incorrect: many, if not
most, spots on a 2D PAGE contain multiple proteins. Furthermore, sensitivity of
2D PAGE is also limited by the staining method used to detect protein spots on
the gel. Thus, due to the lack of sensitivity and specificity, alternative methods (see
Track (B)) have been developed recently.

(ii) Track (B)—protein digestion and separation. The coupling of liquid
chromatography (LC) with MS has had a great impact on small molecule and
protein profiling, and has proven to be an important alternative to 2D PAGE. Typ-
ically, proteins are first digested by protease into small peptides then the derived
peptide mixture are separated by ionic or reverse phase LC and subjected to MS
analysis. LC-MS has been applied to large-scale protein characterization and iden-
tification. In addition to its role in protein profiling, LC-MS is perhaps the most
powerful technique for monitoring, characterization, and identification of impu-
rities in pharmaceuticals. Because of the complexity of any given proteome and
the separation limits of both 2D PAGE and LC, only a fraction of that proteome
can be analyzed. An alternative approach is to reduce the complexity prior to pro-
tein separation and characterization. Many of these approaches involve LC meth-
ods, which utilize solid- and liquid-phase media to separate proteins according to
specific biochemical properties (e.g., molecular mass, isoelectric point, hydropho-
bicity). These LC separations can be performed in series (or multidimensional)
to improve resolving power. Furthermore, if one is interested in a specific class
of proteins (e.g., those bearing phosphate group(s)) or proteins with posttrans-
lational modification (e.g., glycosylation), unique columns that contain a matrix
specific for these functional groups can be used to separate these proteins from all
others by affinity chromatography. For many of the LC approaches, proteins are
subjected to proteolytic digestion to afford a multitude of peptides derived from
each protein.

Protein identification by MS. Once separated by either track, the resulting peptides
require identification. Currently available methods all use some form of MS. MS
is a rapidly evolving methodology that converts proteins or peptides to charged
species that can be separated on the basis of their mass-to-charge ratio (m/z).
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These methods have been considered a major advance in the identification of
polypeptides from the proteome. John Fenn and Koichi Tanaka shared the No-
bel Prize in chemistry in 2002 for their contributions to the MS field [17]. MS
requires that proteins or peptides are first converted to gas-phase ions within a
specific region of the instrument, the ionization source. The ions are then sepa-
rated with a mass analyzer on the basis of their m/z. The resulting mass spectra
are represented as plots of intensity versus m/z. There are several different types
of MS ionization methods currently available, including surface-enhanced laser
desorption ionization (SELDI), electrospray ionization (ESI), and matrix-assisted
laser desorption ionization (MALDI), which have made it possible to analyze large
biomolecules, such as peptides and proteins. Another key developments were the
invention of the time-of-flight (TOF) MS and relatively nondestructive methods
to convert proteins into volatile ions. Using MALDI-TOF and ESI-TOF as exam-
ples, essentially, the resulting charged peptides that are detected in MALDI or ESI
can next be subjected to high-speed collision with an inert gas, such as argon,
yielding smaller charged fragments that can be pieced together to reconstruct pep-
tide sequences. Peptide sequences identified with these methods must next be an-
alyzed by comparison with known database sequences to determine the unequivo-
cal identity of the protein. When MALDI is used, the peptide samples are solidified
within an acidified matrix, which absorbs energy in a specific UV range and dissi-
pates the energy thermally. This rapidly transferred energy generates a vaporized
cloud, thereby simultaneously ejects the analytes into the gas phase where they ac-
quire charge. A strong electrical field between the MALDI plate and the entrance of
the MS tube forces the charged analytes to rapidly reach the entrance at different
speeds and times based on their m/z ratios. A significant advantage of MALDI-
TOF is that it is relatively easy to perform protein or peptide identification with
moderate throughput (96 samples at a time). MALDI-MS provides a rapid way to
identify proteins when a fully decoded genome is available because the deduced
masses of the resolved analytes can be compared to those calculated for the pre-
dicted products of all of the genes in the human genome.

The ESI method is also widely used to introduce the mixtures of peptides into
the biological MS instrument. The unique feature of ESI is that at atmospheric
pressure it allows the rapid transfer of analytes from the liquid phase to the gas
phase. The spray device creates droplets, which once in the MS go through a repet-
itive process of solvent evaporation until the solvent has disappeared and charged
analytes are left in the gas phase. Compared with MALDI, ESI has a significant
advantage in the ease of coupling-to-separation techniques such as LC and high-
pressure LC (HPLC), allowing high throughput and online analysis of peptide or
protein mixtures.

Currently, proteomics analysis is rapidly switching to MALDI-TOF or ESI-
TOF coupled with tandem MS, that is, MS/MS. Typically, a mixture of proteins is
first separated by LC followed by MS/MS. In this procedure, a mixture of charged
peptides is separated in the first MS according to their m/z ratios to create a list of
the most intense peptide peaks. In the second MS analysis, the instrument is ad-
justed so that only a specific m/z species is directed into a collision cell to generate
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“daughter” ions derived from the “parent” species. Using the appropriate colli-
sion energy, fragmentation occurs predominantly at the peptide bonds such that
a ladder of fragments, each of which differs by the mass of a single amino acid, is
generated. The daughter fragments are separated according to their m/z, and the
sequence of the peptide can then be predicted by comparing the databases.

Radioisotope labeling-assist proteomics. Once proteins in a given proteome have
been identified, their relative abundance levels need to be determined, especially
if one purpose of the experiment is to determine the comparative abundance of
a protein or proteins in normal versus diseased states. Without using 2D PAGE,
direct protein quantization based on MS signals remains a challenge because of
the nonlinear correlation between protein quantity and MS ionization efficiency
[13, 18]. Therefore, a number of isotope-tagging methods such as isotope-coded
affinity tag (ICAT), have been introduced for providing MS recognizable mark-
ers/references in protein quantification [19]. To determine relative species abun-
dance, the ICAT method uses a pair of reagents, containing a biotin moiety and
a linker chain with either eight deuterium or eight hydrogen atoms, to differen-
tially label protein samples on their cysteine residues. Two samples, each labeled
with the ICAT reagent carrying one of the two different isotopes, were mixed and
subjected to site-specific protease digestion. The labeled peptides containing cys-
tine can be highly enriched by binding the biotin tags to streptavidin, resulting
in a greatly simplified peptide mixture. Characterization of the peptide mixture
was carried out by the LC-MS approach as described above. Quantization of dif-
ferential protein expression level can be achieved by comparing the areas under
the doublet peaks that are separated by eight mass units. Thus, the ICAT method
works well for the differential analysis of many proteins in a complex mixture: one
of natural abundance and the other isotopically labeled, quantitative differences
in abundance of proteins between the two different samples can be readily de-
termined. The obvious limitation of the ICAT labeling approach is that a protein
has to contain at least one cysteine residue to be detected [14]. Another labeling
strategy, amino-acid-coded mass tagging (AACT) with stable isotopes through in
vivo culturing [15], provided an accurate and comprehensive approach for quan-
titative protein analysis on a proteome-scale [20]. For example, we have utilized
the AACT strategy coupled with both LC-MS/MS and MALDI-TOF MS to pro-
file global protein expression in p53-induced apoptosis in a human CRC cell line
that harbors an inducible p53 gene (GU, Molecular and Cellular Proteomics, in
press).

Proteomics in cancer research. In cancer, the proteome of the cancer cells experi-
ence continuous and dynamic alterations [16]. Individual protein changes can be
functionally benign, synergistic, or detrimental, but collectively, they can result in
malignant phenotypes. However, the changes to the proteome can also be protec-
tive, resulting in systemic stress responses. In general, cancer cells have defects in
the regulation of either cell cycle or apoptosis (programmed cell death), enabling
them to gain survival advantages and immortality. Studies are designed to uncover
the molecular bases of cancer development and to restore functional cell cycle
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arrest and apoptosis in cancer cells. Proteomics has been used in understanding
cell cycle and apoptosis. Using apoptosis as an example, this process is an essential
and highly regulated physiological function required for normal development and
maintenance of tissue homeostasis in all multicellular organisms. The function of
this process is to eliminate unwanted or injured cells with characteristic cellular
and biochemical hallmarks. Dysregulation of apoptosis is evident in many human
diseases including cancer, neurodegenerative disorders, and AIDS. p53, a tumor-
suppressor protein and a transactivating factor, plays a pivotal role in regulating
cell cycle arrest, differentiation, and apoptosis. The elevated expression of p53
leads to mitochondrial-mediated apoptosis. p53-induced apoptosis plays a critical
role in the suppression of tumorigenesis. LOH and mutations in p53 were found in
more than 50% of all human tumors. Previously, systematic investigation of p53-
induced apoptosis has been explored by four different genomic methodologies,
namely SAGE, microarray, differential display, and subtractive hybridization. Ap-
proximate 150 genes have been shown to be transcriptionally upregulated by p53
[10]. A proteomic study compared the proteome of a human CRC cell transfected
with inducible p53 (DLD-1.p53) with that of the control DLD-1.vector cell line
(Gu, Molecular a Cellular Proteomics, online publication). Using AACT-assisted
MS, the group has systematically identified those proteins upregulated by the p53-
mediated apoptosis. In cell culturing, the deuterium-labeled (heavy) amino acids
were incorporated in vivo into the proteome of the DLD-1.p53 cells at the time
of p53 induction, whereas the DLD-1.vector cells were grown in the unlabeled
medium. In high throughput LC-ESI MS/MS analyses, the AACT-containing pep-
tides derived from the mixture of equal numbers of DLD-1 and DLD-1.p53 cells
were paired and their relative isotopic peak intensities gave the relative differen-
tial protein expression levels. In response to p53 overexpression, those proteins
that changed their level of expression were found to be associated with six distinct
function categories: cell cycle arrest and p53 binding, protein chaperoning, plasma
membrane dynamics, stress response, antioxidant enzymes, and anaerobic glycol-
ysis. This quantitative proteomic dataset suggests that the p53-induced apoptosis
involves the activation of multiple pathways that are glycolysis relevant, energy de-
pendent, oxidative stress mediated, and possibly mediated through interorganelle
crosstalks. This profiling provides a new insight into a global view of p53-induced
apoptosis, as shown in Figure 11.4.

Serum-based biomarkers identified through clinical proteomics. Clinical proteomics
is the application of proteomics specific to the field of medicine. It encompasses
the translation of proteomic technologies and methods into the production of di-
agnostics and therapeutics for the direct application to human health. Instead of
using cancer tissues or cells, development on proteomic strategy for analysis of
body fluids (e.g., serum, urine, and saliva) for biomarkers is also pivotal [21]. For
example, tracking and monitoring the disease-induced modifications and increase
of prostate-specific antigen (PSA) in serum of prostate-cancer patients, is a gold
standard for diagnosis of prostate-cancer progression. Another example is a rev-
olutionary approach for the early diagnosis of ovarian cancer using SELDI-MS.
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Figure 11.4. Functions of p53 in apoptosis. p53-regulated proteins and pathways in apoptosis were
identified by genomic and proteomic approaches and can be grouped into five major “intermediate”
functions; cell cycle arrest, membrane alterations, reactive oxygen species (ROS) generation, glycolysis,
ATP generation and transport, and signaling; and three major “downstream” functions; stress response,
mitochondrial membrane permeability (MMP) induction, and organelle crosstalk. Some representa-
tive proteins of each group are shown in parenthesis.

A clinical proteomics program jointly run by the NCI and the FDA developed a
diagnostic test that is 100% sensitive and 95% specific in detecting ovarian can-
cer. Rather than looking for a specific protein, the group analyzed blood/serum
samples for multiple protein biomarkers and found a “cancer signature.” In other
words, this proteomic pattern analysis relies on the pattern of proteins observed
and does not rely on the identification of a traceable biomarker. Because of the
high-throughput nature of this technique, hundreds of clinical samples per day can
be analyzed utilizing this technology, which has the potential to be a novel, highly
sensitive diagnostic tool for the early detection of cancer. Nevertheless, some sci-
entists have reservations on using serum directly because serum is a complex, ever
changing source of proteins. A marker found there may not be traced to organs
easily, and the marker might be a body’s systemic response to cancer instead of a
specific signal derived from the tumor itself.

In summary, proteomics, the systematic evaluation of changes in the protein
constituency of a cell, is more than just the generation of lists of regulated pro-
teins that increase or decrease in expression as a cause of physiological change
or consequence of disease. The ultimate goal is to characterize the information
flow through protein pathways that interconnect the extracellular microenviron-
ment with the control of gene transcription. The nature of this information can
be a cause or a consequence of disease processes. Applications of proteomics to
cancer research are limited at the current time, but are rapidly evolving. Can-
cer biologists have made the first attempts to utilize proteomics for diagnostic
and prognostic purposes. Studies of proteomic patterns in sera of patients with
breast or ovarian cancer provide examples of this strategy. One need not know
the function of a protein when using this approach; rather, proteomic profiling
using sera offer the possibility of identifying simple associations for diagnosis,
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Figure 11.5. Typical ways of cancer diagnosis, prognosis, and treatment.

prognosis, and response to therapies. Clinical proteomics involve the use of pro-
teomic methodologies at the bedside. The analysis of human cancer as a model
for how proteomics can have an impact at the bedside is now employing several
new proteomic technologies that are being developed for early detection, ther-
apeutic targeting and patient-tailored therapy. Additionally, proteomics pushes
technical limits as it attempts to provide information to complete our under-
standing of how the cell, tissue, organ or in some cases the whole system adapts
during diseases. MS-based approaches have emerged as powerful tools for the
genome-wide profiling of cellular or organismal proteins. However, proteomic
analysis is currently limited by sensitivity, specificity, and throughput. Sensitivity
is rapidly improving, with detection at the attomole (10−18 mol) level achieved
by current MS methods, although this benchmark is not yet a routine. Speci-
ficity continues to improve, especially with application of multidimensional LC
methods in place of 2D PAGE, and looking for patterns of biomarkers rather than
single species. Finally, high throughput remains a challenge in proteomics anal-
ysis, however, some newer devices are designed to accommodate multiplexing of
samples.

11.2. Advances in cancer diagnosis and prognosis

It is well known that the accumulation of genetic changes within cells could lead
to cancer, and the activation of many genes are critical to the process of carcino-
genesis. Therefore, an understanding of these genetic changes would be essential
for cancer prevention, diagnosis, prognosis, and treatment. This also poses one of
the key challenges now facing the cancer community. Although there is currently
no cure for most forms of cancer, many options including surgery, chemotherapy,
radiotherapy, and others novel approaches can be effective in prolonging survival,
preventing metastasis, and improving patients’ quality of life. Traditional ways of
diagnosing cancer and predicting prognosis involve clinical examination in com-
bination with pathologic evaluation (examining features of cancer under micro-
scope), laboratory testing (blood works, etc.), and imaging studies (X-rays, etc.),
as shown in Figure 11.5.
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While clinical examination will always be one of the most critical and indis-
pensable parts of establishing cancer diagnosis and prognosis, emerging new tech-
nologies have significantly improved its accuracy. This is especially true with cellu-
lar/molecular tests and the newer generations of radiographic imaging studies. In
this section of the chapter, we will discuss some of the important advances in tech-
nology that can be applied to cancer diagnosis and prognosis. We will first review
some of the current technologies in laboratory testings, radiographic imaging, and
nuclear medicine briefly. We will then focus on using microarray technology for
cancer diagnosis and prognosis, a leading technology that is rapid and radically
changing the landscapes of cancer research and clinical practices.

11.2.1. Current techniques in cancer diagnosis and prognosis

11.2.1.1. Radiographic imaging and nuclear medicine

Various imaging studies are integral parts of a cancer workup. Over the past two
decades, cancer imaging has relied heavily on cross-sectional studies. Computer-
ized tomography (CT) is the single most used imaging modality for this purpose.
Identification of disease processes is largely dependent upon the degree of struc-
tural changes. While this strategy is still widely used in practice, there are obvious
limitations. For example, cancers may not always be obvious anatomically and
therefore can be missed. Similarly, viable cancer residuals and scar tissues left be-
hind after treatment cannot always be distinguished accurately just by the struc-
tural image. In the past decade, many new imaging techniques are emerging that
have crossed beyond the traditional boundaries. The trend is shifting from a pure
anatomical evaluation toward incorporating metabolic information into imaging
studies (also referred to as functional imaging). To illustrate this, we discuss some
of these new imaging modalities. Positron emission tomography (PET) imaging
is a form of nuclear imaging that is extremely useful in cancer management [22].
PET takes advantage of the fact that cancer cells have higher metabolic rates and
take up greater amounts of glucose than surrounding normal tissues. It employs an
analog of glucose, [18F]-2-fluoro-2-deoxy-d-glucose (FDG). FDG enters into tu-
mor cells via glucose transporter and is phosphorylated by intracellular enzymes.
Unlike regular glucose, FDG cannot be metabolized by glycolytic enzymes in the
cells, and is “trapped” in the cells. The accumulation of FDG in tumor cells there-
fore allows the detection of tumors as high intensity signals. In contrast, scar tissue
and some other benign lesions are not FDG avid (the intensity of the signal is usu-
ally similar to that of the background) and therefore can be distinguished from
malignant tumors. Magnetic resonance spectroscopy ( MRS) is another example.
Using existing magnetic resonance technology, it can analyze the chemical com-
position in an area of interest, such as a lesion, to assist in diagnosis [23]. There
are three important spectroscopic signals: N-acetylaspartate, choline, and lactate.
By analyzing the signal patterns detected with MR spectroscopy, physicians can
narrow down the differential diagnoses and select their clinical approaches. Cur-
rently, MR spectroscopy is increasingly utilized as a diagnostic technique for brain
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tumors. This technique may improve the differentiation of locally infiltrative brain
tumors from other types of benign, well-circumscribed intracranial lesions. It can
also help differentiate between neoplasm and other central nervous system pro-
cesses such as infections or necrosis. Potential application of MRS in other types
of malignancies includes head and neck cancer and lymphoma. Areas of research
for applications of MRS in nonmalignant diseases such as strokes and dementia
are also ongoing. It is not only worth mentioning that some of these new imaging
modalities can be used for detecting and evaluating cancer, but can also be used to
monitor drug penetration and distribution in solid organs or tissues.

11.2.1.2. Laboratory tests using cellular and molecular tools

Among many approaches in assessing a patient’s illness, including that of cancer
patients, one of the initial evaluations invariably involves obtaining some form
of laboratory data. This can be as easy as a simple blood draw, or can be more
complicated such as obtaining a bone marrow biopsy. For several decades, physi-
cians and scientists were trying to identify specific “tumor markers” in patients’
blood so as to help diagnose and prognose cancer. Despite limited success in do-
ing so, a majority of tumors lack specific markers. Up to now, only a handful of
tumor markers are routinely used, for example, alpha fetoprotein (AFP) for hep-
atocellular carcinoma and germ cell tumor, beta subunit of human chorionic go-
nadotropin (beta-HCG) for choriocarcinoma, PSA for prostate cancer, and CA
125 for ovarian cancer, and so forth. Despite their wide clinical application, the
lack of sensitivity and specificity limit their usefulness. More recently, newer gener-
ations of laboratory testing are becoming available as a result of new technologies.
Several examples, including the PCR and flow cytometry, will help illustrate these
advances. PCR, the Nobel Prize winning technology, has revolutionized modern
science. Here we will illustrate its use in cancer medicine. In chronic myeloge-
nous leukemia (CML), a type of leukemia affecting approximately 5 000 people
annually, claims approximate 2, 500 lives per year. More than 95% of these pa-
tients have a molecular signature called Philadelphia chromosome. This is caused
by swapping segments of chromosome 9 with those of chromosome 22. The de-
tection of this feature is not only important for CML diagnosis, but also critical
in evaluation of response to treatment and detection of recurrence. Traditionally,
chromosome changes are detected via a special stain and subsequent microscopic
examination. As a result, there are limitations in terms of the sensitivity of this
test. With the emergence of PCR, even a few cells left behind after therapy can be
detected [24]. Similarly, other newer technologies, such as flow cytometry and flu-
orescence in situ hybridization (FISH), have significantly advanced the diagnosis
of cancer [25, 26]. In flow cytometry studies, with the aid of special antibodies
against a panel of cell surface markers and a special machine, doctors can now cat-
egorize cancers according to patterns of cell surface markers, making it far more
reliable than simple morphology [27]. There are many other examples for appli-
cations of newer laboratory technologies in cancer management. We will dedicate
the majority of the following section to expression array analysis.
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11.2.2. Expression microarrays

There are great needs in the pursuit of better ways to predict the outcomes of
disease, especially, in the field of cancer medicine. Recently developed microarray
techniques present unique opportunities to investigate gene function on a genomic
scale, and provide a versatile platform for utilizing genomic information to bene-
fit human health [28]. In particular, gene-expression microarray technology is be-
coming an essential tool in exploring cancer development. In this subsection, we
will review the basic principles of the microarray technology as well as its applica-
tions in cancer research and management. We will highlight the current advances,
mostly using breast cancer as an example.

Microarrays are used to survey the expression of thousands of genes in a single
experiment. Applied creatively, they can be used to test and generate new hypothe-
ses. As the technology becomes more accessible, microarray analysis is finding ap-
plications in diverse areas of biology and medicine. Microarrays are a method for
visualizing genes likely to be expressed in a particular tissue at a particular time
under a particular set of conditions. The output of a microarray experiment is
either called a gene-expression profile or a sample molecular profile.

The principles of microarray applications. A microarray, or “gene chip,” is an or-
derly arrangement of oligonucleotide probes, some companies use 25-mer, some
use 60-mer, attached to a solid support, measuring the expression level of a gene
by determining the amount of messenger RNA that is present [29]. Microarray
facilitates large-scale surveys of gene expression in which transcript levels can be
determined for hundreds, thousands, or even tens of thousands of genes in a sin-
gle experiment simultaneously. With the latest Affymetrix chip designs, the entire
genome (less than 45 000 genes) can be measured on a single array. All microarray
experiments rely on the core principle that transcript abundance can be deduced
by measuring the amount of hybridization of labeled RNA to a complementary
probe. The idea of a microarray is simply to lay down a field of thousands of these
probes in, where each probe represents the complement of at least a part of a tran-
script that might be expressed in a tissue. Once the microarray is constructed,
the target mRNA population is labeled, typically with a fluorescent dye, so that
hybridization to the probe spot can be detected when scanned with a laser. The
intensity of the signal produced by 1000 molecules of a particular labeled tran-
script could be twice as bright as the signal produced by 500 molecules and, simi-
larly, that produced by 10 000 molecules half as bright as one produced by 20 000
molecules.

So a microarray is a massively parallel way to survey the expression of thou-
sands of genes from different populations of cells. An illuminated microarray is
shown in Figure 11.6. Trivially, if fluorescence is observed for a gene in one popu-
lation but not another, the gene can be inferred to be on or off, respectively. With
appropriate replication, normalization, and statistics, though, quantitative differ-
ences in abundance as small as 1.1-fold can readily be detected using Agilent chip
when having huge sample size. The output of all microarray hybridizations is ul-
timately a series of numbers, which covers a range of three orders of magnitude,
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Figure 11.6. An illuminated Agilent microarray. A typical dimension of such an array is about 1 inch
or less, the spot diameter is of the order of 250 µm to submicron for lithography-dependent processes,
for some microarray types can be even smaller.

from perhaps less than one transcript per cell to many thousands of transcripts per
cell. It is the comparison of gene-expression profiles that is usually of most interest.
This is because the visualization is done at the level of transcript abundance, but
just seeing a transcript does not guarantee that the protein is produced or func-
tional. If, however, a difference in transcript abundance is observed between two
or more conditions, it is natural to infer that the observed difference might point
to an interesting biological phenomenon.

Many different design formats of microarrays exist, and the types of gene-
expression assays include SAGE, complementary DNA (cDNA) arrays (e.g., Stan-
ford University), fiber optic arrays (e.g., Illumina), short oligonucleotide array
(e.g., Agilent inkjet), and long oligonucleotide arrays (e.g., Affymetrix). There are
three main different methods for creating the microarray: (1) spotting long DNA
fragments, (2) spotting prefabricated oligonucleotides, and (3) in situ (onchip)
synthesis of oligonucleotides [30]. A presentation of type-1 is cDNA arrays, and
type-2 is typically represented by Affymetrix arrays and Agilent arrays. The arrays
require different targets, as cDNA is used for competitive hybridization. Spotted
arrays make use of a complex biochemical-optical system to perform robotic spot-
ting of cDNA probes that represent specific genes. Also, the design of probes is
different, for instance, cDNA array uses the whole DNA sequence to prepare the
probes, while oligonucleotide array uses a set of probes made by a segment of
about 20 nucleotides. In comparison, the technology for spotting arrays is simpler
than that for in situ fabrication, while oligonucleotide array is much more accurate
and precise. Comparing arrays of prefabricated oligonucleotides and in situ syn-
thesis of oligonucleotides, the latter has advantages over deposition of presynthe-
sized oligonucleotides. Therefore, arrays of the third type are most widely applied.
Two popular microarray platforms of this type include the Affymetrix array of
25-mer oligonucleotide probes, and the Agilent microarray consisting of 60-mer,
in situ synthesized oligonucleotide probes. The Affymetrix arrays are based on a
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photolithographic process, where the array is formatted by photolithographic syn-
thesis of oligonucleotides [31]. The Agilent arrays are based on an in situ oligonu-
cleotide synthesis method in which the inkjet printing process is modified to ac-
commodate delivery of phosphoramidites to directed locations on a glass surface
[32]. In both spotted and oligonucleotide arrays, the purified mRNA could be
labeled by fluorescence or radioactivity, and then hybridized to the microarrays.
Also, an imaging system is used to scan the hybridized arrays. After image process-
ing, the normalization process is applied to each microarray.

Based on the input to the microarray, there are three applications of microar-
ray technology: gene-expression profiling, genotyping, and DNA sequencing [29].
In the first case, mRNA extracted from a biological sample is applied to the mi-
croarray, and the gene-expression profile, the level of expressions of genes in that
sample, is obtained. In the second case, a biological sample’s DNA amplified by a
PCR is hybridized to the microarray, and the genotype for genetic markers across
the genome is determined [33]. In the third case, the DNA is applied to specific
“sequencing” microarray, and thousands of base pairs of DNA are screened for
polymorphisms in genes whose sequences are known [34].

The sophistication of microarray analysis blurs the distinction between hy-
pothesis testing and data gathering very much. Hypothesis generation is just as im-
portant as testing, and very often expression profiling provides the necessary shift
in a perspective that will fuel a new round of progress. In many gene-expression
profiling experiments, the hypotheses being addressed are genome-wide integra-
tive ones rather than single-gene reductionist queries. In general, without a hy-
pothesis, only the most obvious features of a complex dataset will be seen, while
clear formulation of the scientific question undoubtedly fuels better experimental
design. And in some cases, the results of a microarray screen that was initially de-
signed as an effort at cataloging expression differences are so unexpected that they
immediately suggest novel conclusions and new areas of inquiry.

Investigators are interested not just in asking how large the magnitude of an
expression difference is, but whether it is significant, given the other sources of
variation in the experiment. Similarly, we might want to evaluate whether some
subset of genes show similar expression profiles and so form natural clusters of
functionally related genes. Or, we may combine expression studies with genotyp-
ing and surveys of regulatory sequences to investigate the mechanisms that are
responsible for similar profiles of gene expression. Finally, all of the expression in-
ferences must be integrated with everything else that is known about the genes,
culled from text databases and proteomic experiments and from the investigator’s
own stores of biological insight. For instance, some genes are highly regulated at
the transcriptional level and have low variability while others are highly variable
from cell to cell but are highly invariable at the protein level.

The applications of microarrays in cancer study. In medical practice, it is very of-
ten that the strategies for treatment are tailored according to features that predict
the disease outcome and response to a particular treatment strategy. It is therefore
critical to use the most reliable predicting features available. Pathology of cancer
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(histopathology) as well as clinical presentations such as tumor involvement of
the lymph nodes and distant organs are some of the most useful ways used to pre-
dict cancer outcome. However, not all cancers presented at the same stage behave
in the same way; better predicting tools are clearly needed. Microarrays offer a
new way of categorizing cancers according to their molecular features (e.g., pat-
terns of genes). The ultimate goal would be to use a small set of genes placed on a
commercial available array to evaluate the molecular profile of cancer and predict
prognosis and design treatment strategies accordingly. Moving cancer diagnosis
away from visually based systems to such molecular-based systems is a major goal
of the cancer research community.

The rationale behind this proposition is based on the belief that the overall
behavior of a cancer is determined by the expressions of the genes that are modi-
fied. Microarray technology allows scientists to measure the activity of thousands
of genes in a given cancer at one time. The active presence of specific genes can
then be used by researchers to more specifically profile the tumor, and to predict
the aggressiveness of the malignancy. The combination of gene-expression pro-
filing and advanced bioinformatics is beginning to show promise in analyses of
hitherto indistinguishable disease states. For patients who, on conventional clin-
ical and histopathological criteria, have the same stage and grade of cancer, this
refinement in tumor classification allows more accurate prediction of the course
of disease. Using microarrays in human cancer study attracts increasing interest,
the increasing availability and maturity of this technology has been leading to an
explosion of cancer profiling studies, and it has the potential of impacting and
revolutionizing the diagnosis, prognosis, and treatment of cancer patients.

The following section gives some specific examples of microarray’s applica-
tions in cancer management to highlight the current advances and applications of
microarray technology in cancer research, with a focus on breast cancer.

(a) Molecular classification of tumors. Tumor classification has been primarily
based on morphological appearance, and has historically relied on specific biologi-
cal insights. Serious limitations are associated with such an approach, since tumors
with similar histopathological appearance can follow significantly different clinical
courses and show different responses to therapy [35]. Particularly, the facts that
breast tumors consist of many cell types and breast carcinoma (BC) cells them-
selves are morphologically and genetically diverse, make accurate classification of
human breast tumors very difficult [36]. Recent genomic analysis approaches of-
fer great promise for tumor classification based on gene expression monitoring by
microarrays.

A hierarchical gene-clustering algorithm was used to identify gene-expression
patterns in human mammary epithelial cells growing in culture and in primary
breast tumors [36]. Clustering is defined as unsupervised classification of patterns
into groups. It was found that systematic characterization of gene-expression pat-
terns is useful to classify breast tumors into categories associated with cell types
and response to specific physiological and pathological perturbations. The poten-
tial of using the microarray data for identifying previously uncharacterized tumor
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subgroups has been shown in [35, 37]. A class discovery procedure, based on a
technique called self-organizing maps (SOMs), automatically discovered the dis-
tinction between different leukemia groups, that is, acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL) [35]. SOM is an unsupervised neural
networks technique. Alizadeh et al. [37] extended this class discover approach to
identify two molecularly distinct categories of diffuse large B-cell lymphoma (DL-
BCL). Clustering analysis on microarray profiling has also been employed to dis-
tinguish the cancerous and noncancerous specimens [38], where a two-way clus-
tering method based on the deterministic-annealing algorithm was developed to
organize the data in a binary tree. cDNA array was used for classifying normal
breast epithelial cells, invasive cells, and metastatic cells [39]. An analysis pro-
cedure was presented in [40] for classifying (predicting) human tumor samples
based on microarray gene expressions. The proposed procedure involves dimen-
sion reduction using partial least squares (PLSs) and classification using logistic
discrimination (LD) and quadratic discriminant analysis (QDA). Artificial neural
networks (ANNs) were applied to build cDNA- and oligonucleotide-based tumor
classifiers capable of deciphering the identity of most human cancers [41].

The above results show that genomic analysis based on gene-expression mi-
croarray data provides a systematic and unbiased approach to defining each in-
dividual property of a tumor and understanding its diagnosis and clinical behav-
ior. However, it is worth mentioning that we are still far from a complete under-
standing of the diversity of many malignancies and there are potential limitations
of the microarray approaches, since human tissues are complex and highly vari-
able in their histology (e.g., the specimens may represent mixtures of cell types).
For example, the two new DLBCL groups obtained in [37] were not heterogenic
monomorphic (identical morphologically). Therefore, microarray technology is
not meant to replace other classical technologies in cancer study. Instead, microar-
ray data will be integrated with other data sources (e.g., clinical data, drug sensi-
tivity data, and data from new techniques such as tissue array) for this purpose.
With the vast amount of work still to be done, microarray technology will have an
increasingly important role in cancer study.

(b) Prediction of prognosis and tumor response to specific therapies. Breast cancer
is a heterogeneous disease encompassing different morphological types and clini-
cal presentations. However, these specificities are currently difficult to incorporate
into decision making with respect to therapy, and some simple prognostic fac-
tors, such as tumor size, lymph node involvement, grade, and hormonal receptor
status, are commonly used. These currently used prognostic factors can only im-
perfectly predict therapeutic outcome. Microarray technology can, in principle,
provide many types of information to help prediction of prognosis and tumor re-
sponse to specific therapies in cancer treatment, and thus is expected to have a
revolutionary effect on cancer clinical practice by leading to a personalized, safer,
and more efficient approach to therapy.

Information generated from expression microarray could help reduce unnec-
essary therapy in patient with very good prognosis, sparing patients’ exposure to
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an ineffective and often toxic treatment, reducing the overall treatment cost, and
planning treatments in accordance with the probability of success in patients. Ex-
amples include identifying tumors that are likely to be responsive to specific cancer
treatments and identifying individuals who are likely to experience toxicity or drug
metabolism effects (i.e., mutations in p450).

Gene-expression profiling can be used for predicting responders and non-
responders to chemotherapy [42]. Systemic chemotherapy substantially reduces
the risk of death in breast cancer patients. So far, there are no efficient methods to
distinguish between responders and nonresponders. In [42], with a list of discrim-
inatory genes and their associated t values, a linear classifier based on the com-
pound covariate predictor method was developed to predict response to docetaxel
chemotherapy (e.g., responsive or resistant).

In addition to studying genes, it is now possible to look at the array of proteins
that leave complex patterns in the blood and urine of cancer patients. Researchers
have reported promising results for a potential test to detect ovarian cancer in a
single drop of blood. In the initial experimental group, all 50 ovarian cancer pa-
tients in the test group were identified correctly, including 18 that were early stage
and thus highly curable. The test also correctly identified 63 of 66 noncancerous
samples [42, 43]. If these results hold up in a larger sample, it will be a great step
forward in the early detection of ovarian cancer.

The above research suggests that gene- or gene-product expression arrays
could be used to predict the effectiveness of treatment. However, further studies
are needed to refine the molecular expression fingerprint by which to portrait each
tumor and predict the response.

(c) Drug development and identification of therapeutic targets. The potentials of
molecular profiling by microarrays goes far beyond diagnosis. It also provides re-
searchers with clues on how to design therapies to target tumors at their most
vulnerable points—the genes or proteins that are deranged in cancer. Biochemis-
try-based approach has traditionally served the purpose of drug discovery and
development. Although the advent of molecular biology changed the process of
drug discovery, some major barriers remain in place [39]. The recent microarray
technology provides promise to surmount these barriers, and can be essential to
help drug discovery and development.

Microarrays are powerful tools for investigating the precise mechanisms of ac-
tion for a drug. For instance, microarrays can be used to screen for changes in gene
expression following exposure of tumor cells to drugs. In [44], by combining the
gene-expression data with molecular pharmacology data, the authors constructed
the relationships between a set of 188 drugs based on the transcriptional activity
pattern of the drugs against the NC160 cell lines. A yeast model system was used
to validate drug targets, identify secondary drug targets [45], and to investigate the
mechanism of drug action [46].

Expression microarray technology can be used to generate information rapid-
ly for the identification and validation of novel therapeutic targets. For instance, in
[47], the expression profiles of over 60 000 genes were measured for 15 infiltrating
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ductal carcinoma (IDC) and 13 normal human breast tissues. Fold-change com-
parison between normal and IDC tissue samples identified 830 candidate genes.
Further analysis utilizing principle components analysis and hierarchical cluster-
ing revealed tissue-specific candidate targets. This study provides a rational basis
for the identification of therapeutic targets and diagnostic markers using microar-
ray technology.

In summary, the results that have been achieved so far clearly demonstrate the
feasibility of cancer diagnosis based on microarrays and suggest a general strategy
for discovering new subtypes of cancer, independent of previous biological knowl-
edge. It suggests that we may be able to use DNA microarrays in a variety of clini-
cal settings for confirming diagnoses, clarifying unusual cases, and predicting pa-
tients’ response to drugs. It may also provide an objective way to design therapies
and predict clinical outcome for patients. In principle, gene activities that deter-
mine the biological behavior of a tumor are more likely to reflect its aggressiveness
than general parameters such as tumor size and age of the patient. The clinical con-
sequence is that treatments can be tailored according to the gene-activity patterns
of the tumor.

No one doubts that this new technology will have a major impact on cancer
management. A comprehensive molecular understanding of tumor formation may
transform cancer from a death sentence into a chronic, but manageable disease.

Further analysis approaches are needed before the microarray technology can
become a practical tool for identifying therapeutic targets and monitoring drug ac-
tion. It is becoming increasingly necessary to integrate expression data with other
types of data to gain new insights. For instance, microarray expression data can
be used in conjunction with database of drug sensitivity to unravel the molecular
basis of drug action.

11.2.3. Pharmacogenomics

Pharmacogenomics is the study of how an individual’s genetic inheritance affects
the body’s response to drugs. The term comes from the words pharmacology and
genomics and is thus the intersection of pharmacology and genetics. Pharmacoge-
nomic analysis help examining the inherited variations in genes that dictate drug
response and explore the ways these variations can be used to predict patients’ re-
sponse or lack thereof. It may also be possible to predict adverse effects along the
same lines.

Understanding of human genetics and different variations between individ-
uals is thought to be the key to creating personalized drugs with greater effi-
cacy and safety. Right now, there are intense efforts to catalog as many of the ge-
netic variations found within the human genome as possible. These variations, or
single-nucleotide polymorphisms (SNPs), pronounced “snips,” as they are com-
monly called, can be used as a diagnostic tool to predict a person’s drug response
[48]. For SNPs to be used in this way, a person’s DNA must be examined (se-
quenced) for the presence of specific SNPs. The problem is that traditional gene-
sequencing technology is very slow and expensive and has therefore impeded the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.2.html

http://www.amazon.com/dp/9775945070

http://www.hindawi.com/spc.2.html
http://www.amazon.com/dp/9775945070


X. Steve Fu et al. 389

widespread use of SNPs as a diagnostic tool. DNA microarrays (or DNA chips)
are an evolving technology that should make it possible for doctors to examine
their patients for the presence of specific SNPs quickly and affordably. A single mi-
croarray can now be used to screen 100 000 SNPs found in a patient’s genome in
a matter of hours. As DNA microarray technology further matures, SNP screen-
ing in advance of drug administration to predict patients’ response would be quite
possible.

Many therapeutic agents in cancer treatment have limited efficacies. In addi-
tion, nearly all of them also have some degree of adverse effects or toxicities. These
toxicities sometimes can be quite severe. However, the fatal consequences of not
treating cancer make it impossible for doctors to withhold these therapies despite
their imperfection. For example, paclitaxel is a relatively new chemotherapeutic
drug with wide range of activities against a variety of cancers. Even so, response
rates for many cancers to paclitaxel are less than 50%. In nonsmall cell lung cancer,
for example, a paclitaxel-containing regimen only produce 30–40% responses as
initial therapy [49]. This means that it is less than efficacious in 60–70% of the pa-
tients. Additionally, potentially fatal side effects such as anaphylaxis (generalized
allergic reaction) and nonfatal adverse effects such as neuropathy (nerve damage)
are hard to predict on an individual basis. Pharmacogenomics holds promise to
solve problems posted by drugs such as paclitaxel and many others. It could be
of great value not only in predicting how cancer would respond to a therapy, but
also in predicting how the host will respond to treatment. The ideal therapy would
boast great efficacy in treating cancer without any significant adverse effects to the
host.

11.3. New paradigm in cancer therapeutics

The ultimate goal in cancer research is to maximize our understanding of the dis-
ease and to improve the quality and outcome of cancer care. Although surgery,
radiotherapy, and chemotherapy are the current major pillars to cancer treatment,
many recent advances focus on new, molecularly targeted therapeutic modalities.
Unlike older generation of cancer therapies, which are less differentiating of can-
cer versus normal cells, newer generations of cancer treatments boast more speci-
ficity, efficacy, and less toxicity. The following discussion will concentrate on some
of these new treatment strategies.

11.3.1. New targets for cancer therapy

Better understanding of molecular events inside cancer cells has led to improved
strategies in designing cancer treatments. For the past few decades, cancer therapy
has been generally focused on some of the general biologic properties of cancer
cells, such as the rapid rate of replication, as ways of therapeutic approach. Molec-
ular targeting focuses on what is distinct inside the cancer cells and offers much
better efficacy and specificity. Below are some highlights of current advances to
illustrate this.
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(1) Telomerase as a target for cancer therapy. Telomerase is a special enzyme that
is expressed in most cancer and immortal cells [50]. It has a unique capability of
stabilizing and extending the end portion of the DNA-telomere, and hence main-
tains the genomic integrity of cells [51]. This contributes partially to the unlimited
division potential of cancer cells. The detection of telomerase activity is of a diag-
nostic and prognostic value in many cancers. Typically cancer cells but not normal
somatic cells express it, drugs developed against telomerase may prove to be highly
selective and free from toxic side effects. There has been considerable interest in
elucidating mechanisms that regulate the capacity for cell division in normal as
well as cancer cells, and substantial attention has focused specifically on the role
of telomeres as the “mitotic clock” that mediates replicative capacity. A number of
approaches have been taken to inhibit growth of malignant cells by targeting their
expression of telomerase.

(a) One straightforward strategy has been the inhibition of telomerase ac-
tivity in malignant cells [52, 53]. Inhibition of telomerase activity is ex-
pected to result in progressive telomere shortening during cell division
and would eventually lead to cessation of replication and cell death. The
downside for this kind of strategies is that it might not be effective early
on, and that tumor cells would continue to grow until telomere short-
ening reached a critical level before growth arrest and apoptosis (see be-
low) occur.

(b) An alternative strategy, one not aimed at inhibition of telomerase en-
zymatic activity, but rather at promoting immune recognition and de-
struction of cells that express telomerase, would result in rapid immune
elimination of telomerase-expressing tumor cells without the lag time
involved in strategies that inhibit telomerase function and depend on
gradual telomere shortening to inhibit tumor growth [54].

(c) Another approach to the targeting of telomeres in cancer cells employs
the strategy of expressing a mutant telomerase template RNA to inhibit
tumor cell proliferation [55]. It does not involve either telomere short-
ening or inhibition of telomerase activity. It is rapid in onset and can
exert immediate impact on tumor cells. Although the exact mechanism
for this is still not clear, several theories have been proposed. It is spec-
ulated that incorporation of mutant sequences into telomeric DNA in-
terferes with telomere function, possibly through altered DNA-protein
or DNA-DNA interactions, and triggers inhibition of proliferation and
induction of apoptosis.

In general, although targeting the telomerase enzyme as part of cancer treat-
ment is still at the preclinical stage, it offers great promise for the near future. New
insights into the role of telomere function in cell survival and cell cycle regulation
will further help in designing effective therapy in targeting telomerase.

(2) Interfering the survival pathways. Normal cells go through their life cycles of
division, growth, maturation, and death. This life cycle is mainly dictated by the
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cells’ genetic codes as well as their environment. During this process, cells may un-
dergo apoptosis (self-destruction) under certain circumstances [56]. Triggers for
apoptosis are numerous. For example, drugs and radiation can lead to cell damage
and thus turn on genes that lead to apoptosis. Apoptosis sometimes can be viewed
as a self-protection strategy employed by the host to eliminate abnormal or dam-
aged cells. Abnormalities of genes regulating apoptosis can lead to uncontrolled
cell growth and increase the incidence of cancer. For example, amplification of
genes that are antiapoptotic, such as bcl-2, can lead to decrease in apoptosis and
therefore promote tumor growth [57]. On the other hand, mutation/deletion of
genes that are proapoptotic, such as p53, can also lead to decrease of apoptosis
and therefore promote cancer formation [58]. In fact, both overexpression of bcl-
2 or mutation of p53 are quite common in human cancer. Because of this, it is
rational to think that agents aimed at modifying these genetic abnormalities can
be effective in cancer therapy. Currently, many studies are underway to explore
the possibility of manipulating apoptotic pathways in cancer therapy. For exam-
ple, a drug named GenasenseTM or oblimersen sodium is currently under phase
III study [59]. It is a bcl-2 antisense oligonucleotide. Proteins are made accord-
ing to transcribed codes in DNA. Protein are synthesized from mRNA created
during transcription from DNA. Antisense oligonucleotides work by binding to
the mRNA, therefore blocking its translation into protein, in this case bcl-2 pro-
tein.

(3) Targeting tumor angiogenesis. In the early 1970s, Dr. Judah Folkman pioneered
the research to help understand the mechanisms of angiogenesis (new blood ves-
sel formation) and its potential application in clinical medicine. But it was not
until the 1990s that this field finally took off. Many new agents, either inhibitors
of proangiogenesis molecules or antiangiogenesis agents, are in various phases of
research and clinical trials. The principle behind antiangiogenesis therapy is that
in order for a tumor to grow, it must have sufficient blood supply. Many tumors
are able to induce new blood vessel formation in order to obtain enough blood
to support their rapid growth. By inhibiting the formation of new blood vessels,
the cancer cells starve. Currently, there are a few such drugs that are either al-
ready approved or are on the verge of approval for anticancer therapy. For exam-
ple, thalidomide, once a notorious drug implicated in causing birth defects when
taken by pregnant women and hence removed from the market, was revived be-
cause it was found that it had antiangiogenesis properties. In fact, the reason why
it caused fetus deformities was probably due to its antiangiogenesis property. Cur-
rently, thalidomide is found to be effective in treating multiple myeloma and thus
was approved for this use by the FDA [60]. Of course, its use needs to be closely
monitored because of this teratogenic effect. Newer generations of drugs that work
in a way similar to thalidomide (so-called IMiDs, or immunomodulating drugs)
are being developed. One of them known as Revlimid is currently in late-phase
clinical trial and looks very promising. Another example for drugs with antiangio-
genesis property is bevacizumab (AvastinTM). It is a monoclonal antibody against
vascular endothelial growth factor (VEGF), a very important molecule for new
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blood vessel formation. In a recent clinical trial, bevacizumab in combination with
chemotherapy has been shown to be superior to chemotherapy alone in patients
with metastatic colon cancer [61]. Bevacizumab has recently been approved by the
FDA for treatment of metastatic colon cancer in combination with chemotherapy.
Clinical trials for the use of bevacizumab in other types of cancers are on going.

(4) Targeting growth factors and their receptors. Growth factors to cells are like fu-
els to automobiles. They are essential for cell survival and growth. One instinctive
feature of cancer cells is uncontrolled growth and loss of contact inhibition. Many
types of cancer cells have excessive or aberrant growth factor receptors on their
surface which lead to this unregulated growth. Targeting growth factors and their
receptors thus represent an important notion. Some growth factor inhibitors are
starting to be used in clinical practice. For example, Cetuximab (also known as Er-
bitux or C225) is a monoclonal antibody against epidermal growth factor receptor
(EGFR) [62]. It binds EGFRs and inhibits their activation. Another example, Gefi-
tinib (also known as Iressa) is a small molecule also inhibit EGFR activation (refer
to details later in the chapter). It is sufficient to say that inhibitors for growth fac-
tors and their receptors are major targets for future development of new cancer
therapies.

(5) Targeting intracellular signal pathways. Signal transduction pathways are es-
sential channels that cells rely on to communicate with the outside environment.
Once activated, they relay environmental stimuli into the cells via signaling path-
ways and allow cells to react properly to different stimuli. They are highly regulated
so that cells are constantly instructed to act according to appropriate guidelines. In
contrast to normal cells, signal transduction in cancer cells are often disregulated.
For example, a component of the signal transduction pathway can be constitutively
activated and this leads to uncontrolled and unregulated cell growth. This is the
case with the oncogene ras in many types of cancers. Ras is a guanine nucleotide-
binding protein. When in its active form, it binds guanine triphosphate (GTP) and
leads to hydrolysis of GTP to guanine diphosphate (GDP) and thus becomes in-
active. When the ras gene is mutated at certain positions, it can no longer induce
the GTP to GDP conversion. It stuck with GTP and remains constitutively ac-
tive. This leads to uncontrolled activation of this signal transduction pathway and
subsequent cancer growth. Research aimed at targeting numerous different signal
transduction pathway components. Farnesyl transferase inhibitor for the ras onco-
gene is one of the examples of drugs targeting signal transduction and is currently
under investigation.

(6) Interfering intracellular protein synthesis, transport, and breakdown. The in-
tegrity of cells is maintained by many intracellular proteins. This protein network
is tightly regulated through controlled synthesis and breakdown. Excessive pro-
teins or constitutive activation or deactivation of certain proteins can contribute
to the development of cancer. New generations of cancer therapy also target some
of the key pathways in protein synthesis and degradation. It is well known that
NF-κb is one of the transcription factors important for normal and cancerous cell
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growth and survival. It normally exists in the cytoplasm of cells and is bound to
I-κb, an inhibitor of NF-κb, thus remaining inactive. Degradation of I-κb can free
NF-κb from I-κb and lead to cell growth. Bortezomib (also known as Valcade or
PS341) represents a new class of therapeutic called the proteosome inhibitor. It
acts essentially by blocking proteosome from doing its job, protein degradation.
It is thought that at least part of the anticancer mechanism for Valcade is due to
the inhibition of I-κb degradation and thus indirectly causes more inhibition of
NF-κb. In the pivotal trial that led to its approval, Valcade has been shown to be
remarkably effective even on patients with refractory multiple myeloma who have
gone through regimens [63, 64]. It is reasonable to believe that more anticancer
therapeutic agents of this class will be developed in the future.

11.3.2. New agents and approaches

(1) Monoclonal antibody. Substances foreign to the body, such as disease-causing
bacteria, viruses and other infectious agents, known as antigens, are recognized by
the body’s immune system as invaders. One kind of natural defense against these
infectious agents are antibodies, proteins that seek out the antigens and recruit fac-
tors that eventually destroy the foreign substance. Antibodies have two very use-
ful characteristics. First, they can be very specific; that is, each antibody typically
binds to and attacks one particular antigen, either directly or indirectly. Second,
some antibodies continue to confer resistance against specific disease for life; clas-
sic examples are the antibodies to the childhood diseases chickenpox and measles.
The second characteristic of antibodies makes it possible to develop vaccines. A
vaccine is a preparation of killed or weakened bacteria or virus that, when intro-
duced into the body, stimulates the production of antibodies against the antigens
it contains.

Although each kind of antibody reacts to one particular kind of antigen in
many of the circumstances, many antibodies can be generated by a single dis-
ease entity. Not all are useful as therapy and it is difficult to reproduce a pure and
highly specific antibody in large quantity. The conventional method of producing
an antibody was to inject a laboratory animal with an antigen and after antibodies
had formed, collect those antibodies from the blood serum (antibody-containing
blood serum is called antiserum). There are two problems with this method: it
yields antiserum that contains contaminants, and it provides a very small amount
of usable antibody. Monoclonal antibody technology uses a different approach to
produce antibodies. By fusing antibody-producing B-cell with a kind of immor-
talized cell, a hybridoma is produced [65]. Many clones of these hybridomas are
isolated and tested for antibody production. Those clones that produce large quan-
tities of pure antibodies are then expanded in cell culture dishes.

Monoclonal antibodies have been produced for different clinical uses and
many have been proven to be more effective than conventional drugs in fight-
ing disease. Monoclonal antibodies attack the target molecule more specifically,
thus greatly diminishing the side effects associated with many of the conventional
drugs. Some examples of monoclonal antibodies include Rituximab, an anti-CD20
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antibody that is approved for treatment of B-cell non-Hodgkin’s lymphoma
(NHL) and also used off label for other clinical entities; Trastuzumab, also known
as herceptin, is another kind of monoclonal antibody against Her2/neu. It is used
to treat a sub-population of breast cancer. The specificity of monoclonal anti-
bodies makes them valuable in the laboratory as well as in clinical medicine. Not
only can antibodies be used therapeutically to fight against disease, they can also
help to diagnose a wide variety of illness, and can detect the presence of drugs,
viral and bacterial products, and other unusual or abnormal substances in the
blood.

(2) Designed small molecules. Unlike antibody-based therapies, small molecules
offer some advantages, at least partially by the virtue of their size. The smaller size
allows easier synthesis, better delivery, and potentially better efficacies in tumor
penetration. Small molecules can also be specifically designed to function like a key
to a lock, exerting a function either positively or negatively by turning on or off a
molecular pathway. Below are examples of small-molecule-based cancer therapies.

(i) Imatinib. In 2001, the FDA approved the oral medication imatinib
(GleevecTM) for CML, a type of leukemia that accounts for 7–20% of all adult
leukemias. Imatinib is one of the first small molecule drugs approved for clini-
cal use in cancer treatment. It is designed uniquely to interact with a class of re-
ceptor tyrosine kinases (RTKs) including PDGFR (platelet-derived growth factor
receptor), c-kit (CD-117), and bcr-abl tyrosine kinases, a family of important en-
zymes crucial for cell signaling. Receptors that possess tyrosine kinase activities are
called RTKs. In CML, over 95% of the cancer cells express bcr-abl tyrosine kinase.
This tyrosine kinase is a hybrid protein resulting from chromosomal transloca-
tion. This unique marker for CML cells allows for the specific targeting of cancer
cells while sparing normal cells. It works at the molecular level by blocking the
phosphorylation and subsequent activation of bcr-abl tyrosine kinase, effectively
shutting down what drives the abnormal growth of CML cells. Response rate for
treatment of CML are up to 80–90%, a great improvement from traditional reg-
imens [66]. Equally amazing is how fast imatinib works. Imaging studies taken a
few days after initiation of therapy have shown complete silencing of tumor ac-
tivity [67]. So far, the side effects of the drug are well tolerated. Additional in-
vestigations have shown it is also effective against a previously untreatable form
of gastrointestinal cancer called gastrointestinal stromal tumor (GIST) because it
inhibits another RTK, expressed by a majority of the GIST cells [68]. Currently,
imatinib is being tested in a variety of tumors that overexpress PDGFR. Its use in
cancer may be further expanded depending on the results of future clinical tri-
als.

(ii) Gefitinib. Gefitinib (Iressa) is another type of small molecular that works
by blocking the RTK that is associated with tumor growth. It works by inhibit-
ing a different type of RTK called EGFR. Gefitinib has recently been approved for
third-line therapy for nonsmall cell lung cancer [69, 70]. It has also been widely
tested for treatment of many other types of cancer. It is important to point out
that Gefitinib only produced a response rate of 10–20% as second- or third-line
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therapy for lung cancer, and so far, the level of EGFR expression did not corre-
spond with the degree of response. Recently, mutations in EGFR were identified
that appear to correlate responses to Gefitinib [71]. This again suggests the impor-
tance of newer strategies in determining drug responses and selecting patients for
treatment.

(3) Radioimmunotherapy. Radiation is one of the most important treatment mod-
alities widely used in almost every type of cancer. It can be given externally by fo-
cusing a “beam” of radiation on cancer or cancer involved organ from outside the
body. This is commonly referred as external beam radiation. Alternatively, radia-
tion can also be given by implanting radioactive seeds inside the cancer-containing
organ (such as prostate gland). This is commonly referred as brachytherapy. Ra-
dioimmunotherapy, on the other hand, is the delivery of radioactivity through im-
munotargeting. It essentially delivers radiation via coupling of radioactive isotope
with Monoclonal antibodies. Monoclonal antibodies bind target cells more specif-
ically, therefore they can guide the radioisotope to specific locations on a cellular
level. Radioimmunotherapy in cancer treatment targets tumor cells throughout
the body, but it remains considerably toxic.

Radiation therapies given by external beam or by brachytherapy requires that
the tumors are geographically limited to a region that can be efficiently targeted.
It cannot be used if the tumor is widely disseminated. Too large of a radiation
field also significantly increases toxicity and limits the tolerance of the host. Ra-
dioimmunotherapy, on the other hand, uses antibodies to seek for tumor cells in
various locations throughout the body. It is therefore more useful for tumors that
are widely distributed, such as leukemia or lymphoma.

Radioimmunotherapeutic agents are like double-edged swords. Monoclonal
antibodies can affect the cancer cells by themselves even without linkage to ra-
dioisotope. They can inhibit tumor cell growth and induce apoptosis. With the
addition of radioisotope, it adds more “firepower” by delivery of radiation to the
target cell at the same time. This dual-action effect renders this therapy more po-
tent and effective in cancer treatment.

Currently, there are two radioimmunologic agents approved by the FDA for
radioimmunotherapy for NHL: Ibritumomab Tiuxetan (Zevalin) and Tusitom-
omab (Bexxar). Both utilize the power of different radiation particles called iso-
topes. The radioactive particles in Zevalin emit beta radiation, which travels over
a relatively short distance. The radioactive particles in Bexxar give off beta and
gamma radiation. The gamma radiation travels a longer distance.

Both Zevalin and Bexxar are dual-action drugs that pair the tumor-targeting
and killing ability of monoclonal antibodies (anti-CD20) and therapeutic radia-
tion (Yttrium-90 and Iodine-131, respectively). Combined, these agents are much
more potent than either anti-CD20 monoclonal antibodies or radiotherapy alone
for NHL [72, 73, 74]. Although monoclonal antibodies confer specificity for tu-
mor cell targeting, it is unavoidably that they also affect some normal cells due to
the fact that normal cells can express CD-20 and the radioisotope affects “innocent
bystanders.”
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In addition to the increasing use of radioimmunotherapy in cancer treat-
ments, radioimmunologic agents can also be used for cancer diagnosis.

(4) New invasive therapeutic modalities. Although current research on cancer di-
agnosis and treatment weigh heavily toward less traumatic and invasive approach-
es, this does not mean that the invasive methods are of less value. Actually, newer
and better tolerated invasive therapies are becoming increasingly available as tech-
nologies advance. More and more interventions are done by an interventional ra-
diologist under imaging guidance. These new strategies are also being applied to
cancer diagnosis and treatment. Radiofrequency ablation ( RFA) is a relatively new
therapy for cancer treatment. It is a treatment strategy based on the application of
heat energy [75]. RFA causes the cellular destruction of tissues by heating them.
Using various imaging methods (ultrasound, CT scan, or MRI) as guidance, the
procedure involves placing a needle through the skin and into the tumor under
local anesthesia. Once positioned in the targeted treatment area, an umbrella-
like array of electrodes is deployed and radio waves are generated through ag-
itation caused by alternating electrical current (radiofrequency energy) moving
through the tissue. The heat generated in this fashion results in local cell coagu-
lation and demise. Normal tissues surrounding the lesion are usually spared due
to the limited range of heating. Destroyed cells are reabsorbed by the body over
time.

In RFA, since the patient’s body is only penetrated with a special needle, it
is minimally invasive and the procedure is performed under local anesthesia and
conscious sedation, therefore most patients will be able to return home the day
of the procedure. There are other advantages of RFA besides better tolerance. For
example, patients with oligometastasis (a few lesions rather than many lesions)
in both lobes of the liver could not undergo resection, RFA would then be a rea-
sonable option. Another example, a patient with a single, solitary kidney tumor
who is too ill to tolerate a surgical procedure, could choose to have RFA instead.
Other applications of RFA include symptom management such as relieving pains
caused by tumor growth. In some circumstances, chemotherapy can be given in
conjunction with RFA to maximize the efficacy and increase the range of tumor
cell killing.

Despite the advantages mentioned above, there are still many limitations to
RFA treatment. First, the tumor has to be accessible by needle. This means that
tumors located deep inside the human body may not be amendable to this treat-
ment. Second, it will not be able to kill tumors more than 5 cm in diameter due
to the limitation of heat travel and dissipation. Third, multiple lesions, typically
more than 3 lesions, cannot be effectively treated by RFA. Fourth, potential risk
including bowel perforation, or damage to other important structures, makes it
important to select the patient carefully. Fifth, improvement of survival is possible
as a result of RFA but has not been definitively proven.

RFA is not intended to replace surgery and/or chemotherapy. Instead, it is
designed to work in conjunction with these modalities. Its current application still
remains as adjunct to other treatment strategies.
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In summary, RFA is a minimally invasive method that can be used to treat
multiple types of cancers. It is ideal for treating oligotumor lesions (usually not
more than 3), and relieving the symptoms caused by tumor growth. RFA has been
proven to be a very valuable strategy in the toolkit of cancer therapy and give pa-
tients another therapeutic option.

11.4. Nanotechnology in cancer study

Nanotechnology has been an emergent multidisciplinary research topic with ap-
plications in many areas, such as nano-electro-mechanical systems (NEMSs) [76],
nanocomputers, and nanoscale medicine [77]. In this subsection, we will elaborate
how nanotechnology can be applied in cancer study.

A nanometer is one billionth of a meter—1/80 000, which is the width of a
human hair, or about the combined diameter of ten hydrogen atoms. Nanotech-
nology is about how to create useful materials, devices, or systems through the
manipulation of miniscule matter. It will also greatly impact biotechnology. For
instance, two grams of DNA can hold as much information as the whole Library
of Congress. A carbon-nanotube-based nanoprobe on the 1 nm scale enables us
to process the information encoded in DNA. The interdisciplinary nature of nan-
otechnology involves scientists from many different disciplines such as physics,
chemistry, engineering, biology, and even sociology.

Currently, nanotechnology is a nascent research area. Nanoscale fabrication is
far from mature. Most of the research focuses on basic material preparation, such
as making different carbon nanotubes and molecular devices [78, 79]. There are
two basic approaches to creating nanostructures. The first method is “top-down”
approach, which involves molding or etching materials into small components.
This approach has traditionally been used in making computer and electronic de-
vices. The second approach is “bottom-up” approach. The bottom-up approach
involves assembling structures atom-by-atom or molecule-by-molecule. Protein
synthesis by ribosome is a good example of a bottom-up approach. Different self-
assembly techniques are currently being investigated in order to reach a better un-
derstanding of how to integrate nanoscale building blocks [80].

Material behaves differently on the nanometer scale than it does on larger
scale. Physical properties governing larger systems do not necessarily apply to na-
noscale systems. Electron propagates as a wave instead of as a single particle, thus
quantum effects have to be taken into design considerations [81]. Because nano-
material, such as carbon nanotube, has large surface area relative to its volume,
phenomena like friction become more important at the nanometer level than in
larger systems. These physical property differences will affect nanosystem design
for biomedical applications.

Nanostructures are so tiny that they may be easily washed away before they
can take effect in cancer diagnosis or imaging. On the other hand, larger nanopar-
ticles may accumulate in vital organs and can potentially cause the discomfort of
patients, sometimes even resulting in toxicity. Scientists are trying to find the so-
lutions of these problems. They study how nanostructures will behave in human
body and attempt to create devices that can easily adapt to in vivo circumstance.
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11.4.1. Applying nanotechnology in handling tumor cells

Most animal cells are 10 000 to 20 000 nm in diameter. This means that nanoscale
devices (having at least one dimension less than 100 nm) can enter cells and or-
ganelles inside cells. These devices can interact with DNAs and proteins because
the DNA double helix is 0.5 nm in diameter and the distance between each base
pair is about 1.5–2 nm. Nanotechnology tools are very sensitive and are able to
detect disease by using a very small amount of cells or tissues. These tools may
even be able to enter cells and monitor cell activities. This provides a vital solution
for us to study cancer genomics and proteomics, enabling us to understand cancer
mechanisms more precisely.

With respect to tumor diagnosis, prognosis and treatment, miniaturization
becomes necessary because nanoscale tools for many different tests need to be
mounted on a same small device. This makes it possible to run multiple diagnostic
tests simultaneously.

Cancer detection at its early stage is critical in improving cancer treatment.
Cancer detection and diagnosis to date depend on the detection of abnormalities
at tissue or organ level by physical examinations or imaging studies. Patients’ mor-
tality is often due to late finding and ineffective curative therapy. Ideally, scientists
would much prefer to make it possible to detect cancer when the earliest molec-
ular changes are present, long before it is large enough to be detected by physical
examination or imaging technology. To do this is not an easy task, which needs
a new set of tools at the very least. Nanotechnology is very promising in meeting
these challenges based on the following reasons.

(i) To successfully detect cancer at its earliest stages, scientists must be able
to detect molecular changes even when they occur only in a small per-
centage of cells. This means the nanotechnology tools must be extremely
sensitive. The potential for nanostructures to enter and analyze single
cells suggests they could meet this challenge.

(ii) Many nanotechnology tools will make it possible for clinicians to run
tests without physically altering cells or tissues taken from a patient. This
is important because the amount of samples that clinicians use to screen
for cancer are often limited. Scientists would like to perform tests with-
out altering cells, so they can be used again if further tests are needed.
Reduction in the size of tools means that many tests can be run on a
single small device. This will make screening fast and cost-efficient.

The following are some specific nanotechnology tools developed for early tu-
mor detection.

(1) Cantilever. The cantilever is one of the nanotechnology tools with potential
to aid cancer diagnosis. Nano-scale cantilevers are based on the simple mechanic
concept: disparate materials bond together causing a mechanical reaction, much
as bimetallic strips used in peltier coolers. Tiny bars anchored at one end of can-
tilever can be engineered to bind to molecules associated with cancer, or refer to [3]
Protiveris’ microcantilever technology (see www.protiveris.com). They may bind
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to altered DNA sequences or proteins that are present in certain types of cancer.
When the cancer-associated molecules bind to cantilevers, changes in surface ten-
sion cause cantilevers to bend. This nanoscale tool is very sensitive and is able to
distinguish microreflections. Based on the observation, scientists can determine
whether cancer molecules are present even when the altered molecules are present
in very low concentrations. This tool is useful in detecting early molecular muta-
tions during the course of cancer development.

(2) Nanopores. Nanopore device is another type of nanotechnology tools for read-
ing genetic code on single strands of DNA. The idea was originally proposed by
D. Branton group at Harvard University. Nanopores are tiny holes that connect
two liquid compartments that are positively charged at one side and negatively
charged at the other. The electrical field helps to ionize the single-strand DNA and
makes it easy for DNA to pass through the nanopore. We can imagine DNA nu-
cleotides (A, T, C, and G) look like beads on a string. As a DNA passes through
a nanopore one nucleotide at a time, it causes a subtle electrical current differ-
ence (at the scale of 10−12A). Based on the different readings of four different base
pairs that make up genetic code, scientists can decipher encoded DNA informa-
tion, including mutations in DNA known to be associated with certain type of
cancers. One of the major advantages to use nanopore design is that it makes long
DNA sequencing possible. The conventional for DNA sequencing in biology is
slow and only can handle short DNA sequence. The efficient nanopore design will
significantly reduce lab work and make real-time in vivo DNA sequencing possi-
ble.

(3) C60 bulky balls and nanotubes. Since the discovery a decade ago [78, 82], both
C60 and carbon nanotube have emerged as promising candidates for nanomed-
icine. C60 has been applied for drug delivery by encapsulating drug within C60

structure. By attaching different chemical compounds to the C60, researchers are
able to use it for cancer and AIDS treatments [83]. Nanotubes—carbon rods about
half the diameter of a DNA molecule—also help identify DNA changes associated
with cancers. Nanotubes are even smaller in diameter than nanopores. In addition
to detecting the presence of altered genes, these materials may help researchers
to pinpoint the exact location of these changes. For instance, mutated regions
associated with a cancer are first tagged with bulky C60 molecules. These bulky
molecules identify regions where mutations are present. These techniques will be
important in predicting diseases. Once a target region is located, we can use a
nanotube assembled on the needle tip of a record player to trace DNA’s physical
shape and its sequence. We can translate collected information into a topograph-
ical map, and compare the DNA reading with a database for cancer diagnosis and
treatment at the genome level. Both C60 bulky balls and nanotubes are biologi-
cally inert materials that should not cause any side effects during diagnosis and
treatment.

Besides biological applications, carbon nanotube is also very useful in nano-
electronic circuit design because of their unique electronic properties [84] and fine
1D structures. They exhibit either metallic or semiconducting behavior depending
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on the diameter and helicity of tubes [85, 86]. It can also conduct current ballisti-
cally without associated heat dissipation [87]. They are very strong and insensitive
to a wide range of processing temperatures and treatments.

(4) Quantum dots. Researchers would like to detect the early signs or precursors
of a cancer in cells without removing them from body. One nanoscale tool that will
allow scientists to detect critical DNA changes in vivo is via quantum dots. Quan-
tum dots, tiny crystals that are much smaller than conventional fluorescent dyes,
glow when they are stimulated by UV light [3]. Interestingly, the wavelength or the
color of the emitting light depends on quantum dot size. Latex beads filled with
these crystals can be designed to bind to specific DNA sequences. When crystals are
stimulated by light, colors they emit act as dyes that light up the DNA sequences
of interest. By mixing different-sized quantum dots within a single bead, scientists
can create probes that release a distinct spectrum of various colors with differ-
ent light intensities, serving as a sort of spectral bar code. To detect cancer, quan-
tum dots can be designed to bind cancer DNA sequences. Based on the unique
bar codes or labels, we can make critical cancer-associated DNA sequences visi-
ble. The vast number of possible combinations of quantum dots also means that
many unique labels can be created simultaneously [88]. It is important in cancer
diagnosis because it allows us to detect and interpret results from many different
mutations within a cell.

(5) Nanoparticles and nanoshells. A number of nanoparticles have been developed
to facilitate drug delivery. Researchers have developed an innovative way to encap-
sulate drug in gold nanoshells. These nanoshells are miniscule beads coated with
gold. By manipulating the thickness of different layers making up nanoshells, a
gold nanoshell can absorb specific wavelengths of light. The most useful nanoshells
are those that absorb near-infrared light, which can easily penetrate several cen-
timeters of human tissue. Light absorption by nanoshells creates an intense heat
that is lethal to cancer cells. In laboratory cultures, heat generated by light-
absorbing nanoshells has successfully killed tumor cells while leaving neighbor-
ing cells intact. To make nanoshells target at specific cancer, nanoshells can be
linked to cancer-specific antibodies. Such a design can be envisioned as a “bio-
logical bomb” because these nanoshells can seek out their cancerous targets and
bind with high affinity. When we apply near-infrared light, we can kill the tumor
cells.

With state-of-the-art nanoscale fabrication techniques, some useful nanopar-
ticles are developed for pharmaceutical, medical, chemical, and engineering ap-
plications. Cost-effective, reproducible, and scalable processes to engineer cell-
or tissue-targeted nanoparticles are sought to deliver potent drugs as new ther-
apies in the pharmaceutical field. A natural and spontaneous method to engineer
nanoparticles has been developed through the use of microemulsions in which
dispersed phase droplets serve as “nanotemplates” to directly form stable nanopar-
ticles.

The other well-known means is “organic dendrimer” [3]. The useful feature of
dendrimers is their branching shape that gives them vast amounts of surface area.
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Therefore, it enhances the chance of delivery therapeutic agents or other biolog-
ically active molecules to desired locations. Because of the tiny branch geometry,
it can also reach spots where a conventional drug cannot. A single dendrimer can
carry a certain molecule that recognizes specific cancer cells. A therapeutic agent
thus can kill these cells, and then another molecule can be applied to detect cell
death. Researchers hope to manipulate dendrimers that can release their contents
only when a certain type of cancer is present. Dendrimers may also feedback in-
formation about targeted tumor cells’ apoptosis after drug released.

11.4.2. Case study: current application of nanotechnology
in cancer management

The determination of a patient’s cancer stage is of paramount importance in can-
cer therapy. It is important to determine whether a cancer has spread to a patient’s
lymph nodes or not in order to determine the diseases stage, and to design the
best treatment to increase survival chance. Let us consider prostate cancer. If the
cancer has spread to lymph nodes or bones, and the rogen-deprivation therapy is
often needed for cancer therapy. Men whose prostate cancer is still confine within
their prostate gland can select a range of loco-regional therapies, including radi-
cal prostatectomy by having the prostate removed along with the seminal vesicles
and ductus deferens, radiotherapy (external beam or seeds), or watchful waiting
(closely monitoring but deferring treatment until necessary).

MRI provides images with excellent anatomical detail and soft-tissue con-
trast. It is, however, relatively insensitive to detect lymph-node metastases. To im-
prove the MRI results, different contrast agents and acquisition techniques can
be applied. For instance, contrast agents, such as gadolinium, are routinely used
to increase the accuracy of cancer staging by the MRI. Nanotechnology is very
promising in this field, in particular, the use of lymphotropic superparamagnetic
nanoparticles. These nanoparticles have a monocrystalline, inverse spinel, super-
paramagnetic iron oxide core, and contain a dense packing of dextrans to prolong
their time in circulation. They are also avidly taken up by lymph nodes in animals
and humans. Nanoparticles are slowly extravasated from the vascular into the in-
terstitial space, from which they are transported to lymph nodes by lymphatic ves-
sels. Within lymph nodes, lymphotropic superparamagnetic nanoparticles are in-
ternalized by macrophages, and these intracellular iron-containing particles cause
changes in magnetic properties that is detectable by the MRI.

Accurate detection of lymph-node metastases in prostate cancer is an essen-
tial component of initial nanomedicine study. It can also be applied to other can-
cers. The means to identify men with clinically occult lymph-node metastases is
greatly needed because of the adverse prognostic implications it confers. Highly
lymphotropic superparamagnetic nanoparticles, which gain access to lymph nodes
by means of interstitial-lymphatic fluid transport, have been used in conjunction
with high-resolution MRI to reveal small nodal metastases [89]. It is demonstrated
that high-resolution MRI injection with magnetic nanoparticles allows the detec-
tion of small and otherwise unsuspected lymph nodes involved in cancer progres-
sion.
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Nanotechnology has promising potential for us to develop ways in eradicating
cancer cells without harming healthy surrounding normal cells. Scientists hope to
use nanotechnology to create therapeutic agents that target at specific cells while
reduce toxic side effects in a controllable manner. The ultimate goal is to create an
integrated solution that is able to both detect cancer and deliver treatment only
to affected cells. In an ideal situation, nanoparticles that will circulate through the
body could detect cancer-associated molecular changes, release therapeutic agent,
and then monitor the effectiveness of intervention.

11.5. Conclusion and future directions

Medicine is evolving from what was essentially an observational science a cen-
tury ago to what is largely a molecular science. The pace of this evolution is still
accelerating. With this fascinating progress, a single disciplinary approach to un-
derstand cancer is no longer suitable. Collaboration between multiple areas of ex-
pertise such as scientists, engineers and physicians has become a hallmark of this
new era. Not only is it important to have a team consisting of experts from various
fields, it is also vital for each of these members in the team to understand their
counterparts to maximize collaboration.

In this chapter, we reviewed the current understanding of cancer from a mo-
lecular point of view. Cancer genomics and proteomics form the backbone of our
current knowledge. Microarray technology has fundamentally changed our ap-
proach to cancer in the past few years. It is safe to say that it will not be long
before we will need to reclassify many types of malignancies according to data
from gene profiling. More highly specific therapies against cancer would also be
available as a result of our improved knowledge. As we focus our efforts in the
microstructure of cells and their DNA, protein makeup as well as function, bet-
ter tools for cancer detection, assessment and therapeutic delivery are important.
Nanoparticles boast the advantages of being both extremely tiny and being biolog-
ically inert. The potential of having nanoparticles penetrating into the microstruc-
tures inside cells and performing multiple tasks will undoubtedly bring us to a new
horizon.

Our multidisciplinary research focuses on two aspects: (1) a stochastic frame-
work for modeling genomic/proteomic network structure and dynamics in p53-
induced apoptosis; (2) carbon nanotubes as a remotely activated cytotoxic agent
in tumor-suppression therapy.

11.5.1. Stochastic framework for modeling genomics/proteomics
in p53-induced apoptosis network

The goal is to develop a holistic mathematical framework for understanding, eval-
uating and validating the regulatory network of p53-induced apoptosis. A poten-
tial impact of the proposed research is to be able to predict cancer-developing pro-
cesses from the proposed stochastic modeling and analysis, as a result to aid in
early cancer diagnosis and prediction.
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p53 plays a critical role in the suppression of tumorgenesis. Subsequent stud-
ies demonstrated that p53 is a transcription factor with tumor-suppressor activity.
Human p53 structural gene is mutated in more than 50% of primary human tu-
mors, including tumors of the gastrointestinal tract. p53 normally acts as a tumor-
suppressor gene by inducing genes that can cause cell cycle arrest or apoptosis and
also by inhibiting angiogenesis (new blood vessel formation) [2]. Also, p53 may
play other roles in the apoptosis network [90]. As reviewed in earlier chapters, a
wide variety of formalisms for the inference of genetic regulatory networks has
been studied in the literature. We will mainly focus on Baysian network approach.
Based on data sources from genomic and proteomic levels, the tentative plan to
carry out the p53 apoptosis network study are as follows: exploring the protein-
protein interactive network; learning the genomic and proteomic network struc-
ture and dynamics of the p53-induced apoptosis in cancer cells; and designing
experimental observations to evaluate and refine the model.

11.5.2. Carbon nanotubes in tumor-suppression therapy

Photodynamic therapy (PDT) uses laser light in the spectrum of 630 nm to activate
porphyrin compounds (sensitive to this frequency) administered intravenously
and collected within tumor sites. The excited porphyrin structure can then transfer
its energy to ground-state triplet O2 which in turn is excited into its highly reactive
excited singlet state. This relatively new therapy is quite promising but has some
significant limitations.

One of the most significant clinical limitations of PDT with porphyrin com-
pounds is the high-serum protein affinity and the modest differential selectivity of
uptake of the photosensitizing dye into tumor sites. Though human tissue shows
a greater permittivity to visible light in the range of 600 nm, its absorption of this
wavelength is still quite large and greatly attenuates the amount of activating radi-
ation that is actually applied to the porphyrin dye. Clinical limitations here are the
amount of light that can be administered selectively to the tumor site without ac-
tivating porphyrin dye in the peripheral tissue or damaging peripheral tissue with
high level of light energy (burning). In addition to these limitations, the side ef-
fects of porphyrin compounds (which include hemoptysis and acute anemia) pre-
clude its use as an adjunctive therapy with other chemotherapy regimens, as many
common chemotherapeutic agents suppress hematopoiesis which would further
exacerbate the anemia/neutropenia/leukopenia.

Our current research uses the relatively inert carbon nanotube structures to
induce a cytotoxic radical activity cascade. The research is carried out specifically
at the following aspects.

(i) Analyzing the quantum states of nanotubes under certain magnetic or
electrical field conditions. Furthermore, we would determine the possi-
bility for the electrons in carbon nanotube structures to transfer energy
in such a manner as to excite the ground-state radical (triplet) O2 into
its nonradical excited singlet state. We are also investigating the effect
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of phonon energy transfer into other biologically available compounds
that have some cytotoxic effects.

(ii) Exploring the means to excite nanotubes remotely to induce a cyto-
toxic cascade. This would be an incredible medical/biological tool in that
magnetic fields are not attenuated to the degree that light radiation is.
This would allow the activation of our cytotoxic agent (nanotubes) even
in the deepest most inaccessible tumor sites.

(iii) Developing a method to deliver our cytotoxic nanotubes to specific tu-
mor sites. This will be absolutely necessary as there will be no way to
form highly localized magnetic fields within an organism. In the pres-
ence of our activating magnetic field, all of our nanotubes will become
cytotoxic so we will need to ensure that they are localized to the tumor
site.
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12
Integrated approach for
computational systems biology

Seungchan Kim, Phillip Stafford,
Michael L. Bittner, and Edward B. Suh

12.1. Background

New technological advancements for the measurement of biological systems have
given us much insight into genomic, transcriptomic, and proteomic views of a
cell’s behavior. Such recent advancements in the measurement technology include
expression arrays [1], single nucleotide polymorphism (SNP) [2, 3], CpG island
arrays [4], protein abundance and specialized glycoarrays [5, 6], and siRNA [7,
8, 9]. Different measurement techniques are meant to provide different kinds and
resolutions of the information regarding target biological systems; therefore,
choosing appropriate measurements for a given biological problem is considered
fundamental in the solution of the problem. In addition to the technologies that
provide a unique snapshot of different aspects of the cellular milieu, we now have
the computational and data management challenge of storing, integrating, and
analyzing data independently and when mixed. Data storage techniques become
increasingly important when integration, and analysis are needed. Database de-
sign and planning are now as important as the analysis technologies that are being
developed.

Biological problems of special importance now include the recognition of dis-
ease subtypes, identification of molecular markers for certain disease types, infer-
ence of regulatory mechanisms, discovery of new therapeutic targets for interven-
tion and treatment of disease progression, and the development of novel single
and additive drugs and therapeutics. Since the beginning of the modern biological
era, the importance and applicability of mathematical, statistical and engineering
tools has become quite clear. The Human Genome Project is a primary example.
Numerous pattern recognition techniques have been applied to identify molecular
markers for a specific disease as well as the identification of disease subtypes. Ma-
chine learning and Bayesian frameworks have proven to be effective in learning the
mechanisms of genetic regulatory networks, and control theory is being applied to
derive a better approach to therapeutic design. As the complexity of biological data
increases, it is the combination, not a single specialized tool, which will be most
efficacious to solving complex biological problems.
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By taking an integrated approach to these biological problems, the systems
biology dogma strives to bring in technologies from other disciplines and/or to
develop truly novel methodologies to find answers to critical biological questions
[10, 11, 12]. It is designed to view biology not just at the component-level (e.g.,
genes and proteins), but also in its behavior at the system-wide level. For example,
the study of the robustness of a biological system with regard to its intrinsic and
extrinsic noise has received much attention recently [13, 14]. In general, systems
biology is described by:

(1) the integration of discovery science and hypothesis-driven science,
(2) the use of biology as an informational science,
(3) the utilization of powerful new high-throughput tools for systematically

perturbing and monitoring biological systems,
(4) the creation of new computational methods for modeling and analysis.

This approach is different from traditional biological science which focuses
on localized events such as interactions between a small number of genes or pro-
teins and on their detailed biochemical analysis. The holistic view that a biological
system is alive and its behavior is not simply explained by the sum of the behav-
iors of the individual parts has started to take off in biology. Since a system’s view
on biology becomes more and more important, so does mathematical and com-
putation modeling of biological systems in systems biology. Therefore, more and
more research institutes put together multidisciplinary groups of scientists, such
as molecular biologists, mathematicians, physicists, computer scientists, and engi-
neers to name a few.

Systems biology considers the integration of both experimental and analyti-
cal approaches. For example, researchers can use microarray data to grasp a ge-
nomic view of tumors and identify candidate molecular signatures of the tumor.
They can also use array Comparative Genomic Hybridization (CGH) [15, 16]
to see if the differential expression is due to copy number variation, methyla-
tion arrays to determine if CpG islands are differentially methylated, protein ar-
rays to determine protein abundance and correlation to mRNA abundance num-
bers, and specialized protein arrays such as glycoarrays to determine the differen-
tial post-translational modifications that affect many proteins. Different types of
data require different types of analyses and interpretation of the results. There-
fore, the experiments with multitype measurements call for integrated suite of
analytical tools. Also, another kind of information critical in modern biomedi-
cal research is knowledge information and its integration with data-driven anal-
ysis. Recently, a significant number of studies and publications employ such an
integrated approach. Therefore, the advancement of systems biology that inte-
grates multitype data, knowledge, and analytical tools is critical for biomedical
research.

Figure 12.1 is an overview of systems biology with an emphasis on modeling
and analysis. It is broken into three panels. The top panel concerns data mining
and pattern analysis of genomic and proteomic data. Data mining and pattern
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Figure 12.1. Overview of modeling and analysis flow for systems biology.
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analysis employ various statistical learning methods such as clustering, classifica-
tion, rule learning to find biological contexts, molecular markers associated with a
specific context, and rules to predict clinical or prognostic outcomes, for example,
in diseases. The bottom left panel deals with mathematical models for a biological
system (synthesis) and analysis of the models to predict the behavior of a biologi-
cal process and generate new hypotheses for further validation. Models developed
in a study may require the development of a new measurement technology or call
for a new design of biological experiments. Another critical component is depicted
in the bottom right panel. As biological knowledge is accumulated, the utilization
of known knowledge (the “knowledgebase”) plays a critical role in understanding
the biological system and the discovery and integration of new knowledge. Various
text-mining and content-mining resources should be developed and deployed to
further exploit this vast amount of data waiting to be analyzed. In addition, arti-
ficial intelligence methods (knowledge reasoning) will play an increasingly pivotal
role in the extraction of new knowledge.

In this chapter, we briefly introduce some of the analytical tools that have
proven to be useful in the study of systems biology and show a few examples of
biological studies using such tools in the context of systems biology. We will ad-
dress the computational tools currently available and actively being used for the
study of cellular systems and present an example of the integrative use of such
tools to answer questions. However, we should first consider briefly what kinds of
measurements are available enabling the study of computational systems biology.

While systems biology tends to focus on mathematical modeling of regula-
tory networks and signal transduction networks, which is of utmost interest to
biologists, a systems biology approach can be also applied to different problems. A
clinical study described by Kitano [17] is one such useful example, and it guides us
to look at the problem in various perspectives before deploying more complicated
tools to model the system mathematically. Figure 12.2 describes well the analogy
between clinical studies and systems biology study for gene regulatory networks.
Both have repeated feedbacks between hypothesis development/synthesis and its
testing in the process of discovery of new knowledge.

Among some of the mathematical, computational, and statistical tools that
are actively used in systems biology are pattern identification for the subtypes of
diseases and the identification of associated genes [1, 18, 19, 20, 21, 22, 23, 24],
prediction modeling to find functional relationships among genes and/or proteins
given the cellular context [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47], and mathematical and computational modeling of gene
regulatory networks to study how genes and proteins are interacting with each
other to generate a certain phenotype either in disease or in response to a specific
treatment. Recent studies on network modeling emphasizes whether a proposed
model exhibits robustness [37, 48, 49, 50, 51, 52, 53] and scale-free characteristics
[54, 55, 56], which are believed to be needed in genetic regulatory networks for
maintaining homeostasis [57] as well as for coping with certain levels of intrin-
sic and extrinsic uncertainty in biological systems [58, 59]. Another component
of systems biology, recently emerged, is knowledge dissemination/integration to
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Figure 12.2. Analogy between clinical studies and basic systems biology research. Systems biology is
an integrated process of computational modeling, system analysis, technology development for experi-
ments, and quantitative experiments. With sufficient progress in basic systems biology, this cycle can be
applied to drug discovery and the development of new treatments. In the future, in silico experiments
and screening of lead candidates and multiple drug systems, as well as introduced genetic circuits, will
have a key role in the “upstream” processes of the pharmaceutical industry, significantly reducing costs
and increasing the success of product and service development [17].

accelerate new hypotheses based on new observations as well as prior knowledge.
Content- and text-mining tools should play a key role in this, in conjunction with
knowledge reasoning tools from artificial intelligence systems.

12.2. Biological data and measurement technologies

Understanding what information at a particular level of resolution we should ex-
pect from observation technologies (e.g., expression profiling) is the first step in
the study of systems biology. Data availability is, at a very basic level, necessary for
successfully modeling a biological process. No truly robust biological model could
be created using information from a single view of biological activity. In essence, a
transcriptional profile merely indicates potential downstream translational activ-
ity. A protein abundance profile merely indicates the presence of proteins, but does
not indicate posttranslational modifications or targeting. Knowing all posttrans-
lational modifications will not necessarily indicate all possible protein-protein in-
teractions, and so on. The point that the presence of sufficient information about
certain molecular events is not inherently sufficient. As mentioned above, it is nec-
essary to collect information in layers and it is the interaction, integration, and
analysis of these layers that truly fulfils the principle dogma of systems biology.
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Ideally, a biologist would like to capture a complex biological process math-
ematically using overlapping views of a cell along the axis that defines the ob-
servational technology (gene expression, genomic sequence, protein abundance,
interfering RNA, synthetic lethals or gene-gene interactions, etc.) and perpendic-
ularly along the time axis. Biology can be considered as fundamentally complex as
weather patterns, but, as opposed to weather phenomena, cells can be captured,
isolated, perturbed, and observed. Importantly, our selected observational axis
must provide adequate views to overlap and validate every other view and there
must be sufficient resolution to accommodate the biological and technical variabil-
ity without excessive false positives. This overlap can be exemplified by looking at
a situation where we have SNP data, promoter location information, transcription
factor information, expression data, and protein abundance data. Each of these
individual observations is a view of the cell from a certain perspective and each re-
ports information about a particular function (along with certain inherent biases),
but none can be extended enough to completely explain all of the factors that cause
a cell to survive and maintain a healthy equilibrium. With enough different types
of data, we can validate one data type with another. This may seem contraindi-
cated since we know that transcriptional profiles do not match protein abundance
very well; typically only 50% of the transcripts in a cell correlate with protein
abundance, however this apparent discrepancy can be accommodated somewhat
by knowing something about the stability of the molecular species in question.
Thus, one extra layer of information helps to reconcile two separate seemingly
controvertible observations. The observational technologies provide the “angles,”
or dimensions, with which to view the biological state, and user knowledge ties
together the bits of information seamlessly. Two types of observations are possible
at this point: a view of the cell in an unperturbed or terminal phenotype (e.g., at
some stationary point along the cell cycle) or a perturbation study where data is
collected along a time course as the cell returns to equilibrium.

Using the aforementioned example, we have yet another set of choices to make
in our observations. We can collect data that is relatively stable (genomic sequence,
SNPs, synthetic lethal screens) or highly dynamic (expression, protein abundance,
chromosome amplification/deletion, CpG island methylation, etc., many of which
are extremely prevalent in most forms of cancer and many other genetic-based
disorders [60]. Experimental design defines the frequency and resolution of data
collection and potentially limits the types of analyses that can be performed on
the captured data. Although highly defined experiments are the easiest to an-
alyze statistically and they provide support for the proposed hypotheses, data-
mining experiments are often quite useful in their own right for extending anal-
yses beyond the original boundaries of the experiment. Interestingly, these types
of experiments are often quite underpowered because they attempt to provide too
much insight with too little data. While we may not have measurement technolo-
gies that allow us to observe biological systems at our desired level of details, the
current level of molecular observational technology still enables us to visualize
highly complex and detailed aspects of the physiology of a cell or a living system.
The frustration of systems biologists stems from the lack of a firm endpoint where
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one can create a biological model that truly defines most or all of the parameters
of a biological process, and so we extend the hypotheses we create using whatever
limited observations we have access to in order to try to explain phenomena that
actually require much more details.

As the genomic sequences for more species become available, the blueprint
about basic components that drive living cellular systems becomes increasingly
clear. The basis for our genomic knowledge is very useful because it works as a ref-
erence (normality) against abnormality, that is, mutations that lead to genetic dis-
eases. SNPs can be used to detect the aberration from reference that might indicate
a disease basis or susceptibility. Several commercial platforms are currently avail-
able that measure genomes for SNPs at resolutions approaching 20 kb and smaller.
Now SNP data from populations with heritable disease phenotypes can be interro-
gated to locate those patterns of polymorphisms that are strongly associated with
the phenotype (including but not limited to complex traits such as disease suscep-
tibility, disease progression, late-onset or environmentally influenced epigenetic
effects).

At the heart of SNP measurements is the correlation of sequence polymor-
phisms to phenotype. This correlation is often obtained through a tedious pro-
cess of identifying as many markers as possible with high coverage and validat-
ing those genes and gene products contained within the implicated region(s) by
the genetic markers. We use knowledge about the interrelatedness of SNPs, tran-
scription and translation effects, and protein interactions in order to structure and
query our data to create the insights that we are seeking, and it is this integration
of data prior to any analysis that is noteworthy and quite challenging. It is of course
possible to analyze each of the aforementioned datasets independently, with data-
driven hypotheses, and an attempt to combine the results to support or reject a
global hypothesis, but systems biology is making a concerted effort to combine
as many types of information about a cell as possible before analysis actually be-
gins.

SNPs are found approximately every 2 kb in the genome and can be found in
coding regions, within introns or exons, within or surrounding promoter regions,
enhancers, 3′ UTR’s, and so forth. The driving question is whether a particular
SNP is merely a silent marker with no obvious discernible function, or a polymor-
phism that alters the expression or translation of a particular gene. SNPs occur
only in genomic DNA but they affect all aspects of posttranscriptional behavior. In
DNA, SNPs affect replication, DNA-protein interactions, local DNA structure, su-
percoiling and/or DNA stability. During transcription, SNPs may effect initiation,
proofreading, elongation, or termination. During mRNA processing, SNPs may al-
ter the binding efficiency of a transcription factor [61], modification of a splice site
location [62], or the efficiency of splicesome binding [63] or even polyadenylation
[64]. In addition, SNPs may change the amino acid used in the translated prod-
uct, the glycosylation pattern, proteolytic cleavage, organelle targeting, acylation,
methylation, phosphorylation, prenylation, or other posttranslational modifica-
tions. At the DNA level, genomic DNA interacts to form supercoiled helixes and
interactions with histones. SNPs can alter these interactions causing local changes
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Figure 12.3. Measurement and perturbation technologies at various levels/stages of cellular systems.

that may have pleiotropic effects, and SNPs can even be tissue specific causing epi-
genetic effects, as in colorectal cancer [65]. As you can see, association is simple
through calculations of linkage disequilibrium, loss of heterozygosity, LOD scores,
and so forth, but causation is extremely difficult to validate. Knowing the many
layers that SNPs can affect gives one the perspective that is required for combining
data from multiple measurement platforms into a structure that can be queried,
integrated, and eventually used for hypothesis testing and model building. In the
above case, candidate SNPs that affect transcription or translated protein structure
are validated through the actual integration process itself.

The most popular measurement system used in the application of systems bi-
ology to biological questions is the gene expression microarray. It measures tran-
scriptional activities of tens of thousands of genes simultaneously, resulting in in-
dividual snapshots of the transcriptional state of a cell’s transcriptional image at
any given time. While it reflects the dynamic processes of a biological system, it
fails to capture various critical aspects of the cell’s entire system such as possibly
poor correlation between transcriptional level and protein level and posttrans-
lational modifications. To compensate for this, other measurement technologies,
that is, protein abundance and interaction arrays [5, 6], can be combined with
expression data to get a matched transcriptional/translational profile.

Another important recent advancement is to use siRNA to knock down the
activity of mRNA temporarily in order to perturb the target biological system and
observe its response as it returns to equilibrium. In conjunction with tissue and
cell arrays for the measurement of localizable events in cells, siRNA technology
provides us with an efficient way to systematically perturb biological systems and
monitor their response to perturbation [9, 66]. The number of mRNAs that can be
knocked down and visualized through cellular imaging is increasing rapidly and
genome-wide siRNA libraries will be available soon. Figure 12.3 summarizes some
of the measurement techniques and perturbation methods available these days at
various levels and stages of cellular behavior.
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Recently, highly detailed measurements depicting molecular and biochemical
activity in individual cells have become available—these details enhance the devel-
opment of much more detailed mathematical modeling and validation [67, 68, 69,
70]. The number of biological components that can be measured simultaneously
in an individual cell is increasing dramatically by deploying such technologies as
fiber-optic microimaging [71, 72, 73].

12.3. System for biological data integration

Once we have captured multiple types of biological data, we have a source that we
can build upon for future analyses. Storing and retrieving data is one key to suc-
cessful analysis of individual experiments and the expansion of analyses beyond
the confines of a single data type. Combining data types can make the original data
much more useful than the investigator had originally intended. Well-designed re-
lational databases are critical to the successful integration of biological data, and
well-designed data structures are critical to the design of databases. In order to
model a biological process, one needs sufficient data sources to overcome the in-
herent limitation in resolution for each of the measurement technologies used. For
example, transcriptional profiles are useful for measuring gene product potential,
but a protein abundance array is necessary to make the connection between po-
tential and protein. Keep in mind that not all splice variants are measured on an
expression array and not all measurements indicate the precise mRNA transcript
number in the cell (i.e., the fluorescence intensity per spot is not directly related to
the mRNA number). Relational databases are truly useful for linking biologically
relevant data from one type of observation (e.g., expression data) with another
(e.g., protein abundance) using entity relationships, constrained vocabularies, and
well-established principles of data queries. One problem with biological data is the
lack of a thorough metathesaurus that defines medical conditions in such a way
that disallows free text descriptions (difficult to query) but will still encompass the
dynamic range and information content of the data to facilitate successful queries
(difficult to capture sufficient information).

In the most common example, we establish a microarray database, that is,
MIAME (minimum information about a microarray experiment available at
http://www.mged.org/Workgroups/MIAME/miame.html) compliant through the
use of the MAGE (microarray and gene expression available at http://www.mged.
org/Workgroups/MAGE/mage.html ) object model and the MAGE ontology, as
well as the inherent hierarchical relationships between and among the data. In this
case, MIAME compliance means that the data includes all of the technical details
(metadata) for the microarray platform, the experimental design, and the proto-
cols wrapped together and linked within a highly constrained and well-defined
XML file. The MIAME experimental details are necessary in order to link this
experiment to other types of biological experiments (e.g., clinical data, toxicol-
ogy measurements, etc.) and to integrate public data with in-house data. MIAME
compliance in this case also means that the recipient of the XML file can parse the
data without a key or DTD (document type definition), can store the data in a
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compliant database, and can recreate the experiment with no further interaction
from the original scientist. The requirements are strict but are important in en-
suring uniformity, standardization, and ease of data sharing. These requirements
are met through the use of a well-defined object model (MAGE-OM) which sub-
sequently facilitates the creation of a formal XML document and a structured data
schema that allows simple input and output of XML-based data.

Forms are an important feature of the data capture process. Forms allow flex-
ibility, rational web-based data input pages, and simple design and normalization
of data tables. Using biological vocabularies to build forms for data input and
submission to public repositories prevents loss of information contained within
highly descriptive fields. For example, molecular biologists may recognize Myosin
V mutations as a cause of albinism or hypopigmentation, while medical doctors
may recognize Chediak-Higashi syndrome and others might know Griscelli’s dis-
ease. Forms and constrained vocabulary promote queries across data and anno-
tations that might normally be of limited utility. We might wish to associate SNP
data with a transcriptional/translational experiment (gene expression and protein
abundance) but without some form of text conversion or normalization, we might
use different terminology that another scientist has used for a common genetic dis-
ease, and we could completely miss highly correlated data. In the MIAME require-
ments we can always find annotations about the probes that were used to measure
expression information. In SNP data, the minimum information about a geno-
typing experiment (MIAGE) requirements force the user to annotate the dataset
so sufficiently that we can correlate the sequence where the SNPs were found with
the genes that were interrogated in an expression experiment. To continue our
query beyond SNP and expression information, we may also have the patient name
and history, clinical information, and all relevant personal descriptors necessary to
link a disease or genetic predisposition to illness to SNPs contained within a gene
or genes which may have been measured in the expression experiment. For cer-
tain epidemiology studies, we may even have extensive blood work or biopsy data
which provides even more information to annotate the molecular data we have
gathered. It is important to realize that these are separate and distinct databases
that have no inherent relationship to one another, nor were they designed to—
epidemiology databases are principally created to support a specific and one-time
experiment (although the experiment may be continuous) and typically are de-
signed to last for the duration of the project while expression and SNP databases
are designed to be added continuously. However, when we do a query across a
suitable database federation, we can search for patient name or ID and all relevant
information from that epidemiology or clinical information database. If the mi-
croarray and SNP experiments were designed to be run at the same time, or even if
there were certain patients within the epidemiology database that had expression
or SNP follow-up experiments conducted years later, the experimenter will have
captured extensive information that enhances the ability to link the molecular and
clinical information together. Let us describe a query in detail.

A user has completed a genotyping experiment of 100 patients in an asso-
ciation study of systemic lupus. A 100K SNP chip was used to gather genotypes
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for these 100 patients. Human genome build 34 was used as the basis for assign-
ing dbSNP positions and names. Simultaneously, the scientist has taken biopsies
from connective tissue, kidney, and the anterior lobe of the brain of deceased lu-
pus patients who showed some form of cerebral edema. The lobes were used to
generate RNA for expression arrays, proteins for a protein abundance microarray
as well as some specialized biochemistry, and DNA for sequencing, SNP analysis,
and CGH arrays. The experimenter ensured that each experiment was fully anno-
tated with all necessary experimental details, and all of those details were stored
in a type-specialized database. Now, the statistician doing the analysis knows that
he needs to extract several types of data from the federation of databases physi-
cally spread across multiple facilities. He starts his queries looking for a patient
name and all available records associated with that patient in the context of lupus.
In the system described in Figure 12.4 we can see that the query will return the
database names and instances that contain the patient histories conforming to his
lupus query. The user sees that databases named Clinical Trials, Patient History,
Proteomics, Microarray Gene Expression, CGH, and SNP all contain the patient
name and a reference to the particular disease the user is looking for. He discovers
that at least 100 patient names appear in four separate experiments (expression,
protein abundance, CGH, SNP). The user extracts all of the Patient History infor-
mation for the patients names and finds that at least one of the patients has been a
long-time sufferer of lupus and has been given drugs and autoimmune therapy for
at least 1 year prior to death. The Clinical Trials Information database shows that
50 patients have been involved in several phase-I and phase-II trials with experi-
mental drugs that had little or no long-term positive effects on the patients’ health.
Finally, the SNP data indicated that 20 patients were in a case-control study several
months prior to death, and the proteomic, expression, and CGH databases showed
that there were 15 patients where a lobectomy was performed immediately upon
death with the tissues subsequently being used for expression profiling, protein
abundance, and CGH arrays.

The analyst now has the option of querying the databases using newly found
information that makes the query much more specific. The analyst downloads
information pertaining to individual experiments, and that information leads to
new information that could provide public or supplemental data in support of the
current project. The user now applies the metadata and metathesaurus database in
order to create a smart query. The user wants to filter the protein and expression
data somewhat in order to encompass only those regions that were identified from
a linkage disequilibrium calculation using the SNP data. The analyst has identified
the genomic region for the particular chromosome that he knows is important
to lupus susceptibility. That region is not meaningful to the analysis of expres-
sion array data because mRNA and protein abundance analysis do not directly
use physical locations, but sequence and locations information about a particular
expression probe is always available. The analyst would likely want to see the chro-
mosome map annotated with the location of all relevant SNPs in that region. The
physical position on the chromosome can be used to extract gene symbols that
can then be used to find the protein names that were used on the protein chip.
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Figure 12.4. Description of a federated system of databases for systems biology. The left diagram (dot-
ted lines) shows a putative query for Myosin V and associated disease information. The lines on the
right show the reworked query results that provide much more consistency and usability for statis-
tical analyses. The right side also highlights the data receipt modules that shuttle data into and out
of analysis routines, which are split into 3 distinct groups—categorical (clinical or patient outcome,
epidemiology, disease association), genetic and phylogenetic (multiple genome comparisons and evo-
lution), and numerical data-mining Bayesian and frequency statistics, classification, neural networks,
support vector machine (SVM, etc.). These analysis tools are used to interrogate as much of the data
as possible in native format, group by group, and then to analyze all of the data that can be combined
into one universal type (i.e., binned, or quantized values).

The gene symbols are used to identify the accession numbers that then link to
probe names that correspond to the expression microarray. Armed with a little
prior knowledge about the SNP experiment, the user can now use this federated
system to extract only the information he needs to do his analysis. This is very
different from having to download all of the data manually, and filter only the in-
formation necessary for a particular analysis. Ideally, all of this can be done at the
database query stage.

Let us go through the actual content of a data management and analysis sys-
tem that can be set up at any institution with any software and hardware base. In
Figure 12.4 we see a series of databases (center) and a set of queries going to the
databases and the results coming out. We see a query from a user going into the
metadata server that actively queries the metadata database. The metadata data-
base contains all of the possible terms and semantic references that might exist
within the biological domain pertaining to the user’s query (i.e., NCI’s metathe-
saurus browser located at http://ncimeta.nci.nih.gov/indexMetaphrase.html). This
database examines key words in the query and makes inferences based on the
context. For example, given the use of the words MyoV, Griscelli’s disease and
clinical data, the server would look for all synonyms of MyoV including Myosin
V, actin-based motors, Myo5, Myo5a, and so forth. This would encompass gene
names that extend beyond humans and into mammals, insects, fungi, and so on.
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This covers a large portion of the molecular biological databases that might con-
tain gene sequence information, protein sequences, domains, enzymatic activity,
and 3D structures. Again, the key words also contain “disease” and “Griscelli’s”
so the search engine would include medical terms using the unified medical lan-
guage system (UMLS, available at http://www.nlm.nih.gov/research/umls/),
medical subject heading (MeSH, available at http://www.nlm.nih.gov/mesh/
meshhome.html), and other medical/clinical dictionaries. Any cross-references
found there would be presented to the user as a possible synonym or extended
search parameter, such as “hypopigmentism immune deficiency disease,” “partial
albinism,” “Chediak-Higashi-like syndrome,” or “neurological disorder.” Once the
user has identified the additional terms that he is comfortable with, the system
begins its systematic search for those terms. As you can see from Figure 12.4, the
queries are assembled and worded differently depending on which database is be-
ing queried, however the meaning of the user’s original query is preserved and
extended to encompass other data types. The queries return data to a filtering sys-
tem that groups the data based on the data itself, with no previous knowledge of
what is being returned. The data is grouped and managed by the experimental in-
formation contained within the associated metadata for each data type (i.e., CGH,
sequence, expression, SNP, etc.). There is a MIAME-like experimental annotation
requirement method for each data type, that is, contained in this federation, so
that experimental details about each experiment are enforced, and technical infor-
mation about the experimental technologies is also referenced. This metagroup-
ing is important not only for grouping data in the holding area (the data filter in
Figure 12.4) but is critical for passing along relevant information to the analysis
server.

The analytical components of this system must be able to read several dis-
tinct types of data formats. In the example in Figure 12.4 we see that there is
a large amount of numerical data including mRNA abundance, protein abun-
dance, siRNA array data, and CGH array data. Some clinical data would include
a graded response to a drug, survival data in the form of percentage mortality
or morbidity, and other scalar data mixed together with categorical data. Prior
to the analysis, CGH and SNP data move from scalar values to a category of
present or absent, number of chromosomal copies, or markers. SNP data is of-
ten read as a numerical value that indicates the amount of DNA hybridizing to
a probe. CGH data is read as the number of copies of a chromosomal region
and array CGH provides the quantity of genes and genomic elements that are
overrepresented in the cell when an amplification event occurs. siRNA data is
often read as a phenotype based on a fluorescent marker within a cell, and the
data often contains total intensity of fluorescence, structural information (nuclear
localization, cytoskeletal, cortical, etc.), and variability of transfection efficiency.
Unless the user wishes to pursue advanced quality control methods, these val-
ues would be the most useful in a multidisciplinary analysis once they are con-
verted to the form where they would make the most sense. Epidemiology, clini-
cal data, protein structure, protein-protein interactions, synthetic lethal interac-
tions, and other types of categorical data would be sent to the analysis server as
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quantized levels where all of the responses are known ahead of time and normal-
ized throughout the expected range. The responses might be slightly different de-
pending on the quality of the data and how much the data has been scrubbed
before entering the database. The data filter must convert similar responses into
a bin of precise responses for the software to be able to recognize that the data is
the same across experiments or across treatments. This is the only way that one
can combine experiments that would report the same answer. Unfortunately this
method eliminates some of the details inherent in scalar data, in exchange for
cross-compatibility, but the trade-off provides more benefit as more data types
are added. Eventually the data must be represented in the same way so that an
algorithm can perform the same statistical tasks on all types of biological data.
Thus defining the scale of an observation, splitting or combining observations to
describe a quantizable value, and exploring the amount of information that each
observation can contribute (its inherent value) to a final analysis is key to data
integration.

Now that the analysis server has the data filtered and stored in a temporary
data mart, the analysis tools have an easier time recognizing what software goes
with what data. Each data type is clearly defined by type, that is, SNP, expression,
clinical history or pathology, and so forth. The analysis server then groups the
data headings on the screen for the user to examine. The server suggests one or
more of each category of analysis tool for the initial analysis (i.e., t test, chi-square,
survival model, regression, etc.). The user may choose to obtain initial results of
clustering for microarray expression data, linkage for SNP data, phylogenetic trees
for sequence data and would save those into an analysis staging area. The difficult
task is now for the user to design an analysis that combines the results from these
analyses into a new model where data and analytics are used to create a new view
of the extent of the experiment. In our example, we see that we have information
on Griscelli’s disease and we have some SNP and expression information on pa-
tients with and without Griscelli’s disease. Given that the user was able to find an
area on the chromosome with a high LOD score indicating that the SNPs from
several case-control and pedigree experiments all point to one region of the chro-
mosome containing a few hundred genes, and given that expression information
exists between two cell lines, one with a normal MyoV gene and one with a mu-
tant phenotype (Griscelli’s disease phenocopy), we can now use the software to
filter through all the expression data for genes within the chromosomal region
found from the linkage analysis. The software may be sophisticated enough to
identify a pattern of genes that show differential transcriptional response between
normal and Griscelli’s patients indicating some pleitropic transcriptional activity
due to a mutant MyoV gene, a transcriptional feedback loop that unambiguously
identifies novel MyoV-related pathways. If the analyst saw this same pattern in
patients with Parkinson’s disease, he might be able to identify a path of analysis
that might not have been obvious before. Given that there are details or analyses
that researchers normally ignore (e.g., phylogenetic trees that show relationships
between genes), this analysis could illuminate candidate genes that might show
interesting responses.
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12.3.1. Maintenance, updates, and integration

Many specialized public databases are incontrovertibly invaluable to the biologist.
Among these are LocusLink, Unigene, RefSeq, SwissProt, dbSNP, KEGG, BIND,
and others. Much of today’s genomic information relies on the most recent build
of the NCBI reference human genome sequence. Build 34 (the most recent build
so far) of the human genome is used by commercial and open-source software
products in order to locate SNPs and genes at a precise location on each chromo-
some. Many readers will know the NCBI-supported databases, but other reposito-
ries have become indispensable as well: the BIND database of protein interactions
(www.bind.ca), the KEGG pathway database at Kyoto, Japan (www.kegg.org), and
the Brookhaven Protein Database (www.pdb.org). The PDB structural database
has not grown as quickly as it has in the past but it contains a wealth of structural
information about proteins, ligands, small molecules and conjugates. It is incum-
bent upon a biological federation of databases to update itself whenever possible
by gathering the information it needs to bring some of this data in house. Most
times a virtual link works just as well as bringing data in-house, but in the case of
the human genome, many pieces of software need to know the physical locations
of SNPs and other genomic features and thus the latest genome build is important.
It is necessary, therefore, to occasionally download the latest version from NCBI to
keep that information current. Keeping information updated is very straightfor-
ward because as data is updated in remote databases, a simple query to the specific
database would return identical information about a particular query until such
information is updated. After the update, the user community would know that
information has changed and the old version is no longer the latest format.

Integration of this data is key to the practical use of this information in a way
that assists the systems biologist. Integration consists of taking publicly available
biological information and ensuring that it matches annotation-wise the infor-
mation contained within the local database. Note that integration of data implies
that custom or commercial software can access the data contained within these
databases as easily as any well-versed bioinformatician.

Sharing of information has become a principle concern in these days of mul-
ticenter collaborative efforts. A large center should be able to share data and in-
formation readily with any other group that has Internet access. The growth of
the Internet has ensured that most scientists have full access to a high-speed T1
line, and VPN and secure socket layer (SSL) have made encryption technology
simple and painless for the end user. Data sharing is becoming more than simply
identifying a valuable datafile in a public microarray database. Now users wish to
share data among colleagues and collaborators in a way that increases the effec-
tiveness of distance collaborations. Consortia of like-minded researchers (e.g., the
NINDS/NIMH Microarray Consortium, http://arrayconsortium.tgen.org) are es-
pousing the usefulness of providing data to members of the consortium while pro-
viding an easy-to-use web-based interface for uploading and downloading data,
data analysis, and sharing project information and publications. These groups
indicate a trend where focused groups are relying on the power of the Internet
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to enhance collaborations. Data sharing becomes increasingly useful when the
sponsoring organization (for expression array data, available at www.ebi.ac.uk/
arrayexpress, www.ncbi.nlm.nih.gov/geo, and others) includes direct database ac-
cess, advanced queries, and high-speed uploads and downloads. Security would be
enhanced, multiple levels of data access would ensure project data can be shared at
various levels—read only, read/write/and delete. Other types of sharing can exist
in a proposed multitype federated biomedical database system: the user can query
multiple or single types of data and request that data in the form of an XML file.
This is one of the simplest methods for retrieving common data because it relies
strictly on the native format of the database itself. Creating an XML file from data
using specific field names and entity relationships directly from the DTD itself is
very straightforward. The resulting data can be turned into a text representation
of an XML file, which can then be zipped and sent via secure FTP. Sharing also
depends on network security, and the type of security appropriate for biomedical
data is more easily implemented in a federated system such as that seen in Figure
12.4. Network security can be structured by the IT department, but database secu-
rity and permissions can be handled by the database administrator in conjunction
with expert domain knowledge from scientists and analysts. Many security fea-
tures are simply part of modern databases; these features have become invisible
to the end user or the administrator, enhancing and simplifying data sharing and
data availability.

12.4. Mathematical and computational tools
for computational systems biology

Biological data gathered through various measurement technologies are subject to
mathematical and computational tools for interrogation, analysis, and modeling.

12.4.1. Identification of disease subtypes and molecular markers

Understanding regulatory mechanisms that drive a biological system to a specific
phenotype requires the ability to isolate the system regulated under a causative
mechanism. The observations made from mixed pools of transcriptional systems
each of which is governed by different mechanisms may prevent us from getting
correct inferences and interpretations of the outcome of the analysis. This is one
of the reasons that the experiments carefully designed to explore a specific bio-
logical context result in observations that are more easily understood and inter-
preted. However, we often do not have that much control over how to perform
experiments or even how to collect the data. For example, many studies involving
human subjects, that is, patients, or other live animals, are subject to certain pro-
tocols and we cannot arbitrarily design experiments that use excessive numbers
of living subjects. Tumor samples or other disease-related tissues get even more
complicated as issues of tissue acquisition and patient consent create complexities
that are hindering such analyses. Therefore, it is critical to have computational or
statistical methods to sift through this heterogeneous set of observations and sort
them out to more homogeneous observations in biological contexts.
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One of the most popular ways to identify this rather homogenous set of ob-
servations is clustering. By grouping sets of genes that share similar transcriptional
expression patterns across multiple experiments (genewise clustering) or sets of
experiments with similar expression pattern across multiple genes (experiment-
wise clustering), one can find sets of genes that might be coregulated under the
same transcriptional regulation or a set of experiments that might have resulted
from the same transcriptional regulation. There exist many different ways to de-
fine “similarity” between genes and experiments such as correlation, Euclidean
distance, rank correlation, and so on. Also, there are various algorithms to find
clusters (sets) of genes/experiments given such a similarity measure. Clustering
has been quite useful in analyzing microarray data and identifying sets of coreg-
ulated genes [18, 21, 23, 74, 75, 76]. Such an approach is called unsupervised
since there is no “teacher” that guides the process of learning to distinguish ei-
ther sets of genes or sets of experiments based on common rules. While it some-
times reveals informative results, one can often find even more informative sets
of genes if some prior biological knowledge or statistical occurrence is known
(known as a prior in Bayesian statistics). Another interesting and very promising
approach along this line is to utilize a gene clustering tool such as the GO browser
(gene ontology) or other descriptive set of data that categorizes genes by function
[77].

Once a different set of biological contexts are identified, the next step is to
identify a set of genes or perhaps a single gene that might be a cause or element
of a causative agent for a specific biological context. Statistical approaches such as
Student t test, ANOVA, ANCOVA, MANCOVA, and others are typically used to
score genes according to each gene’s capability to discern its target context from
others using discrete or continuous descriptors, resulting in a set of genes that can
be used as molecular markers to separate, for example, disease subtypes. Various
other approaches, statistical or algorithmic, have been tried with varying success.
The use of the t test [78] or its many variants such as SAM [79] in microarray
data is well accepted. They are single-gene-based approaches and rank a gene high
if that gene has compactness within its class but significant separation between
classes.

There are other single-gene-based approaches such as TNoM score [80], time-
series analysis [81], PRIM [82] which uses false negative errors as score, false dis-
covery rate (FDR) [83, 84], local-pooled-error (LPE) [85] and nonparametric ap-
proach [86]. Approaches that factor more than a single gene into the analysis in-
clude ANOVA [87], strong-feature set [88], gene shaving [89], Bayesian approach
[90], and Genes@Work [91]. Most of these algorithms use some amount of statis-
tics to evaluate each gene or gene list and each statistic is checked for significance.

For either diagnostic or prognostic purposes, molecular markers that are iden-
tified via feature selection methods described above can be used to construct clas-
sifiers. Many traditional learning algorithms have been used for microarray data.
Linear discriminate analysis (LDA) [92, 93], k-nearest neighbor (k-NN) classifier
[80, 93], decision tree (DT) [80, 93], support vector machine (SVM) [80, 93, 94],
clustering-based algorithm [80], and kernel-based classifier [88, 95] are among
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them. When classifiers are designed, classifier assessment, specifically its predictive
power and sensitivity, is an issue well documented in the pattern classification
community [96, 97, 98, 99, 100, 101]. There are various methods to evaluate es-
timated errors, mostly a function of the number of samples used in the design
and the complexity of the classifier being designed. This issue has confounded the
application of traditional rule-based and statistical-based learning approaches to
data analysis due to the lack of sufficient numbers of samples to validate the sig-
nificance of estimated errors. Recently, some efforts have been made to bring this
issue to the attention of the community [93, 102, 103, 104], and some have tried to
overcome the small sample issue [105, 106] or have compared the quality of error
estimation methods [107, 108]. While there may be many more statistical issues to
be resolved, at least a few studies have resulted in promising outcomes with strong
associations to clinical and prognostic predictions [109, 110].

12.4.2. Machine learning for predictive functional
relationships among genes

Identifying molecular markers for a certain type of disease helps physicians prop-
erly and efficiently diagnose the disease based on phenotypic or genotypic obser-
vations. However, it may not provide adequate insight to develop or implement
an effective treatment plan to cure the disease unless the whys and hows of cer-
tain steps of molecular events occur to lead to the specific phenotype. Hence,
learning about functional/causative relationships more effectively, at the molec-
ular level, is very important in understanding and curing disease. Having molec-
ular markers is analogous to having a list of parts for an automobile. It helps in
the process of building a vehicle but it is not sufficient. We must understand how
each part interacts with every other part to create functioning subassemblies that
carry out certain processes for an entire functioning automobile. Micorarray data
and other high-throughput measurement technologies present a unique opportu-
nity to study the functional relationships among genes at a global scale. System-
atic perturbation using technology such as gene silencing using antisense RNA
[111, 112] or RNA-mediated interference [8, 66, 113] also dramatically increases
our capability to identify those modules, or subassemblies, that work to bring a
cell back to equilibrium.

The ultimate goal is to construct a comprehensive mathematical model, learn
the possible parameters from observable data, and synthesize this model in silico
for further analysis with extensive simulations and validation through refined ob-
servations. For example, a computational model can be used to predict the behav-
ior of a system under certain conditions that may not be easily set up in a physical
laboratory. While not strictly impossible with our current technology, we will re-
quire much more refined and detailed observational technologies, more data pro-
cessing power, and new algorithms that can intelligently combine data types into a
data stream that can be reconstructed to a level that allows us to build comprehen-
sive mathematical and computational models for biological systems. Therefore,
the effort to learn the predictive relationships found within the transcriptional
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activity (currently the most applicable measurement technology for systems bi-
ology in terms of modeling biological networks) is still laudable at the very least
and profoundly practical at best. For example, although it is feasible to perturb and
monitor a cellular system in trans using antisense inhibitors of mRNA [111, 112] or
RNA-mediated interference [8, 66, 113], it is not always practical to design and im-
plement perturbation experiments in mammalian cells since they are not typically
observable in a controled environment—the enormous amounts of confounding
factors cannot be easily accommodated. It is therefore important to understand
the extent to which networking between genes and other cellular components can
be learned from steady-state observations. Although time course information is
preferred, it is often impractical from a financial standpoint to hybridize enough
arrays to obtain sufficient data. Another critical issue in learning a predictive re-
lationship among genes is the lack of sufficient observations, that is, insufficient
number of samples. There are various statistical issues; some have tried to bring
attention to the issue [106, 114] with varying success. There have been many such
efforts in the last five or six years.

Various mathematical and algorithmic approaches in conjunction with ap-
propriate biological experimental data were used to alleviate this problem. Gen-
eral reverse engineering algorithm (REVEAL) with a Boolean network framework
and the use of mutual information have been developed and applied to both sim-
ulated and real datasets [33]. Other REVEALs were also used for microarray data
[115, 116], such as the ones based on singular-value decomposition [52] and ge-
netic algorithm [115]. A reverse engineering approach with carefully designed bi-
ological experiments based on systematic perturbation seems to yield the highest
degree of success for the reconstruction of the topology of genetic networks and
has been shown in simulated data as well as Drosophila melanogaster datasets [67]
and yeast [117]. Bayesian networks also showed their applicability to learning pre-
dictive relationships between genes based on microarray data [118]. Parametric
estimation with a differential-equation-based model was applied to a nine-gene
subnetwork of the SOS pathway in Escherichia coli to learn structure and function
[30]. Similar to reverse engineering, rule-based learning has been tried on expres-
sion data in conjunction with knowledge information such as the GO [119, 120].
The result of these efforts is similar to the automobile assembly allegory above.
When one knows the parts that make up the automobile, one knows the small-
est components that are assembled to form functional modules, but one does not
know the modules per se. When one knows some of the parts that contribute to
a certain effect, one can narrow down that function to a small number of parts
that contribute to that function and now we can assign some causation. When
we wish to know only those functions that cause a completed automobile to veer
violently to the left, we can look at a normal and problematic automobile and dis-
cover those parts that are faulty (e.g., a tie-rod end or steering damper or a com-
bination of both). This is considered a search for a signature, or fingerprint—a
small list of parts (genes) whose malfunction leads to a disease phenotype through
direct or indirect causes. Occasionally researchers find some obvious downstream
effects, perhaps cell wall permeability or decreased cell surface receptors that are
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the direct cause of the disease phenotype. However, a closer look reveals that a
single transcription factor with a mutation in the binding site has caused all of the
downstream effects and is in fact the primary causative agent, much as a single
stripped bolt can cause improper operation of an entire steering assembly in an
automobile.

Not only gene-gene interactions, but also protein-protein interactions are nec-
essary regulatory mechanisms to build insightful models, and they have been stud-
ied at great length to learn those relationships based on high-throughput data
screens [121, 122]. Synthetic lethal screens and functional validation using combi-
natorial application of therapeutics are immensely useful for validating predictive
models but the number of combinations and the computational load can be quite
overwhelming and time consuming.

An important issue in learning functional or predictive relationships among
genes or proteins is whether one can or cannot learn the relationships from steady-
state observations, let alone causative relationships. It is a common belief in a non-
linear dynamic theory that one needs to sample dynamic systems at a high enough
frequency, to learn about the system dynamics, and to begin to model the system.
This is problematic in systems biology since most of the biological observations are
designed for steady-state observations of cells, much less frequent enough to sat-
isfy this condition. Nonetheless, many have tried to use steady-state observations
to learn predictive relationships among genes and proteins, as described above,
and often interesting relations among genes have been found, although none could
claim to identify causative relationships until they are validated in wet-lab exper-
iments. Recently, however, Bayesian or dynamic Bayesian frameworks have par-
tially overcome this issue [34, 118, 123]. This approach seems promising in the
sense that it does not explicitly require high-resolution sampling of time-series
data. There also exist algorithmically improved methods to elicit causal relations
based on their conditional dependencies [124, 125, 126].

12.4.3. Modeling gene regulatory networks

While new kinds of data are presently being used to identify molecular signatures
with new diagnostic targets for diseases, in order to truly benefit from the volume
and complexity of this data and understand the underlying processes that result
in the markers, researchers also require computational and mathematical mod-
eling of the biological activity under investigation. Understanding the biological
mechanism underlying the cellular process may lead to significant advances in cell
biology, drug development, and medicine. Therefore, it is increasingly clear that
in order to enhance our knowledge about functional modules such as transcrip-
tional regulation, it is vital to build mathematical and computational models for
cellular processes with sufficient accuracy to make reasonable predictions about
cellular mechanisms. Hence, synthesis of mathematical models for cellular pro-
cesses, in silico simulation and analysis, and (preferred) biological validation will
play fundamental roles in systems biology to understand roles and causality in
cellular systems.
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Modeling is a process by which a system is abstracted in order to simplify and
modularize the relationships between functional elements of a system. A good
model retains enough of the original system’s characteristics—the flexibility, the
dynamics, the response and accommodation to stress—to predict either a verifi-
able outcome within certain constrained parameters or an outcome that predicts
a living response to a perturbation with input boundaries. As increasingly better
measurement techniques evolve, we have better methods by which to test our sys-
tem, and our predictive model becomes more robust. In addition, the modeling
of a process and its subsequent analysis also drives intuition and insight to further
develop new measurement and analysis techniques.

So far there has been, albeit with limited success, a significant amount of effort
put into practice to construct a mathematical framework in order to model bio-
logical systems [28, 29, 53, 68, 127, 128, 129, 130, 131, 132]. The Boolean network
model [26, 27, 44, 49, 133, 134, 135, 136, 137], Bayesian framework, differential-
equation-based models, and linear models are among them. Random Boolean net-
works, first proposed by Kauffman [135, 138], were extensively studied to show
that it possesses such biological properties as stability (attractor) and evolvabil-
ity. Albert et al. have shown that the Boolean network, in opposition to the notion
that Boolean networks can only qualitatively describe a genetic network, could also
model the topology of regulatory interactions to predict the expression patterns of
the segment polarity genes in D. melanogaster in a quantitative manner [139]. In
mimicking incidental or intentional perturbation of gene regulation, Shmulevich
et al. [140, 141] studied the stability and transition time of the model in response
to a specific perturbation of transcriptional status. In another approach to mathe-
matical modeling based on differential equations, Hasty et al. [68, 142], Ozbudak
et al. [59], and Thattai et al. [58] studied intrinsic and extrinsic noise observed
in cellular systems as well as dynamic evolution, and regulatory control of cellular
systems.

There are a few computational tools available to help construct fairly complex
gene regulatory networks, mostly based on differential-equation-based models;
E-cell (http://www.e-cell.org) [143, 144] is a tool developed by a group of
international collaborators to reconstruct biological phenomena in silico and sim-
ulate the system for the prediction of cellular behavior. genomic object net
(available at http://www.genomicobject.net/) [145, 146] provides similar function-
ality.

Once such mathematical and computational models for cellular systems are
available, it is paramount to simulate in silico systems to predict biological be-
havior under conditions that may be difficult to impose on a target system—this
is one of the strongest reasons for developing a biological model. The conditions
may include the one not possible in a natural environment but may have clinical
value, such as a key mutation in a gene. Such prediction results could provide a
new hypothesis that could be validated in the lab. Another aspect of the analysis
of in silico models is to study system behavior in both transitional state and steady
state (terminal, or endpoint) and to identify the properties that help maintain sta-
bility. Homeostasis, the ability of cells to maintain life by facilitating an internal
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environment compatible with survival, and rapid transitions between metastable
states, are among those cellular systemic properties.

The study of such behavior—robustness, stability, and topology—is getting
the focus of scientific research these days. Robustness [10] is characterized by
properties such as adaptation (the ability to cope with environmental changes),
parameter insensitivity (a system’s relative insensitivity to specific kinetic param-
eter values), and graceful degradation (the slow degradation of cellular functions
after damage, rather than catastrophic failure). Mechanisms to maintain robust-
ness include:

(1) control (negative feedback and feed-forward),
(2) redundancy (surrogates),
(3) structural stability (intrinsic mechanisms that are built to promote sta-

bility),
(4) modularity (subsystems are physically or functionally insulated so that

failure in one module does not spread to other parts and lead to system-
wide catastrophe).

Scale-free topology [147], ensemble [133, 148], canalizing functions [133],
and postclasses [149] are among the many mechanisms that describe Boolean net-
works’ capability to mimic such behavior of cellular systems. Recently, Kim et al.
[150] used Boolean networks with steady-state observations to construct a finite-
state Markov chain model whose transitions depend on state-dependant multi-
variate conditional probabilities between gene-expression levels. This model pro-
duced steady-state distributions closely approximating the observations made in
microarray data and exhibiting only a limited number of states that possessed sig-
nificant probability of occurrence. This behavior is congruent with biological be-
havior as cells appear to occupy only a negligible portion of the state space available
to them.

12.5. Supercomputing and parallel applications

Many of the aforementioned analytical techniques are highly computing intensive,
and require many months of computer time to be completed within a feasible time
span. Several physical approaches exist within the supercomputer realm as follows.

(1) Cray, or vector-style supercomputers (shared-memory multiple vector
processors) use several high-speed vector processors that access common mem-
ory running at the CPU core speed (typically many gigaflops) and rely on code
specifically written for vector and floating point calculations.

(2) MPP (massively parallel processors) machines such as Paracel (available
at www.paracel.com) and the now defunct TimeLogic systems utilize many thou-
sands of inexpensive CPUs physically sharing memory on the same bus. These
machines do not access memory at the core CPU speed.

(3) Beowulf-type machines (cluster processors) are discrete machines that
share neither CPU bus nor a memory bus. A Beowulf cluster relies on high-speed
external interconnections to transfer data to and from head nodes and between
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slave nodes. Interconnections such as Myrinet or Gigabit Ethernet are significantly
slower than shared physical memory.

(4) The distributed computing systems, such as SETI@Home, distribute fixed-
size work units that are disseminated via the Internet to available clients.

Each of these computer hardware architectures is optimized for certain prob-
lems, but none works well for all problems in systems biology. Cluster-based su-
percomputers are well matched for many applications in clustering, classifica-
tion, partitioning methods, and combinatorics heavy selection algorithms. Well-
organized and flexible parallel MPI (message passing interface) libraries exist for
C++, Java, perl, python, Matlab, and so forth and are ideal for parallelizing many
of the problems that currently exist in bioinformatics and microarray analysis.
Many of these algorithms follow the Monte Carlo scalability, that is, many prob-
lems do not need to share memory and are distributable in small self-contained
packets, and the results can be easily combined after the process is completed. If a
calculation needs to access the results from a previous calculation, we are unlikely
to find an adequate or efficient method for increasing the parallel nature of the al-
gorithm. Many statistical methods are highly serial, as the input to one calculation
is the result from the previous calculation. Parallel statistical computing remains
a difficult challenge to face. The parallel computer system in place at the Trans-
lational Genomics Research Institute and Arizona State University (TGen/ASU)
has been used for many of the aforementioned problems. The system is an IBM
xSeries cluster of 1024 Xeon 2.4 GHz processors (512 dual processor nodes) with
1M level 1 cache, 256 K level 2 cache, and 128 K level 3 burst cache. The CPU is
a CISC processor and each node is an independent SMP machine with 2 CPUs,
2 G of RAM, and 60 G of hard drive space running the Red Hat Linux OS. Each
node communicates with other nodes using Myrinet interconnections and Gigabit
Ethernet connections to the head node. The system can accommodate both mul-
tiple program multiple data (MPMD) and single program multiple data (SPMD)
environments (Hwang, 1993).

Classification and other iterative and heuristic algorithms are especially well-
suited for parallelization. For example, the strong-classifier program performs an
exhaustive search of combinatorial space across an immense feature set [88]. Typi-
cally, one would evenly distribute the computational load among all available pro-
cessors, thereby reducing the load imbalance; however in practice this typically
requires dynamic assignment and more overhead. Dividing the total number of
s-classifiers across the total set of processors was inappropriate for less than 64-
bit systems, so a sub-optimal distribution scheme was entailed. The most efficient
method was to selectively modify each member of a “work group” using a predic-
tive method for complexity. Each work unit was assigned a complexity value and
sent to a CPU for processing. Load balancing was performed from the original
calculation of complexity and task distribution by the head node.

Coefficient of determination (CoD) [35, 151] has typically been a challenge
for parallelizing efficiently since uniform processor loading does not sufficiently
accommodate the differential calculation speed of every combination of target
genes necessary to identify those predictor genes that appear to exert influence on
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the target genes. This algorithm is extremely time intensive due to the large num-
ber of combinations that need to be analyzed, and the final large sort of the data.
Load balancing on parallel machines can be static or dynamic; in the case of CoD a
dynamic load partition and assignment scheme was utilized based on partitioning
the data and mapping computation and data modules onto separate processors. A
weighting scheme was used to avoid lulls in processing time. Each clock cycle that
was voided decreased the overall efficiency and it was noted that many algorithms
that utilize time-independent but low-order combinatorial calculations benefit
from dynamic CPU loading and monitoring. Often low-frequency monitoring to
save clock cycles results in a high degree of random latency, and in the case of CoD
it was found that a mid-level monitoring scheme was useful for maintaining full
CPU load on each of the processors in a typical 32+ CPU Beowulf system.

12.6. An application: deciphering the Wnt5a signal cascade

We now present an exemplary study in which we used various mathematical and
computational tools to decipher the WNT5a signaling cascade.

Over the past five years, the various researchers associated with this applica-
tion have been developing a mixture of biological and mathematical observations,
reagents, and approaches to make inferences about genomic regulatory networks
[41, 88, 152, 153, 154, 155, 156, 157, 158, 159, 160]. While these have been applied
to a variety of biological systems, all of the types of inference-generating method-
ology have been consistently applied to melanoma.

Figure 12.5 depicts a putative outline of signaling, given the current state of
knowledge from one of the focal points of this study. The focus in this case is the
network of elements of the Wnt5a signaling pathway that deals with the pheno-
typic change from a less motile, less aggressive cell to a much more motile, more
invasive cell. The diagram contains information based on experimental observa-
tions, and the mathematical treatment of the data, as well as the integration of the
models with what is known about the genes from genetic and biochemical charac-
terizations in a variety of both mouse and human contexts.

12.6.1. Dataset: gene expression profile

The gene expression profiles used in this example were obtained from 31 melano-
ma samples and 587 genes [156]. In [156], total mRNA was isolated directly from
melanoma biopsies; fluorescent cDNA from the message was prepared and hy-
bridized to a microarray containing probes for 8150 cDNAs (representing 6971
unique genes). The data was also subject to stringent quality assessments to meet
our quality standards.

12.6.2. Exploratory analysis: finding a subcontext of phenotype

Both quantitative and comparative measurements were applied for each gene. In
this study, several analytical methods such as hierarchical clustering and multi-
dimensional scaling (MDS) were performed to visualize the overall expression
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Figure 12.5. Features of the Wnt5a signaling pathway. A view of Wnt5a signaling in melanoma as-
sembled from expression profiling, cell biology experimentation, mathematical analysis, modeling of
experimental results, and incorporation of regulatory connections from external sources. The mRNAs
are represented as rectangles, and proteins as ovals. Steps encompassing transcription (TR), transla-
tion (TL), and other biochemical processes are indicated as arrows with labels. Known changes in the
relative abundance of species after Wnt5a stimulation are indicated by red and green (increased and
decreased abundance). Phosphorylated protein species are indicated as blue. Speculative steps are in-
dicated by dotted arrows, and speculative components are indicated with question marks.

pattern relationships among 31 cutaneous melanoma tumor samples. The clus-
tering and MDS projected plots indicated that the 31 melanomas could be par-
titioned into two groups of 12 and 19 samples, respectively, as shown in Figure
12.6.

12.6.3. Discriminatory analysis: identifying regulatory components

In identifying genes that discriminate two different clusters in melanoma samples,
a statistical measure was employed to generate a weighed gene list according to
their impact on minimizing cluster volume and maximizing center-to-center in-
tercluster distance. The 587 genes are the top 587 with highest weights out of the
6971 genes. Figure 12.7 shows the first few dozens of those discriminant genes. It
is quite interesting to observe that gene expression pattern in the group with larger
number of samples show much consistent pattern. In fact, this is congruent with
the smaller size of the corresponding cluster visualized in the MDS plot in Figure
12.6b, the cluster inside the cylinder. This can be interpreted as follows, this set of
genes is more tightly regulated by a cellular mechanism governing a specific cel-
lular context that resulted in a specific phenotype observed for the set of samples;
less motility. The same set of genes show less consistent molecular patterns outside
the cluster, which may indicate that the same cellular mechanism is not operating
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Figure 12.6. Hierarchical clustering and multidimensional scaling (MDS) plot reveal two distinct
groups of samples.
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Figure 12.7. Gene expression profile with discriminant genes.

or at least not regulating the genes as tightly as it does within the cluster, hence,
less controled behavior.

12.6.4. Prediction analysis: finding relationships and functions

Furthermore, each gene expression level was quantized to a ternary value that rep-
resents the abundance of mRNA produced by that gene in a particular melanoma
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Figure 12.8. Quantized (ternary) gene expression data for 10 selected genes.

sample relative to the abundance of mRNA produced by that gene in a reference
cell as shown in Figure 12.8. The values are overexpressed (red), no change (black),
and underexpressed (green), relative to the reference.

The coefficient of determination (CoD) is a measure of the relative improve-
ment in prediction accuracy owing to the presence of the observed variables, that
is, how the combination of given genes (predictors) improves the prediction of the
behavior of a target gene in comparison to the absence of predictors. It is math-
ematically defined as θopt = (ε0 − εopt)/ε0, where εopt is the error made by the
optimal predictors and ε0 is the prediction error in the absence of predictors. We
first applied the CoD to determine multivariate intergenic relations, and relations
between genes and external stresses arising from multiple conditions, such as radi-
ation and chemical mutagens. In an effort to capture nonlinear decision making,
we both considered a general logical approach [153] and then focused on addi-
tive (linear) regulation by considering perceptron-based prediction [154]. In both
cases, we established the consistency of mathematical results with existing biolog-
ical knowledge and speculated on the plausibility of strong multivariate relations
in the data that did not correspond to previously known relations, some of which
were validated later (unpublished). A key interest in applying CoD has been to
determine the connectivity in genetic regulatory models [150, 159].

From the gene expression profiles used in the study, 50 genes capable of both
predicting other genes as well as being predicted by other genes with high CoDs
were chosen out of all genes. Then, 10 genes were further selected from 50 genes
based on their roles in classifying malignant melanoma and known biological
functionalities. Table 12.1 shows the best predictor combinations (genes) for each
target and their corresponding predictive power (CoD).

This relationship is depicted in Figure 12.9 showing the wiring diagram of the
selected 10 genes in which the genes are placed to reflect the influence between
them; the higher the influence between genes, the closer they are placed. For ex-
ample, Wnt5A and pirin are placed closest to each other, which is expected due to
both their observed expression patterns and previously known relationship. How-
ever, the connection between WNT5A and MART-1 is of the greatest interest. It
predicts that Wnt5a has a high influence on Mart-1.
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Table 12.1. The 3-gene predictors for each target gene and their highest CoD values for 10 genes se-
lected.

Predictor 1 Predictor 2 Predictor 3 Target CoD

WNT5A (46) HADHB (296) ESTs (557) pirin (6) 0.709

Pirin (6) S100P (52) RET-1 (63) WNT5A (46) 0.683

WNT5A (46) RET-1 (63) synuclein (366) S100P (52) 0.795

Pirin (6) WNT5A (46) S100P (52) RET-1 (63) 0.625

S100P (52) RET-1 (63) HADHB (296) MMP-3 (79) 0.700

MART-1 (147) synuclein (366) ESTs (557) PHO-C (80) 0.920

Pirin (6) WNT5A (46) MMP-3 (79) MART-1 (147) 0.793

Pirin (6) WNT5A (46) MMP-3 (79) HADHB (296) 0.772

Pirin (6) S100P (52) MART-1 (147) synuclein (366) 0.635

Pirin (6) WNT5A (46) PHO-C (80) ESTs (557) 0.479

RET-1

HADHB

MMP-3

WNT5A
S100P

Pirin

MART-1

STC2
Synuclein

PHO-C

Figure 12.9. Predictive relationships among 10 genes of interest in melanoma.

12.6.5. Biological validation: follow-up

This proposed regulatory relationship has been followed up by detailed investiga-
tions of the relationship in other samples (Figure 12.10: Weeraratna and Nickoloff,
unpublished), and the relationship is found to hold in most cases. Some of the de-
tails of regulation of a cascade that controls Mart-1 and a number of other genes
expressed in melanocytes have been worked out in detail. These details are pre-
sented in Figure 10, starting with the induction of transcription of the MITF gene
by the synergistic effect of the transcription factors, Pax3 and Sox10 on the MITF
gene [161, 162, 163], and the subsequent induction of transcription of the TYR,
TYRP, DCT, SILV, and MLANA (MART-1) genes by the Mitf transcription factor
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Figure 12.10. Anticorrelation of WNT5A and MART-1 mRNA abundance. The abundance of mRNA
species for WNT5A, MART-1, and NOTCH4 determined by Q-RT PCR for a variety of melanoma cell
lines and tumors relative to a melanoma cell line with low levels of each mRNA is shown. A high de-
gree of anti-correlation is observed for WNT5A and MART-1, however NOTCH4, a protein frequently
expressed in melanoma, which is not expected to be share regulatory information, has no apparent
correlation to either WNT5A or MART-1.

[164, 165]. A great deal is known about this particular pathway since the loss of ac-
tivity of some of the end products of the cascade can alter hair color in mouse and
man and can be associated with a variety of human diseases such as albinism and
impaired vision. Data consistent with downregulation of transcription of all mem-
bers of this cascade starting with the PAX3 gene has been observed in our recent
studies of very late stage melanoma tumors overexpressing the WNT5A gene (Bit-
tner, unpublished). The ability to make such connections combining expression
patterns, models based on inferences from these patterns, and existing knowledge
of small segments of transcriptional networks suggests that these approaches will
make it possible to use expression data to productively focus on possibly profitable
experimentation.

12.6.6. Steady-state analysis: Markov chain simulation
in the context of robustness

In the follow-up study of gene expression profiles of melanoma cell lines and
the predictive relationships identified above, we constructed a finite-state Markov
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Figure 12.11. The steady-state distribution: each state is represented in a lexicographical order. Only
a few states show significant probability at steady state. This predicts that the gene regulatory network
abstracted in a probabilistic Boolean network has only a limited number of attractors at steady state,
which is consistent with the fact that cells occupy only a negligible portion of the state space available
to them.

chain model whose transitions depend on state-dependant multivariate condi-
tional probabilities between gene-expression levels with the goal of determining
whether the kinds of biological behavior observed and expected in biological sys-
tems could be captured in such a Markov chain model [150]. The Markov chain
model contains n nodes, of which each node represents one of the N states com-
posed of m genes selected. Each gene has a ternary value, which is assigned as
overexpressed (1), no change (0), or underexpressed (−1). The state space of the
Markov chain has 3m states. For capturing the dynamics of the network, we con-
sider a “wiring rule” such that the expression state of each gene at step t + 1 is pre-
dicted by the expression levels of the other genes at step t in the same network. For
each target gene, a set of predictor genes was chosen with the highest CoD value.
Instead of using many possible Boolean functions that are independent of the state
of the system, as in the PBN model [41], we use the state of predictor genes at step
t and the corresponding conditional probabilities, which are estimated from ob-
served data, to derive the state of target gene at step t + 1. In the simulation, gene
perturbation is also added to guarantee that the chain converges to a steady-state
distribution [141, 150].

The steady-state distribution acquired from long-run simulation is shown in
Figure 12.11. We concluded that the model produced steady-state distributions
closely approximating the observations made in microarray data and exhibiting
only a limited number of states possessing a significant probability of occurrence.
This behavior is nicely congruent with biological behavior, as cells appear to oc-
cupy only a negligible portion of the state space available to them. The transition
rules generated for the model produced localized stability. While the size of the
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problem studied in this study is relatively small, it suggests that models incor-
porating rule-based transitions among states based on a Boolean network have a
natural capability to mimic biology. The ability of such models to enhance our
understanding of biological regulation should be further tested by systematically
examining the characteristics of the rules and interconnections that lead to sta-
bilization and switchlike transitions, and by building larger networks that incor-
porate more extensive prior knowledge of regulatory relationships and more ex-
tensive experimental observations of the different stable states the network can
occupy to determine how accurately the model mimics these systems.

Figure 12.12 shows the marginal distributions of each gene, also at steady
state. This distribution predicts that for example Wnt5a would be mostly down-
regulated at steady state while Mart-1 is upregulated at steady state. This is again
consistent with the observations made through the gene expression microarrays
shown in Figure 12.8, which is the measurement of cells at steady state.

12.6.7. Modular network identifications: growing from seed genes

By utilizing CoD and influence measure for probabilistic Boolean networks pro-
posed by Shmulevich et al. [41], a method to grow a network given a smaller
number of genes of interest, can be developed. The network is grown to be as self-
contained and autonomous as possible, a key property of modularity. One such
example when applied to melanoma gene expression profile is shown in Figure
12.13. The algorithm to construct this modular network is described in Hashimoto
et al. [159]. This network was constructed from a pool of 587 genes and it consists
of only 30 genes once it is constructed. This is a set of genes that maximize the
overall predictability of this self-contained network. In the network diagram, the
directed edges are not necessarily meant to indicate the causal relationships, but
rather the influence of a gene on another in terms of information flow. However,
we have shown an example in Figure 12.8 that even this crude level of abstraction
of a gene regulatory network can lead to further development of new knowledge
with the help of biologists’ insight and biological experiments.

Key information needed for the network-growing method is a set of small
number of genes of interest: seed genes. How to identify the seed genes of interest is
very critical when applying this algorithm. We can use prior biological knowledge
to choose seeds of interest. However, when such prior knowledge is not available,
which is quite often the case in biology, we need a way to systematically identify
those seed genes. Since the method is also computationally intensive and its com-
putational complexity grows exponentially as the number of genes grows, meth-
ods to rapidly screen out irrelevant genes will be practically very useful. A typical
method to fit this need is clustering which groups genes according to their ex-
pression patterns hoping that such genes with similar gene expression patterns
belong to similar biological processes representing a self-contained module. Al-
though they are quite useful methods and oft used in genomic data analysis, they
do not extend beyond the identification of pairwise linear relationships among
genes. Segal et al. [77] proposed an interesting method to identify regulatory mod-
ules based on gene expression data and some biological prior knowledge.
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Figure 12.12. Marginal distribution of each gene at steady state: (a) pirin, (b) WNT5A, (c) S100P,
(d) RET-1, (e) MMP-3, (f) PHO-C, (g) MART-1, (h) HADHB, (i) synuclein, (j) STC-2.

12.7. Conclusion

Computational systems biology is the set of methods and tasks that help us study
computational aspects of systems biology, helping biomedical scientists know how
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Figure 12.13. A modular network grown from a set of 4 genes; WNT5A, MMP3, PIR, and MLANA.
This network is modular and self-contained in the sense that the set of genes are found to maximize
the predictability between genes within the network without the help from genes outside the network.
In other words, no other gene outside the network can be added without decreasing the overall pre-
dictability of the network.

cells operate as a system by developing various computational and mathemati-
cal tools that explain the function of independent modules, and then how these
modules interrelate. This requires the development of tools at various levels of ab-
straction and with many different goals. When one wishes to find sub-contexts of
cellular behavior, clustering and other exploratory tools are of interest. Discrimi-
natory analysis would help identify a set of genes that are strongly associated with a
specific cellular context such as a certain disease, therefore, becoming potential di-
agnostic markers. Simple statistical tools provide the basic understanding of how
populations of observations represent the actual behavior of all cells. The prob-
lem of learning how genes are interacting with one another is often handled by
prediction models and machine learning but too many times this fails to capture
that mechanistic level of interaction among genes. The problem of modeling entire
cellular systems is even more abstract and deals with a much higher level of un-
derstanding of the global interaction between genes. We are still at the early stage
of learning and the development of the many necessary computational tools that
are needed is proceeding, albeit at a slow rate. We are attempting for the first time
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to successfully implement highly robust data storage and integration tools so that
new algorithms and software products can have simplified access to many levels
and types of data simultaneously and can integrate this data producing a model
that is much more robust and accurate than one produced with a single type
of data. One of the fastest growing fields in biology is the development of com-
prehensive and robust lexical standards that describe biological observations and
phenomena. Biologists are working with database experts to precisely define the
universe of data from a particular type of biological observation (e.g., the MAGE
consortium scientists designed the MAGE object model through cooperative inter-
action with the OMG group). Once a firm set of international standards for text
descriptions is available, the data stored in public and private databases will be
much more amenable to mining, categorizing, and ultimately contributing to our
understanding of the biological process. The systemic support for multitype data
integration is also critical in systems biology to expedite the synthesis-analysis-
feedback process and, in so doing, accelerate fundamental knowledge discovery
about cells, diseases, and the delicate balancing act of life itself.
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